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Summary
Multiple informant data refers to information obtained from different individuals or sources used to
measure the same construct; for example, researchers might collect information regarding child
psychopathology from the child's teacher and the child's parent. Frequently, studies with multiple
informants have incomplete observations; in some cases the missingness of informants is substantial.
We introduce a Maximum Likelihood (ML) technique to fit models with multiple informants as
predictors that permits missingness in the predictors as well as the response. We provide closed form
solutions when possible and analytically compare the ML technique to the existing Generalized
Estimating Equations (GEE) approach. We demonstrate that the ML approach can be used to compare
the effect of the informants on response without standardizing the data. Simulations incorporating
missingness show that ML is more efficient than the existing GEE method. In the presence of MCAR
missing data, we find through a simulation study that the ML approach is robust to a relatively extreme
departure from the normality assumption. We implement both methods in a study investigating the
association between physical activity and obesity with activity measured using multiple informants
(children and their mothers).
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1 Introduction
Multiple informant data refers to information obtained from different individuals or sources
used to measure the same construct. Obtaining accurate physical activity and inactivity
measurements, for example, can be difficult and time-consuming. Hernández et al. [1]
developed a self-reported questionnaire to assess these measures and performed a validation
study to compare responses from the questionnaire to a comparison criterion of 24-hour recalls.
The validation study collected activity measurements from multiple informants: children and
their mothers. In addition to using this study for validation of their scales, they also planned
to design a larger study [2] to more fully investigate the relationship between physical activity
and obesity. However, collecting information from mothers in a large scale study is not feasible,
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so it is of interest to compare the predictive values of the mother's and child's reports from a
subset of the larger study [2] in the context of study design.

Missing data is prevalent in multiple informant research; as the number of informants increases,
the risk of missingness also rises. In the Hernández et al. [2] study with body mass index (BMI)
as response and physical activity reported by the child and the child's mother, 26% of the cases
have missingness either in the response, the multiple informant variables or both. In a study of
mental health service utilization in children from Connecticut, 43% of cases had missingness
[3], [4], [5], [6], [7]. Having a large amount of missingness can lead to inferential problems
including bias and efficiency loss [8].

In previous work [9], we reviewed a GEE approach [10], [11] and provided a novel Maximum
Likelihood (ML) technique for analysis of multiple informants as predictors. In addition, we
showed that the GEE and ML approaches yield identical estimates for a broad range of models,
but the ML technique permits more flexibility in modeling. That research did not consider
missing data; however, general properties of the GEE and ML methods in the presence of
missingness are well known. If nonresponse is Missing Completely At Random (MCAR)
[12], then the GEE approach gives unbiased yet potentially inefficient estimates [11], [13],
while ML leads to consistent and asymptotically normal estimates assuming Missing At
Random (MAR) missingness [12], [14], [15] provided the likelihood model is correct. MCAR
missingness does not depend on values of the variables (e.g., observed cases are a random
subsample of all cases) while MAR missingness depends only on the components of the
variable that are observed.

In this paper, rather than simply focus on the common situation with missingness in the
response, we consider the non-standard case of fitting marginal regression models with MCAR
missingness in the covariates as well as the response. We assume MCAR missingness, partly
because it is a reasonable assumption for our data and also to ensure consistency for the GEE
approach. We will show under what conditions the GEE and ML approaches yield the same
estimates in the presence of MCAR missing data.

In general, when fitting marginal regression models with multiple informant covariates the
goal is to compare the relationship of one informant with response to the other informant with
response. In data without missingness, this is done by standardizing the multiple informant
data and comparing the marginal regression coefficients. However, standardizing data with
missingness can be undesirable, so we describe how to use ML to compare the effect of the
informants on response without doing so.

Another goal of this paper is to evaluate the efficiency of using ML compared with GEE for
fitting marginal regression models in the presence of MCAR missingness. It is expected that
ML will offer some efficiency compared with the GEE approach. One well-known drawback
to using ML is that it requires the assumption of multivariate normality; thus, we investigate
how robust the ML approach is to this assumption in the presence of MCAR missingness.

We begin in Section 2 by describing how to implement the GEE approach incorporating
missingness in the response and/or multiple informant covariates. In Section 3, we derive
closed form solutions for the ML approach and analytically compare the two methods in the
presence of missing data. We also describe how to use ML to compare the effect of each
informant on response without standardizing the data. We compare the efficiency of the ML
approach with the GEE technique through a simulation study in Section 4. We begin Section
5 by describing an application of the GEE and ML methods using data from Hernández’s study
of physical activity/inactivity and obesity [1], [2]. We also describe a simulation that
demonstrates how the ML approach is robust to the assumption of multivariate normality in
the presence of MCAR missingness.
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2 Generalized Estimating Equations Approach Incorporating Missingness
Pepe et al. [11] and Horton et al. [10] describe a nonstandard GEE approach for fitting multiple
informants as covariates assuming no missing data; we review the method and extend it to
include missingness in the response and the multiple informants. Let Y be the outcome and
X1, . . . , XK be the K multiple informant predictors. The GEE approach models the univariate
associations between Y and Xk, defined as E(Y |Xk) for k = 1, ..., K. The model with no covariates
and distinct parameters for each informant assuming an identity link is E(Y|Xk) = αk + βkXk for
k = 1, . . . , K where αk is the intercept and βk is the slope in the kth regression. Defining

Ỹ i = (YiYi⋮
Yi

)
(K×1)

Xi = (1 Xi1 0 0 … 0 0

0 0 1 Xi2 … 0 0

⋮

0 0 0 0 … 1 XiK
)
(K×2K)

β = (
α1
β1
α2
β2
⋮
αK
βK

)
(2K×1)

the GEE equations assuming an identity link, constant variance and a working independence
correlation matrix are

∑
i=1

n
Xi
T (Ỹ i − Xiβ) = 0. (1)

The GEE approach generalizes easily when Xik is missing by removing the corresponding rows
from Ỹ iand Xi. However, missing Y ′

i s mean the entire Ỹ i is omitted from the estimating
equations. Specifically, αk and β;k are estimated by Ordinary Least Squares (OLS) using only
cases with both observed Yi and Xik values. For example, with two multiple informant
covariates (K = 2), consider six simple monotone and MCAR missingness patterns: data
missing X1 only, X2 only, both Y and X1, both Y and X2, Y only and both X1 and X2. When X1
only is missing, the estimate of β1 is based on cases with observed Yi and Xi1 (Complete
Cases (CC)) whereas the estimate of β2 is based on cases with observed Yi and Xi2 (Available
Cases (AC)) . A similar pattern occurs when X2 only is missing. In all other situations
considered, GEE estimates of β1 and β2 are based on complete cases (see Table 1).

As previously done we assume working independence [11] and use the model-based estimate
of variance:

var̂(β̂) = (∑
i=1

n
Xi
T Xi)

−1(∑
i=1

n
Xi
T Σ̂Xi)(∑i=1

n
Xi
T Xi)

−1 (2)

where

Σ̂ =
∑i=1
n (Ỹ i − Xiβ̂)(Ỹ i − Xiβ̂)

T

n .

As described in Pepe et al. [11], assuming working independence treats data from each subject
as independent data clusters and uses independence as the working correlation matrix. This
must be done for the model to be valid [16]; however, we have shown that the use of the
independence working correlation matrix is optimal for certain models when assuming
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normality where the GEE and ML approaches yield identical estimates and standard errors
[9]. The variance in Equation 2 is model-based since it assumes the same Σ̂ for each individual
and Σ̂ does not depend on the design matrix. To accommodate missingness, estimates of var
(β̂) are based only on available cases or complete cases depending on the missingness pattern,
as when obtaining β̂. We can fit the GEE model and model-based estimates of standard error
with missingness using a standard statistical package such as R [17].

Often data from multiple informants are standardized to the same scale and a model with equal
slope coefficients (e.g., setting β1 = β2 = . . . = βK = βC) may be desirable; this can lead to more
precise parameter estimates [9]. To fit this constrained model in the presence of missing data,
Ỹ i and Xi change depending on the observed data. With K = 2 informants, we solve for β
assuming β1 = β2 = βC and find α̂1 = Y 1̄ − β̂C X̄ 1, α̂2 = Y 2̄ − β̂C X̄ 2 and

β̂C =
∑i=1
n Ii1(Xi1 − X̄ 1)(Yi − Ȳ 1) +∑i=1

n Ii2(Xi2 − X̄ 2)(Yi − Ȳ 2)

∑i=1
n Ii1(Xi1 − X̄ 1)

2 +∑i=1
n Ii2(Xi2 − X̄ 2)

2
(3)

where

Ȳ k =
∑i=1
n IikYi

∑i=1
n Iik

, X̄ k =
∑i=1
n IikXik

∑i=1
n Iik

and Iik is an indicator function for those observations with observed Yi and Xik for k = 1, 2. In
the Hernández et al. [2] study, the physical activity measurements from the mother and child
have different variances; hence, it is desirable to first standardize the Xik values and then find
estimates under the constrained model. However, in the presence of non-monotone missing
data, standardizing a priori on the basis of observed responses can be unattractive since
standardization of different multiple informant covariates may deal with different subsets of
the data. We provide an alternative technique for dealing with this issue in Section 3.

3 Maximum Likelihood Approach Incorporating Missingness
To use the ML approach we assume a joint multivariate distribution for the outcome and
multiple informant predictors. We assume for simplicity only two predictors here. The model
can be easily extended to accommodate more predictors. For each of n observations with
complete data, let Qi

T= (Yi, X1i, X2i)T and thus

Qi ∼ MVN (( μYμX1
μX2

), ( σY
2 σX1,Y

σX2,Y

σX1,Y
σX1
2 σX1,X2

σX2,Y
σX1,X2

σX2
2 )).

From this distribution, we find estimates for
θ = (μY , μX1

, μX2
, σY

2, σX1,Y
, σX2,Y

, σX1,X2
, σX1

2 , σX2
2 )T . Here we consider the

regression parameter estimates, β̂,  found from solving Equation 1 when K = 2. Using
conditional mean formulas for the multivariate normal distribution, we find
E(Y | X i) = μY + σXi,Y

(X i − μXi
)/ σXi

2 where i = 1, 2. We define αi = μY − βiμXi and

Litman et al. Page 4

Stat Med. Author manuscript; available in PMC 2007 March 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



βi = σXi,Y/ σXi
2  where i = 1, 2. We also define V11, V22 and V12 in terms of θ by utilizing

conditional variance formulas for the multivariate normal distribution, e.g., V11 = var(Y |X1),
V22 = var(Y |X2) and V12 = cov(Y |X1, Y |X2). To make the full rank transformation, we include
two parameters, μY and σY

2,  from θ into τ = (α1, β1, α2, β2, V11, V22, V12, μY , σY
2)T .

Estimates of θ have closed form solutions with complete data in this case; furthermore,
estimates of α1, β1, α2, β2 are identical to those obtained using GEE. This implies that although
the derivation of ML estimates assumes multivariate normality, because the ML and GEE
estimates are the same, both estimates have the same robustness properties [9].

To find solutions when any element of Q can have missingness, we use the expectation-
maximization (EM) algorithm [18], consisting of an expectation (E) and a maximization (M)
step. The ML approach is performed as if there are no missing observations in the M step and
the E step finds the conditional expectation of the missing data given the observed data and
the current parameter estimates. These steps are iterated until convergence. In particular, we
use R [17] for implementation; we stratify by whether or not an observation is complete and
then use the EM algorithm (see Appendix). Details are also provided in the Appendix for a
case with monotone missingness where closed form solutions can be found. While other
techniques (e.g. Newton-Raphson, Fisher scoring) have quadratic convergence rates [19], the
EM algorithm has a linear convergence rate since it does not depend on second derivatives for
its calculation. Consequently, the algorithm does not automatically provide the asymptotic
standard errors of the ML estimates, so we use the bootstrap [20] to obtain estimates of var
(β̂).

For data with simple monotone missingness patterns considered in Section 2 (data missing
X1 only, X2 only, both Y and X1, both Y and X2, Y only and both X1 and X2), some closed form
solutions exist. Using the factorization theorem for finding ML estimates with monotone
missingness patterns, in some cases we find explicit solutions for β̂1 and β̂2 (results in Table
1). Furthermore, when solutions involve only complete or available cases for ML, the estimates
are the same as GEE, but in general, they differ.

We now describe using the factorization theorem in the specific monotone situations to derive
ML estimates. First we consider when X1 alone is missing. According to the factorization
theorem, we write f(Y, X1, X2) = f (X1|Y, X2)f (Y, X2) where parameters from f (X1|Y, X2) are
estimated from complete cases and parameters from f(Y, X2) are estimated from all observed
cases (available cases). We show how to use the EM algorithm to obtain the estimates in the
Appendix. The estimate of β1 calculated from estimates of σX1,Y and σX1

2  is based on data from

a combination of expressions involving all observed data, but β̂2 is calculated from estimates

of σX2,Y and σX2
2  and is based on available cases for Y and X2. Therefore, β̂2 from ML is

equivalent to that obtained using GEE, but β̂1 is not. The argument with missing X2 is derived
similarly.

In the case of missingness in both Y and X1, we write f (Y, X1, X2) = f (Y, X1|X2)f (X2), hence
parameters from f(Y, X1|X2) are estimated from complete cases and parameters from f (X2)
come from all observed cases. In deriving f(Y |X1), we find that X2 does give information about
the joint distribution of Y and X1, so the estimate of β1 is based on all observed cases. However,
the estimate of β2 is the same using complete cases as when implementing ML. As expected,
the converse is true with data where both Y and X2 are missing.

When Y only is missing, we find f(Y, X1, X2) = f(Y |X1, X2)f (X1, X2) where parameters from f
(Y |X1, X2) are estimated using complete cases and parameters in f (X1, X2) are estimated using
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all observations. Therefore, estimates of β1 and β2 are found from a combination of all observed
data. This implies that even when Y is missing, observations with observed X1 and X2 values
contribute to the likelihood; this is contrary to previous work on estimating parameters in
ordinary regression models with missing Y values [21]. Specifically, they found that when
interested in inferences about a response with missing data given complete covariates, the
missingness in Y did not affect the regression estimates obtained; that is, the same regression
estimates were found when analyzing the data with and without the missing Y values.

When both X1 and X2 are missing, using the same technique as above, f(Y, X1, X2) = f(X1, X2|
Y )f (Y ) where parameters from f (X1, X2|Y ) are estimated using complete cases and parameters
from f(Y ) are from all observations. Therefore, estimates of both slopes will be different when
calculated using GEE and ML.

While in many examples comparing the slopes is desirable, in the Hernández et al. [2] study,
the variances of the two multiple informants are not the same, so comparing the predictive
values of the multiple informant reports is more appropriate. For example, we are interested if
the relationship of vigorous exercise reported by the child and BMI is similar to the relationship
of vigorous exercise reported by the mother without assuming that the variance of vigorous
exercise reported by each informant is the same. If the relationship is indeed similar, this implies
that using the child's report of vigorous exercise is adequate to assess the relationship in future
studies. To compare the two marginal relationships, we test ρX1,Y = ρX2,Y where

ρX1,Y
=

σX1,Y

σY σX1

 and ρX2,Y
=

σX2,Y

σY σX2

; we use the bootstrap [20] to obtain an appropriate

standard error for the difference in correlations. This ability to easily compare the correlation
between each informant report and response is an advantage of using ML with the bootstrap
variance estimate.

4 Simulations: Efficiency of ML Compared with GEE
MCAR missingness means that the outcomes (response and multiple informant covariates) are
a random subsample of all outcomes [12]. For simplicity, we do not include additional
covariates with missingness, although the techniques will extend to do so. We consider MCAR
missingness only in the simulations since GEE may be biased when missingness is not MCAR
and in our example the MCAR assumption appears reasonable since missing data arose due to
logistical reasons rather than refusals. Thus, we use the simulations to compare the efficiency
of the ML and GEE approaches.

In the case of two multiple informant predictors, monotone missingness often occurs when one
predictor has missingness and the other is complete; for example, a mental health service
utilization study had many teacher ratings of children missing but all parents responded about
their children [3], [4], [5], [6], [7]. In general, multiple informant data missingness is not
necessarily monotone and missing responses are also possible. For example, in a study
predicting utilization of health services obtained from multiple sources [22], both self report
and administrative source responses had missingness. The Hernández et al. [2] example has
missingness in the response in addition to the multiple informant covariates.

In our simulations, we compare the GEE and ML models under similar situations as described
above. We assume a multivariate normal distribution for Qi

T  and generate 500 observations

assuming σY
2 = σX1

2 = σX2
2 = 1 for different values of σX1,Y, σX2,Y and σ X1, X2. Specifically, we

consider situations with zero covariance between the two informants, σ X1, X2 = 0.3334 (as
calculated from the Hernández et al. dataset [2] without missingness) and a moderately large
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value, σ X1, X2= 0.6. For comparison, we also consider σX1,Y and σX2,Y for the same values (see
Table 2). For each set of values, we perform 10,000 simulations with four scenarios: 1.) data
with no missingness, 2.) data where X1 is missing 50% of its observations at random (MCAR
and monotone missingness in one multiple informant), 3.) data where X1 is missing 25% of its
observations at random and X2 is missing 25% of its observations at random (non-monotone
MCAR missingness in the multiple informants) and 4.) data where Y is missing 25% of its
observations at random (MCAR and monotone missingness in the response). This last case is
designed to illustrate loss of efficiency when respondents with Y missing are discarded.

With the monotone missingness in the multiple informants situation, we calculate β̂1 and var
(β̂1) only since we illustrated in Section 3 that the ML estimate of β2 is equivalent to that
obtained from GEE. We also calculate the ratio of var (β̂1) from ML to var (β̂1) from GEE and
compare the two methods where 100% means that ML and GEE are equivalent in terms of
efficiency (Table 2). For the non-monotone missingness in the multiple informants situation
and with missingness in Y , both efficiency ratios for var (β̂1) and var (β̂2) are affected similarly
by the missingness so we present only var (β̂1) (also in Table 2). We repeat the simulations to
compare ML and GEE assuming the constrained model with equal variances under similar
scenarios (not presented).

In Table 2, simulations with 50% missingness in X1 show that the correlation between
informant one and response, σX1,Y , is the largest determinant of the efficiency of ML compared
with GEE whereas σX2,Y has the smallest effect. Specifically, the largest efficiency gains (22
– 32%) for ML compared with GEE are found when σX1,Y = 0.6. ML is also more efficient
than GEE with moderate effects (σX1,Y = 0.3334) (efficiency gains of 9 – 24%). For a nonzero
σX1,Y value, gains are largest when σX2,Y = 0 and σX1,X2 = 0.6; in this case, X2 and Y provide
independent information about X1.Under the null hypothesis of no relationship between the
first informant and response (σX1,Y = 0), with σX1,X2 = 0 or σX2,X2 = 0.3334, small efficiency
gains (0 – 8%) are realized, but when the relationship between the two informants is large
(σX1,X2 = 0.6), the efficiency gain is as high as 27%.

Regarding bias, we find no evidence that GEE or ML produce biased estimates in these
situations. Thus, we present only the efficiency ratios not β̂ or var (β̂). The ratio of variances
for data missing 50% of its X1 observations to data with no missingness for all scenarios is
about two for GEE; this follows since approximately 50% of the data is not being used. As
described earlier, the loss is not as great when using ML.

Efficiency gains for the non-monotone missingness in the multiple informants pattern are less
than for the previous pattern (Table 2). For var (β̂1),  gains are largest (10 – 13%) when
σX1,Y = 0.6; it appears to make little difference what the σX2,Y and σX1,X2 values are. Similarly,
for var (β̂2),  the biggest gains occur when σX2,Y = 0.6 with a range of 11 – 13% (not presented).
Thus, the non-monotonicity of the missingness pattern does not affect the efficiency gains, but
the amount of missingness in the X1 and X2 values does. Specifically, in the monotone scenario
first considered with 50% missingness in X1, more efficiency is found than in the non-monotone
case with only 25% missingness in X1 (and 25% missingness in X2). When 25% are missing
Y (Table 2), the largest efficiency gain for estimation of β1 using ML (14%) is found when
σX1,Y = 0, σX2,Y = 0.6, σX1,X2 = 0.6 or when σX1,Y = 0.6, σX2,Y = 0.6, σX1,X2 = 0.6 A maximum
efficiency gain of the same magnitude occurs for estimation of β2 (not presented).

Under the constrained model with monotone missingness in the multiple informants, the
efficiency gains of ML compared with GEE are small (0 – 7%) since the constrained estimate
averages over both X1 and X2. Instead, if we consider the non-monotone missingness pattern
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where both X1 and X2 are missing 25% of their observations, efficiency gains for ML compared
with GEE are 7 – 15% with the largest gains found when σX1,Y = σX2,Y = 0.6. When Y is missing
25% of its observations, as in the unconstrained case, the largest efficiency gain (18%) is found
when σX1,X2 = 0, σX1,Y = 0.6, σX2,Y = 0.6. While generally the efficiency gains of ML compared
with GEE under the constrained model are equal or smaller than the unconstrained model, the
efficiency loss when comparing models with missing values and no missing values is less than
in the unconstrained case.

5 Illustration
We begin this section by describing results of applying the GEE and ML methods and end by
investigating the robustness of ML to the assumption of multivariate normality in the presence
of MCAR missingness. In 1996, a study investigating the association between physical activity/
inactivity and obesity was performed in two towns of Mexico City [1], [2]. We illustrate ML
to evaluate the relationship between BMI (Y ) and vigorous exercise as reported by the child
(X1) and the child’s mother (X2) and compare to the GEE approach. One question we consider
is the consequence of relying on the child’s information for larger surveys. Partial information
is available for 29 of the 111 observations (3 are missing X1 only, 13 are missing X2 only, 10
are missing Y only and 3 are missing Y and X1). We find that X1 and X2 are not predictive of
missingness in Y ; similar conclusions are drawn for the missingness in X1 and X2. Because
missing data arose due to logistical reasons rather than refusals, the MCAR assumption is
reasonable. To calculate standard errors for both approaches, we use 2000 bootstrap [20]
samples.

We begin by presenting the estimated means and covariance matrix using GEE and when using
ML (Table 3) ; both the means and variances are similar from both approaches. However, while
the ML and GEE estimates in this analysis of 111 cases (Table 4) are similar to the previous
complete case analysis of 82 cases (data not shown), the GEE model-based standard errors are
6–18% smaller whereas the ML standard errors are 15–20% smaller. This indicates that
missingness has not substantially biased our estimates, but by incorporating information from
the missing data, we gain efficiency when using ML or GEE. In addition, we can directly
compare the ML estimates of standard error to the model-based GEE estimates for our analysis
of the 111 cases. We find estimated efficiency gains of ML compared with GEE of 4% for
estimating var (β̂1) and 20% for estimating var (β̂2). Generally consistent with our simulations
(Section 4), our example demonstrates that compared with using GEE, ML is more efficient.

Our primary goal is to compare the relationship of child’s report of vigorous exercise and BMI
with mother’s report and BMI; however, the variances of the two reports are different according
to an F test (p < 0.0001). Thus, rather than constraining the two slopes to be equal, we test
whether the two correlations are equal (ρX1,Y = ρX2,Y). We find ρ̂X1,Y

= − 0.096,

ρ̂X2,Y
= − 0.161 and the difference between the two correlations, ρ̂X1,Y

− ρ̂X2,Y
= 0.065

with standard error 0.131, is not statistically significant. Thus, using either mother’s or child’s
report of vigorous exercise gives similar predictive power and would be appropriate to use in
a subsequent study.

When using the ML approach, we must be concerned about deviations from the assumption of
normality. In this example, the distributions of vigorous exercise reported by the child and the
child’s mother are skewed to the right (not presented) with many children receiving no exercise.
Residual plots (not presented) show some evidence of increasing heterogeneity in the residuals
as the predicted Y values increase. Therefore, it is probable that the multivariate distribution
of BMI, vigorous activity reported by the child and the child’s mother is likely not normally
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distributed. We therefore describe a simulation done to address whether a deviation from
normality impacts results from the ML model.

Although ML assumes normality, with complete data the ML estimates are not sensitive to this
assumption since they are identical to the GEE estimates. To investigate this in the presence
of MCAR missingness, we simulated data from the observed underlying distribution of 82
complete cases in the Hernández et al. dataset [2]. Specifically, for each of the 2000 simulated
datasets, we drew with replacement 111 cases from this complete case distribution. For each
of these simulated datasets, we created missing data in 29 cases randomly according to the
same general pattern of missingness in the original dataset of 111 observations. We calculated
estimates of β using ML from the simulated data and compared these to the original complete
case dataset to test if there was bias (Table 5); indeed, we find no evidence of bias. In summary,
we generated data which were not multivariate normal, used an MCAR missingness
mechanism to create missing data, assumed ML to estimate parameters and found no bias in
the ML estimates. Hence, we have confirmed the robustness of ML to the assumption of
multivariate normality in the presence of MCAR missingness in our data.

6 Conclusion
Both ML and GEE marginal regression models can be used to combine information from
multiple informants into one analysis; here we describe how to extend them to deal with missing
data. In the Hernández et al. dataset [2], researchers collected activity measurements from
children and their mothers. We found that the relationship between BMI and physical activity
as reported by the child is similar to the relationship of BMI and physical activity as reported
by the child's mother in this small study. Thus, a subsequent larger study (where it is not feasible
to obtain mother's reports) would provide reasonable estimates of the relationship between
physical activity and BMI. In addition, our simulations illustrated that the ML approach can
be more efficient than the GEE technique.

Although we have found that the ML approach for estimation of marginal regression models
with multiple source predictors incorporating missingness is more efficient than using GEE,
ML does, however, require additional assumptions. For instance, ML assumes multivariate
normality whereas GEE only assumes that the mean model is correctly specified. Without
missingness, the ML and GEE approaches are identical in many cases indicating that ML is
not at all sensitive to the normality assumption in the absence of missing data. The vigorous
activity multiple informant measurements in the Hernández et al. [2] dataset were skewed to
the right, but the residuals from the model were approximately normal. Analyzing the data
without missingness reveals that ML is still equivalent to GEE, thus confirming the robustness
of ML to deviations from normality. We also performed a simulation study based on the
Hernández et al. data [2] confirming the robustness of the ML estimates to the assumption of
normality with MCAR missing data. Hence, there is evidence that ML does not require the
additional assumption of normality, has little potential for bias due to normality assumptions
and does provide more efficient estimates than GEE for estimation of marginal regression
models with multiple source predictors incorporating MCAR missingness.

We have considered MCAR missingness in the simulations since GEE can give biased
estimates under more general missingness patterns and this was a reasonable assumption for
the Hernández et al. dataset [2]. However, the ML technique is also valid assuming MAR
missingness. While the GEE method presented is generally not appropriate for MAR
missingness, an extension of the method (inverse probability weighted GEE [23], [24]) is. The
weighted GEE technique has been applied in the presence of missing Y ′s [24] or missing X′s
[23], not both (as in our example); construction of appropriate weights has not yet been
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investigated. The weights are designed to correct the bias of the estimates and their effect on
efficiency has yet to be investigated.

In our example, the variances of the two multiple informants are not equal; to alleviate this
problem, data can be standardized. However, with missingness, standardizing data a priori is
not attractive and we prefer to leave the data unstandardized. When the scale of measurement
of the informants is an issue and standardizing is not feasible, using ML allows us to compute
correlations to compare the effect of the informants on response without standardizing the data.
Therefore, the ML technique has the advantage of providing a technique to compare the
relationships of informants on response without having to standardize the data. Comparing the
relationship between one informant with response to another informant with response could
alleviate the need to collect information from both informants in future studies.

We have considered a simple case with one response and two multiple informant covariates.
The ML method extends straightforwardly to include more than two sets of multiple informants
or to measure one construct with more than two multiple informants. For example, the
Hernández et al. study [2] also included measures such as video viewing, moderate exercise
and videogame playing. We can also envision a study collecting information from additional
informants, e.g., children, the child's mother and the child's teacher. In addition, the ML model
extends readily to include covariates that are not measured by multiple informants as in Litman
et al [9].
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Appendix
We begin by giving details on how the EM algorithm is implemented for a case with two
multiple informant predictors where Y and X2 are complete but X1 has MCAR missingness
[12]. As in Section 3, we let Qi

T = (Y i, X1i, X2i)
T  with Qi having a trivariate normal

distribution. We note that Qi is composed of an observed portion, Qobs;i and a missing portion,
Qmis;i. We aim to maximize the log likelihood based on the observed data; the complete data
belong to an exponential family with the following sufficient statistics:

∑
i=1

n
Yi, ∑i=1

n
X1i, ∑i=1

n
X2i

, ∑
i=1

n
Yi2, ∑i=1

n
X1i
2 , ∑

i=1

n
X2i
2 , ∑

i=1

n
YiX1i, ∑i=1

n
YiX2i, ∑i=1

n
X1iX2i

In general, the estimates of θ are found by equating the observed sufficient statistics with the
expected values, defined as the M step. We let the current estimates at the tth iteration be θ(t).

The E step finds the conditional expectation of the missing data given the observed data and
the current parameter estimates. For example in the case with X1i, the E step is:

Litman et al. Page 11

Stat Med. Author manuscript; available in PMC 2007 March 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



E(∑
i=1

n
X1i| Qobs,i, θ (t)) = ∑

i=1

n
X1i
(t)

where X1i
(t) = X1i if X1i is observed,

X1i
(t) = E(X1i| Qobs,i, θ (t)) if X1i is missing

Thus, missing values of X1i are replaced by the conditional mean of X1i given the set of values
Qobs,i that are observed for that case. From the M step, closed form solutions for θ̂ can be found.
In particular, for the parameters that have no missing data from the joint distribution of Y and
X2 such as the mean of Y, the M step is:

μY
(t+1) = n−1∑

i=1

n
Yi
(t)

This leads to the solution that

μ̂Y = n−1∑
i=1

n
Yi

For the parameters from the conditional distribution of X1 given Y that do have missing data,
the same technique is used; however, the solutions are more complicated. For example, the M
step involving ∑i=1

n X1i is:

μX1
(t+1) = n−1∑

i=1

n
(b0 + b1Yi + b2X2i)

which leads to the solution that

μ̂X1
= X̄ 1 + b̂1(μ̂Y − Ȳ ) + b̂2(μ̂X2

− X̄ 2)

where Ȳ , X̄ 1, X̄ 2 are sample means based on only the observed values, μ̂Y , μ̂X2
 are sample

means based on all observations and b̂i, i = 1, 2 are functions of the sample variance estimates
involving only observed values. Once all the parameters are found directly through the M step,
a transformation is made to find estimates of θ̂. Another transformation is made to obtain τ̂
since interest lies in the marginal regression parameter estimates, e.g. α̂1, β̂1, α̂2, β̂2.

In our situation where any of the Y, X1, X2 can have missingness, the sufficient statistics and
the M step remain the same as in the case just described, but the E step is more complicated
because all of the sufficient statistics involve missing data. Thus, none of the θ parameters have
simple solutions from the M step; all involve combinations of expressions involving all
observed data. However, the general technique to obtain estimates using the EM algorithm
remains the same. That is, the expectations of the sufficient statistics are found as sums of the
quantities over all observations and the M step calculates the moment based estimates from
the filled-in sufficient statistics [12]. We also note that although we have demonstrated using
the EM algorithm in a situation with one response and two multiple informant covariates, it
can be similarly used in situations with more than two covariates, but finding closed form
estimates becomes increasingly complicated.
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Table 1
Data Used by GEE and ML for Parameter Estimates by Missingness Pattern

Variable(s) Missing β̂1
(1) β̂1

(2)

X1 only *† ‡ available cases of Y and X2
X2 only ‡ available cases of Y and X1

§†

Both Y and X1
*† ‡ complete cases of Y and X2

Both Y and X2
‡ complete cases of Y and X1

§†

Y only *† §†
Both X1 and X2

*† §†

*
GEE is based on complete cases of Y and X1

§
GEE is based on complete cases of Y and X2

†
ML is a combination of expressions involving all observed data

‡
ML estimate is the same as the GEE estimate
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Table 3
Estimated means and variance-covariance matrix for vigorous exercise

Variable Estimated Mean using ACs Estimated Mean from ML

BMI (Y ) 21.294 21.287
Vigorous exercise reported by child (X1) 0.972 0.974
Vigorous exercise reported by mother (X2) 0.791 0.787

∑ using ACs
Y X1 X2

Y 10.975 −0.282 −0.391
X1 −0.282 0.939 0.187
X2 −0.391 0.187 0.439

∑ from ML
Y X1 X2

Y 10.989 −0.317 −0.358
X1 −0.317 0.937 0.170
X2 −0.358 0.170 0.436
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Table 4
Regression coefficients and bootstrapped standard error from unconstrained models predicting Y from X1 and
Y from X2 for the GEE and ML methods

Method β̂1 sê(β̂1) β̂2 sê(β̂2)

GEE −0.333 0.331 −0.889 0.529
ML −0.338 0.324 −0.820 0.474
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Table 5
Regression coefficients and 95% confidence intervals (CI)

β̂1 95% CI for β1 β̂2 95% CI for β2

Original dataset −0.417 −0.908
Simulated dataset −0.417 (−0.433,−0.401) −0.888 (−0.911,−0.865)
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