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SUMMARY

 

The secretory leucocyte proteinase inhibitor (SLPI) is a low molecular weight, tissue-specific inhibitor
of proteases, such as elastase and cathepsin G. It is the major local protease inhibitor in the upper air-
ways. Proteinase 3, the main autoantigen in Wegener’s granulomatosis (WG), can degrade SLPI pro-
teolytically. In addition, SLPI is sensitive to oxidative inactivation by myeloperoxidase-generated free
oxygen radicals. SLPI also has an antimicrobial capacity that can be of interest, as infection is consid-
ered to play a role in the pathogenesis of WG. This study focuses on SLPI expression in patients suf-
fering from WG, something that to our knowledge has not been explored hitherto. Serum samples and
nasal biopsies were obtained from 12 Swedish WG patients, while buffy coats were obtained from 33
American WG patients. SLPI levels in serum were measured by means of ELISA and the protein was
detected by means of immunohistochemistry in nasal biopsies. mRNA expression was studied by means
of 

 

in situ

 

 hybridization on nasal biopsies and RT-PCR on leucocytes. IL-6 or ESR were measured as
markers of inflammatory activity. Cystatin C or creatinine was measured as a marker of renal filtration.
White blood cell counts were registered. In serum, we found close to normal SLPI levels, without any
correlation to IL-6. Two patients had greatly elevated values, both of them suffering from severe renal
engagement. Strong SLPI mRNA expression was found in nasal biopsies. RT-PCR on leucocyte mRNA
showed normal or greatly elevated expression of SLPI mRNA, correlating with disease activity. Leu-
kocyte SLPI expression seems to be up-regulated in active WG. Serum levels were measured in a small
number of patients and were found to be close to normal. Lack of correlation to the acute phase
response indicates a specific regulation. This might be linked to an altered protease/antiprotease bal-
ance. These findings could indicate that SLPI locally participates in the anti-inflammatory and perhaps
antimicrobial response in WG.
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INTRODUCTION

 

Wegener’s granulomatosis (WG) is a small vessel vasculitis, ini-
tially reported by Klinger in 1931 and later described in more
detail by Friedrich Wegener [1]. The definitive description was
provided in 1954 by Godman and Churg, who identified the clas-
sic triad of systemic angiitis, granulomatous inflammation of the
respiratory tract and glomerulonephritis [2]. Anti-neutrophil
cytoplasmic antibodies (ANCA) are autoantibodies directed
against constituents of polymorphonuclear neutrophils and

monocytes. ANCA directed against proteinase 3 results in a cyto-
plasmic staining pattern (C-ANCA), whereas ANCA against
myeloperoxidase mostly show a perinuclear staining pattern (P-
ANCA) by indirect immunofluorescence. The majority of patients
with WG have a C-ANCA and there are different theories of how
ANCA might contribute to the pathogenesis of vasculitis [3]. The
C-ANCA antigen, proteinase 3, has the capacity to attack and
degrade components of the extracellular vessel wall matrix and
the glomerular basement membrane. In blood, an inhibitor,
mainly alpha-1-antitrypsin, immediately binds to it. Patients with
WG have an over-representation of the PiZ gene of alpha-1-
antitrypsin and thus a shortage of the inhibitor [4]. Secretory leu-
cocyte proteinase inhibitor (SLPI) (in earlier work named MPI,
HUSI-1, antileucoprotease, CUSI, bronchial inhibitor) is a 107
amino acid non-glycosylated single chain protein with an
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estimated molecular weight of 12 kDa. The C-terminal is respon-
sible for the inhibitory activity against elastase, cathepsin G, chy-
motrypsin and trypsin, while the N-terminal has been reported to
possess antimicrobial capacity [5,6]. SLPI is also known to inhibit
HIV type 1 infection by blocking viral DNA synthesis [7]. The
inhibitor forms complexes with the proteases and has a half-life of
10 min in the circulation. The complexes formed locally dissociate
in the plasma and the proteases are taken over by binding to the
plasma protease inhibitors (alpha-1-antitrypsin, alpha-2-macro-
globulin and antichymotrypsin) [5]. Furthermore, SLPI has been
shown to inhibit elastin-bound elastase which may be of impor-
tance for the preservation of elastic lung tissue [8]. The inhibitor
is also capable of up-regulation of macrophage production of the
anti-inflammatory cytokines IL-10 and TGF-beta [9]. The SLPI
gene contains binding sites for transcription factors induced by,
e.g. TNF

 

a

 

 and an up regulation of SLPI is seen in several inflam-
matory disorders [10–15]. The inhibitor is sensitive to oxidative
inactivation, e.g. by myeloperoxidase-generated free oxygen rad-
icals. It can also be degraded proteolytically by proteinase 3 [16].
SLPI have no direct inhibitory capacity against proteinase 3.
However, the progressive binding of elastase to SLPI instead of
alpha1-antitrypsin has been shown to be paralleled by an increas-
ing binding of proteinase 3 to alpha-1-antitrypsin [17]. SLPI is
also an inhibitor of the production of matrix metalloproteinases
(MMP), the expression and activity of which are greatly elevated
in inflammatory disorders [18]. SLPI has been localized to the
upper and lower respiratory tracts [5,19], the gastrointestinal tract
[20,21], the male and female genital tracts [5], the intervertebral
discs and articular cartilage [22], leucocytes [23,24] and the kidney
[25]. SLPI’s antimicrobial capacity is also of interest as infection is
considered to play a role in the pathogenesis of WG [26,27]. SLPI
production can be induced in response to LPS and has been
shown to inhibit macrophage activation [28]. In this study, we
started out with the hypothesis that a lack of SLPI could contrib-
ute to the pathophysiology of WG. Measurements of SLPI in
serum from 12 Swedish patients with active disease gave no indi-
cation that this was the case. There was still the possibility of a
local SLPI deficiency, e.g. in the nose where WG often makes its
debut. Investigation of nasal biopsies from eight patients showed,
on the contrary, a profuse SLPI expression. In order to further
explore this, SLPI expression was measured in leucocytes from 33
American WG patients. This study focuses on SLPI expression in
patients suffering from WG, something that to our knowledge has
not hitherto been examined.

 

Patient material

 

Serum samples from 12 patients with active WG were obtained
from the Department of Nephrology at Lund University Hospital.
Nasal biopsy preparations were obtained from eight of these
patients, then sectioned and mounted by the Department of
Cytology and Pathology at Lund University Hospital. Blood sam-
ples were acquired from 33 consecutive patients (from October
1999 to March 2001) admitted to the Department of Nephrology,
Chapel Hill, NC, USA with WG, according to the Chapel Hill
Consensus Conference criteria. The latter patients were blindly
classified as being either active (

 

n

 

 

 

=

 

 24) or in remission (

 

n

 

 

 

=

 

 9). In
short, active disease was defined as occurrence of one of the fol-
lowing: (1) rapid rise in serum creatinine accompanied by active
sediment, (2) necrosis or crescent formation detected by renal
biopsy or necrotizing vasculitis identified in other tissue, (3) pul-
monary haemorrhage or expanding nodules, (4) active vasculitis

in the gut seen by endoscopy, (5) iritis or uveitis, or (6) new
mononeuritis multiplex [29].

 

Material and chemicals

 

Normal rabbit serum was purchased from Dakopats AB
(Copenhagen, Denmark). Swedish landrace goats were immu-
nized with recombinant human SLPI, to produce anti-SLPI
antiserum. Lamb anti-human granulocyte elastase serum was
produced in our laboratory. Biotinylated rabbit anti-goat IgG and
avidin biotinylated horseradish peroxidase complexes (ABC)
were from Vector Laboratories (Burlingame, CA, USA). The
AEC (3-amino-9-ethylcarbazole) substrate-chromogen system,
DAB (3·3

 

¢

 

-diamino-benzidine-tetrahydrochloride) and Fara-
mount aqueous mounting medium were from Dako Corporation
(Carpinteria, CA, USA). An oligonucleotide probe cocktail for
SLPI and immunoassays for SLPI and IL-6 were from R & D
systems (Abingdon, UK). Blocking reagent and anti-DIG-AP-
conjugate (Fab fragments) were from Boehringer Mannheim
(Mannheim, Germany). Visualizing substrates (bromochloroin-
dolylphosphate, BCIP and nitroblue tetrazolium, NBT) were
from Bio-Rad Laboratories (CA, USA). For leukocyte RNA
purification, RNA STAT-60 from Teltest B (Friendswood, TX,
USA) was used. The TaqMan EZ RT-PCR core reagents kit, as
well as the primers and TaqMan probes for cyclophilin, were pur-
chased from Applied Biosystems (Foster City, CA, USA). Prim-
ers and TaqMan probes for SLPI were designed by Gene Logic
Inc. (Maryland, USA).

 

Elisa
SLPI. 

 

The Qantikine quantitative sandwich enzyme im-
munoassay from R & D Systems, where a monoclonal antibody
specific for SLPI had been precoated onto a microplate, was
employed.

One hundred microlitres assay diluent RD1Q and 100 

 

m

 

l stan-
dard or sample were added to each well, followed by incubation
for 2 h at room temperature. After three washes, 200 

 

m

 

l SLPI con-
jugate (a polyclonal anti-SLPI antibody conjugated to horserad-
ish peroxidase) was added to each well and left to incubate for 2 h
at room temperature. After another three washes, 200 

 

m

 

l substrate
solution was added to each well, with an incubation time of
20 min at room temperature. Finally, 50 

 

m

 

l stop solution was
added to each well. The absorbance was read at 450 nm by an
automatic Titertek Multiskan photometer, and Titersoft EIA soft-
ware was used for the calculations of SLPI levels.

 

Il-6. 

 

A quantitative sandwich enzyme immunoassay from R &
D systems, where a monoclonal antibody specific for IL-6 had
been precoated onto a microplate, was used. One hundred
microlitres assay diluent RD1A and 100 

 

m

 

l standard or sample
were added to each well and left to incubate for 2 h at room tem-
perature. The plates were washed four times to eliminate any
unbound substances and then 200 

 

m

 

l conjugate (a polyclonal anti
IL-6 antibody conjugated to horseradish peroxidase) was added
to each well for detection of the bound IL-6. After 2-h incubation
at room temperature and washing four times, 200 

 

m

 

l substrate
solution was added to each well. Twenty minutes incubation at
room temperature allowed colour development in proportion to
the amount of IL-6 bound in the initial step. Finally, 50 

 

m

 

l stop
solution was added to each well and the intensity of the colouring
was measured. The absorbance was read at 450 nm by an auto-
matic Titertek Multiskan photometer, and Titersoft EIA software
was used for calculations of IL-6 levels.
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Cystatin C. 

 

The Clinical Chemistry Laboratory at Lund
University Hospital performed analysis by means of immunotur-
bimetric methods on the instrument Hitachi 917 Pluto using
antibodies from Dakopat AB (Copenhagen, Denmark).

 

Immunohistochemistry for SLPI and elastase

 

After rehydration, the paraffin embedded biopsy sections were
exposed to pepsin (4 mg/ml in 0·01 

 

M

 

 Tris-HCl buffer) for 20 min
at 37

 

∞

 

C, in order to unmask the target sequences. The sections
were then washed between every step in Tris-buffered (TBS)
saline 3 

 

¥

 

 5 min. Endogenous peroxidase activity was prevented
by incubation of the specimens in 0·3% H

 

2

 

O

 

2

 

 in methanol for
30 min at room temperature. Normal rabbit serum (3% in TBS)
was applied to block non-specific staining. The next step, after
draining, was to incubate the specimens with primary antibody
(goat anti-SLPI, 1/1000, 30 min). For detection we used biotiny-
lated rabbit anti-goat IgG (5 

 

m

 

g/ml), followed by the application
of avidin biotinylated horseradish peroxidase complexes for
30 min. Visualization was accomplished by the addition of AEC
(0·75 mg/ml 3-amino-9-ethylcarbazole in 2·5% N,N-dimethylfor-
mamide and 50 m

 

M

 

 acetate buffer), which was left to incubate for
15 min. The slides were washed and counterstained before mount-
ing. All the incubations were carried out at room temperature.
Adsorbed anti-SLPI-antiserum, obtained by affinity chromatog-
raphy on a SLPI conjugated Sepharose 4B-column, was used as a
negative control and applied instead of the primary antibody.
Similar procedures were used for detection of elastase. However,
in order to unmask the target sequences, the slides were pre-
treated with pepsin (4 mg/ml in 0·01 

 

M

 

 Tris-HCl buffer). Anti-
serum adsorbed with granulocyte elastase was used for controls.
The results were compared with those from an earlier study on
healthy nasal mucosa [19].

In situ 

 

hybridization, SLPI

 

A cocktail of three 30-bases-long oligonucleotide probes (5

 

¢

 

-
TCTTAGGAGGACAGACTCCAGCTTTGAAGG-3

 

¢

 

; 5

 

¢

 

-ATTT
CCCACACATGCCCATGCAACACTTCA-3

 

¢

 

; 5

 

¢

 

-AAC ATCTC
TTCTTCCCTGGACACTGCCAGT-3

 

¢

 

), based on the anti-sense
sequence of SLPI and labelled with digoxigenin (DIG) at the 5

 

¢

 

end was used for the 

 

in situ

 

 hybridization. DEPC (diethylpyro-
carbonate) was added to the millipore water and all solutions to
block RNAse activity. All solutions were autoclaved or sterilized
by filtration. After rehydration, the nasal biopsy specimens were
washed in PBS for 2 

 

¥

 

 5 min. Incubation in 0·2 

 

M

 

 HCl for 20 min
was done to remove protein. To unmask the target sequences, the
slides were rinsed in PBS for 2 

 

¥

 

 5 min, followed by incubation in
0·02% pepsin in 0·2 

 

M

 

 HCl in a 37

 

∞

 

C water-bath for 20 min. To
preserve morphology, the sections were post fixed in 4%
paraformaldehyd in PBS for 5 min at 4

 

∞

 

C. Pepsin activity was
blocked by incubation in PBS with 0·2% glycine for 2 

 

¥

 

 5 min.
After being washed in PBS for 2 

 

¥

 

 5 min, the slides were exposed
to 0·1 

 

M

 

 triethanolamine/0·9% NaCl/0·25% acetanhydrid for
10 min. Triethanolamine blocks the endogenous activity of alka-
line phosphatase and acetanhydrid reduces probe stickiness. The
samples were then washed in 2 

 

¥

 

 standard saline citrate (SSC) for
5 min. Pre-hybridization was performed in a moist chamber.
Thirty microlitres hybridization buffer was applied to each section
and the sections were then placed in an incubator at 42

 

∞

 

C for 1 h.
To prevent evaporation, the specimens were covered with para-
film. The probe cocktail (10 ng in 30 

 

m

 

l hybridization buffer) was
added and left to hybridize overnight at 37–42

 

∞

 

C (Tm 65

 

∞

 

C).

After washing in 4 

 

¥

 

 SSC (2 

 

¥

 

 5 min) at room temperature,
1 

 

¥

 

 SSC (3 

 

¥

 

 15 min) at 50

 

∞

 

C and 0·1 SSC (10 min) at room tem-
perature, the slides were immersed in buffer I (100 m

 

M

 

 Tris-HCl,
150 m

 

M

 

 NaCl, pH 7·5) for 2 min equilibration. This was followed
by treatment with buffer II (buffer I plus 0·5% blocking reagent)
to block non-specific anti-DIG binding. After rinsing in buffer I
for 2 min, the sections were placed in a moist chamber and the
anti-DIG-AP-conjugate (1/500 in buffer I) was applied. The
buffer I washing was repeated for 2 

 

¥

 

 15 min. The slides were
then placed in buffer III (i.e. 100 m

 

M

 

 Tris-HCl, 100 m

 

M

 

 NaCl,
50 m

 

M

 

 MgCl

 

2

 

, pH 9·5) for 10 min. Visualization was achieved
by incubation in 50 ml buffer III, 228 

 

m

 

l NBT, 170 

 

m

 

l BCIP
and 50 

 

m

 

l Levamisole (240 mg/ml) for 24 h. The substrate reaction
was interrupted by the addition of buffer IV (10 m

 

M

 

 Tris-HCl,
1 m

 

M

 

 EDTA, pH 8·0) for 10 min and the slides were then
mounted directly. Negative controls were incubated with hybrid-
ization buffer without probes as well as with oligonucleotide
probes based on the sense sequence of SLPI. The results were
compared with those from an earlier study on healthy nasal
mucosa [19].

 

Leukocyte purification. 

 

Leukocytes were obtained from
blood collected in EDTA tubes. Erythrocytes in the blood were
lysed with lysis buffer (0·83% NH

 

4

 

Cl, 10 m

 

M

 

 KHCO

 

3

 

, and 0·1 m

 

M

 

EDTA) and the remaining leucocytes washed with Hanks’ Bal-
anced Salt Solution (HBSS). Total RNA was directly isolated
from patient leucocytes with RNA STAT-60 using supplied pro-
tocol [30]. High purity and good integrity were determined by
optical density (OD) 260/280 nm spectrophotometric ratios and
staining of ribosomal 18 and 28 s RNA. In the latter procedure,
RNA was denatured by heating in the gel loading buffer (250 

 

m

 

l
formamide, 72·5 

 

m

 

l formaldehyde, 5 

 

m

 

l sodium phosphate dibasic,
0·5 

 

m

 

l 0·5 

 

M

 

 EDTA), 67

 

∞

 

C for 10 min. Five to ten micrograms per
millilitre ethidium bromide was added for visualization. The sam-
ples were then loaded onto an agarose gel, 0·5 g agarose in 50 ml
running buffer (DEPC H

 

2

 

O with 10% 10 

 

¥

 

 TBE). After 35 min
electrophoresis at 100 V, ribosomal RNAs (rRNAs) showed up as
intense, sharp bands. The larger ribosomal bands were more
intense than the smaller ones. Degradation of the RNA is indi-
cated if this is not true or if the rRNA bands are smeared. DNA
contamination of the RNA preparation will be evident as higher
molecular weight ethidium bromide-staining material migrating
above the larger rRNA band.

 

Quantitative PCR assay

 

For determination of changes in gene transcription, leucocyte
RNA was analysed by quantitative PCR (TaqMan

 

®

 

) for the rela-
tive expression of the gene, SLPI, using cyclophilin expression
levels for normalization. Quantitative PCR assays were per-
formed on an ABI PRISM 7700 Sequence Detector (Applied
Biosystems, Foster City, CA, USA) with a TaqMan EZ RT-PCR
core reagents kit using the standard conditions determined by the
company. A unique combination of forward and reverse primers
and fluorescent probe oligos was used. Twenty-five nanograms
RNA was used per well and the reactions were performed in
duplicate. The level of expression was calculated based upon the
PCR cycle number (Ct) at which a linear increase in fluorescence
from the probe was found. Relative expression was determined
by the difference in the Ct values for the SLPI gene after normal-
ization to RNA input levels using cyclophilin Ct values. Relative
quantification was determined by standard 2

 

(–

 

DD

 

Ct)

 

 calculations
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[30]. Leukocyte RNA samples from 23 normal donors and from
33 WG patients were compared.

 

Statistics

 

All statistics were performed in StatView 5·01. For correlation
analysis, the non-parametric Spearman rank correlation test was
used in order to reduce the impact of outliers. A one-way analysis
of variance was done using the non-parametric Kruskal–Wallis
test as well as (on logarithmic data) 

 

ANOVA

 

 with Fisher’s PLSD.

 

RESULTS

 

Levels of SLPI in serum

 

Serum samples were collected from 12 Swedish WG patients at
the time of diagnosis. Their SLPI levels (median 44 

 

m

 

g/l; range 31–
243) were found to be close to normal (36 

 

m

 

g/l; 27–47, 

 

n

 

 

 

=

 

 40)
(Table 1a). No obvious correlation was seen between their SLPI
levels and their degree of inflammation, measuring IL-6 as an
inflammatory marker (rho 

 

=

 

 0·22; 

 

P

 

 

 

=

 

 0·13) (Table 1b). Two of the
patients showed very high SLPI levels. These two had, according
to their files, at the time of diagnosis, developed a more serious
form of the disease than the others. Their renal function was lower
and their organ involvement was more severe overall. Additional
serum samples from these patients were tested during a 4-year
follow up, showing consistently high SLPI levels.

 

Local production of SLPI

 

Immunohistochemical staining for SLPI was done on nasal biop-
sies from eight Swedish WG patients with normal SLPI levels in
serum. Leukocyte elastase was used as a marker of the degree of
inflammation and stained by similar procedures. Positive staining
for SLPI was seen in the serous cells of the nasal mucosa. In

comparison with earlier studies [19], the staining tended to be
more profuse in the WG. In negative control sections incubated
with adsorbed anti-SLPI-antiserum the positive staining was com-
pletely absent. A positive hybridization signal was obtained in the
serous cells of the mucosa after hybridization with an oligonucle-
otide probe cocktail. No staining was observed in the control
biopsies, where either no probes or sense probes had been added
(Fig. 1a,b).

 

Leukocyte SLPI expression

 

Leukocytes were purified from 47 blood samples from 33
American patients with WG. All data were compared with and
expressed in relation to one healthy individual, set as standard,

 

=

 

1. The patients demonstrated elevated SLPI expression in com-
parison with 23 healthy individuals. Patients with active disease
had significantly higher SLPI expression than patients in remis-
sion (median 3·0; range 0·3–33·7, 

 

n

 

 

 

=

 

 13 versus median 0·8; range
0·3–8·1, 

 

n

 

 

 

=

 

 34). Both patient groups also had significantly higher
SLPI expression than healthy controls (median 0·7; range 0·1–1·9,

 

n

 

 

 

=

 

 23). There was a positive correlation between SLPI expression

 

Fig. 1.

 

(a) Immunohistochemical demonstration of SLPI in nasal biopsies
from patients suffering from Wegener’s granulomatosis. Utilizing a goat
anti-SLPI diluted 1/1000 and DAB as a chromogen, positive staining is
seen in the serous cells. Magnification 1 : 1250. (b) Demonstration of SLPI-
mRNA by 

 

in situ

 

 hybridization of nasal biopsies from patients with
Wegener’s granulomatosis. The specimens were hybridized using an
equimolar cocktail of three 30-base-long anti-sense, digoxigenin-labelled
oligonucleotides as probes. Positive staining is seen in the serous cells of
the mucosa. Magnification 1 : 5000.

(a)

(b)

 

Table 1a.

 

SLPI in serum, 12 Swedish WG patients

 

Table 1b.

 

Spearman rank correlation, SLPI versus Cystatin C and IL-6

Patient SLPI (

 

m

 

g/l) Cyst C (mg/l) IL-6 (ng/l)

1 56 0·74 1·0
2 33 0·76 10·1
3 35 0·76 2·4
4 46 0·87 4·2
5 42 1·11 14·9
6 41 1·13 0·4
7 43 1·17 2·4
8 31 1·27 3·5
9 52 1·38 36·8
10 46 1·44 1·5
11 243 4·31 19·5
12 237 4·34 3·9
Median (range) 44 (31–243) 1·15 (0·74–4·34) 3·7 (0·4–36·8)

Rho

 

P

 

-value

SLPI, Cystatin C 0·46 0·13 (NS)
SLPI, IL-6 0·22 0·46 (NS)

NS 

 

= 

 

non significant.
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and the patients blood leucocyte count (rho = 0·85; P < 0·001,
n = 18). No significant correlation was seen with ESR (rho = 0·13;
P = 0·66, n = 14) or creatinine (rho = 0·7; P = 0·36, n = 30) (Fig. 2,
Tables 2a,b,c).

DISCUSSION

The elucidation of pathophysiologic mechanisms might help iden-
tify future means of therapy for the small vessel vasculitis WG.
Earlier research has largely focused upon the anti-neutrophil
cytoplasmic antibodies and their antigens [31–33] and, to some
extent, the systemic protease inhibitors [4]. Patients with WG
often have upper and lower airway disease manifestations such as
nasal crusting, mucosal ulceration and necrotizing pulmonary
inflammation. SLPI is a major local protease inhibitor in the ENT
ear, nose, throat (ENT) region, the upper and lower airways
[5,11,19,34]. Furthermore, SLPI is present in neutrophil cytosol as
an internal protective shield [13]. This shield can, however, be
broken by the main autoantigen in WG, proteinase 3, degrading
SLPI proteolytically. Our initial hypothesis was that a shortage of
SLPI could contribute to the pathophysiology of WG. In the
Swedish patient group (n = 12), however, we found close to nor-
mal SLPI levels in serum, without any correlation to inflamma-

tion. Two exceptions had greatly elevated levels; both suffered
from severe renal engagement. All serum samples were collected
at the time of diagnosis and thus represent patients with active
disease. There was still the possibility of local SLPI deficiency, e.g.
in the nose where WG often makes its debut. In situ hybridization
demonstrated, however, strong SLPI mRNA expression in nasal
biopsies from patients with normal SLPI levels in serum (n = 8).
In order to further investigate this, SLPI expression was measured
in leucocytes from 33 American WG patients. These patients
showed moderately to greatly elevated SLPI mRNA expression
in their leucocytes, correlating well with disease activity. No sig-
nificant positive correlation was, however, seen with ESR, indi-
cating that the high production was not a side-effect of an ongoing
acute phase reaction. There was a positive correlation between
the patients’ blood leucocyte count and SLPI expression in the
leucocytes, suggesting some kind of joint regulation and making it
interesting to isolate the leucocyte subpopulations.

Taken together, we thus found signs of raised SLPI mRNA
expression without a corresponding increase in the protein level
in serum. Manifest inflammatory changes in the lungs are known
to cause elevated levels of SLPI and inflammation per se may give
an up-regulation of SLPI production, however, the protein does
not act like an acute phase reactant [10,35]. Something that has to
be considered is the possibility of a glucocorticoid-induced
increase of SLPI mRNA levels, as glucocorticoids are part of
these patients’ treatment [36]. SLPI’s suggested role as an internal
leucocyte shield could theoretically be in higher demand in
patients with WG and therefore would call for increased tran-
scription. Moreover, inflammation leads to a tilted protease-anti-
protease balance and the transcriptional increase of SLPI could
be induced by proteinase activated receptors (PAR) [37–39]. PAR
represent a novel class of seven transmembrane domain G-
protein coupled receptors, activated by proteolytic cleavage. The
lack of raised SLPI levels in serum could, theoretically, be due to
proteinase 3 induced degradation. Although SLPI has no direct
inhibitory capacity against proteinase 3, it has been shown that
the progressive binding of elastase to SLPI instead of alpha1-
antitrypsin is paralleled by an increased binding of proteinase 3 to
alpha-1-anti-trypsin [17]. With this in mind, high SLPI levels may
indirectly aid in the binding and inhibition of proteinase 3. High
SLPI production may thus represent an increased demand for
protease inhibition, locally as well as systemically. Our results also
make it interesting to study circulating levels and production of
proteinase 3. Except for protease inhibition, SLPI is capable of
up-regulation of anti-inflammatory cytokines and has antimicro-
bial capacity, all qualities useful in the battle against chronic
inflammation [5,6,9,18].

In summary, we have found raised leucocyte mRNA expres-
sion of the secretory leucocyte proteinase inhibitor, SLPI, in
patients with WG. A small number of serum sample analyses
could not confirm raised levels in the protein level. A possible
explanation would be local SLPI consumption. Further studies
will focus on why SLPI is up-regulated in these patients.
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Fig. 2. SLPI gene expression, as measured by a Taqman RT-PCR in 33
patients with Wegener’s granulomatosis and 23 healthy controls. The level
of expression was calculated from the PCR cycle number (Ct) at which a
linear increase in fluorescence from the probe was found and normalized
to RNA input levels using cyclophilin Ct values. The relative level was
determined by the equation 2(–DDCt). All data were expressed in relation to
a healthy control, selected as standard (= 1·0).
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