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Microbial assays of the vitamins, and of other potency is adjusted for the known difference in
nutrients such as amino acids, are still a research concentration of the two test solutions to ob-
necessity, despite the encroachment of physico- tain the biologically effective content of the vita-
chemical techniques for standardization. Al- min in each Unknown. Four conditions, de-
though their role in standardization is shrinking, veloped primarily in studies of the vitamin Bn
the need of industry for quantitative bioassays assay, are of general applicability and should in-
with a measurable precision has produced some crease the reliability of microbial assays. They
useful designs and calculations that the research may be considered in order.
worker could adopt with profit. The quantitative A straight log-dose response curve. Apart from
biological assays in U.S.P. XV, for example, technical details, which vary with the material
have been reduced to a few basic patterns. In- under test, much of the success of an assay de-
cluded in this program are the two remaining pends upon the concentration of the test solu-
U.S.P. microbial assays for the vitamins, those tions. By covering a wide enough dosage range,
for vitamin B12 and for calcium pantothenate. the growth response, in terms of y = 100 - (per
The methods developed there are by no means cent transmittance), can be plotted against the
restricted to these two vitamins but are easily log-dose as a sigmoid curve, the response then
adapted to the bioassay of all vitamins and amino increasing (instead of decreasing) with the dose.
acids in which a growth response is measured in The curve for the pantothenic acid Standard in
a limiting nutrient. By investing a little more figure 1 is an example. Its fiftyfold range (ob-
effort, the microbiologist can gain appreciable tained by using two or more concentrations of
dividends in the form of more reliable and pre- test solution) is far wider than the threefold to
cise results. The purpose of this paper is to show fivefold range in a customary assay.
how this may be done. An effective assay requires only the central

linear portion of the complete curve. There may
BASIC EXPERIMENTAL DESIGN exist some transformation of the response, based

A standard pattern for a microbial assay is to upon a sigmoid function, which would plot as a
pipette, into a replicated series of sterilized test straight line against the log-dose over the entire
tubes, doses varying from 1.0 to 5.0 ml of test range, but we have yet to find such a "cure-all."
solution. The experimenter adds to each tube The angular or arc sine transformation of y
5.0 ml of basal medium stock solution and suffi- extends the linear zone in figure 1 from a fivefold
cient water to make 10 ml. The tubes are covered, to a tenfold range of dosages but not much more.
sterilized in an autoclave, cooled, inoculated, Given an appropriate concentration of test solu-
and incubated for 16 to 24 hr at a constant tem- tion, and a suitable organism and medium,
perature. The transmittance of the contents of enough of the complete curve will be linear for
each tube, well mixed, is then measured in an assay purposes.
electrophotometer at a specific wave length and With some nutrients, the lower part of the
recorded as a percentage of the inoculated blank. curve yields a straight line when the growth re-
With the aid of rough, preliminary assays or sponse is plotted against arithmetic dosage units,

past experience, test solutions are prepared of leading to the so-called slope-ratio assays. These
each sample or Unknown that have approxi- are covered by a well-developed series of statis-
mately the same concentration of vitamin, or tical techniques which need not be considered
other nutrient, as the test solution of Standard. here (Bliss, 1952; Finney, 1952). Sometimes the
The assay determines how much test solution of smaller growth responses can be converted to z =
each Unknown will produce the same growth log y to obtain a straight line relating z to x,
response, measured electrophotometrically, as where x = log-ml (loglo ml of solution taken).
the test solution of the Standard. This relative Conversely, at dosage levels giving comparatively
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loo of the rack to another. In a typical rack, the
average transmission in four adjacent tubes
varied from 73.9 per cent on one side to 82.5

U
80 / per cent on the other. A substantial part of this

X. ydrift, averaging 3.2 per cent in 10 racks, was
S 60_ / caused by variation in the medium during auto-

Z /claving, as shown by experiments in which the
0. vitamin was added aseptically after autoclaving.

40 _ / The effects of tube position in the autoclave and
o in the incubator were evaluated separately by

W Campbell et al. (1953), who showed in four blocks
a- 20 _ of 25 tubes each that the variance between rows

and columns within blocks exceeded the error
variance by 2.6 times in the autoclave and by

0 l l l 4.3 times in the incubator. In an analysis by
0.5 1.0 1.5 2.0 2.5

DOSE PER TUBE - LOG u#g Bliss (1956b) of the interpolated assayed poten-
Figure 1. Log-dose response curve for panto- cies of the same four Unknowns in three inde-

thenic acid in an overnight turbidimetric assay pendent systematic assays, the variance
with Lactobacillus plantarum, showing the range between dosage levels exceeded that between
over which the response may be considered a triplicates within levels by 3.4, 6.9 and 2.4
linear function of the log-dose. times in three different laboratories. Other

examples could be cited.
large responses, we may obtain a straight line There is no sure way of correcting this bias
with z = 2 - log (per cent transmittance). in an assay where the tubes are arranged syste-
"Logging" the response in this way has proved matically. Biologists faced with larger inherent
effective in rectifying log-dose response curves errors have had to abandon systematic designs
for vitamin B12 (Bliss, 1957). The relatively in order to obtain quantitatively valid results.
long central portion of the curve, however, is The basic requirement is the assignment of treat-
experimentally indistinguishable from a straight ments to experimental units at random, usually
line, and the simplest procedure is to select within restrictions which segregate the poten-
dosages that would be expected to fall within this tially larger sources of variation. The substitu-
range. The pantothenic acid curve in figure 1 tion of turbidimetry for titration in measuring
provides a fivefold to sixfold range of working the growth response has removed the main
dosages, a range which can be matched, at least, barrier to similar randomization in microbial
with vitamin B12 and probably with other nu- assays. Derandomization just before reading
trients. Since a threefold range is usually ample, the tubes, as practiced by Campbell et al. (1953),
the arithmetic is minimized by selecting a con- would avoid this technical difficulty in assays
centration of test solution for which the simplest with a titrated end point.
growth response, y = 100 - (per cent trans- Since randomization is new to many micro-
mittance), plots as a straight line against the biological laboratories, it is suggested, but is not
log-ml per tube. obligatory, in the U.S.P. XV assay for vitamin

Randomization. The laboratory technician B12. To compensate in part for positional effects,
usually identifies a tube by its position in the there is a new requirement that replicate tubes
rack, arranging the tubes of each preparation be placed in different racks or in different parts
in a sequence of increasing doses and maintain- of the same rack.
ing the same order in all stages of the assay. It Apparently, the main limitation to random-
has been shown, however, directly in at least two izing the tubes in a microbial assay is that they
laboratories and indirectly in others, that the must be marked individually. This need not be a
tube positions in a rack influence the observed problem. A supply of tubes for each of the rela-
response. When a number of racks were run tively few dosage levels in ml could be marked
with all tubes containing the same amount of permanently and stored separately after each
vitamin B12, Brownlee and Lapedes (1951) found assay when the tubes are washed. Each prepara-
in every instance significant drifts from one part tion could be identified when pipetting the test
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solutions by a mark added with a wax pencil or seem out of line. To apply the same test, the
by a distinctive metal clip. On the assumption suspected reading is multiplied by 2 and sub-
that bias during pipetting is negligible, random- tracted from the sum of its mates in the other
ization could be started after the tubes for each two racks. A similar difference is computed for
preparation are made to 10-ml volume. Repli- every other tube in the rack containing the sus-
cates would then be placed at random in differ- pected outlier, and the series is then handled as
ent racks, within each rack intermingling all before.
dosage levels and preparations. After the sub- To apply this criterion, the differences are
sequent stages of autoclaving, inoculation and numbered in order of size, beginning with the
incubation, the tubes could be read in order supposedly erratic difference or outlier, from y,
within each rack and each response recorded to YN where N is the number of differences. A
directly in its proper place in the laboratory relative gap G1 is computed which depends upon
notebook. A procedure as simple as this would N. When
soon be mastered by the laboratory technician N = 3 to 7, G, = 2 - Y)/YN - Y;
and the gain in reliability should far exceed any N - 8 to 13, Gs = 2 - YI)/(YN-1 Y);
additional time that it may cost. N = 14 to 30, G3 = (Y3- y1)/(yN-2- Yl).
When tubes are randomized, the efficient unit

is the response of each tube and the variation If an observed G, exceeds the critical level in
among replicate tubes is an index to away pre- table 1 and there are relatively few, if any,
cision. But when tubes are arranged systemat- ties, one of the tubes in the largest difference
ically, the variation among individual readings is presumably aberrant; otherwise its value is
does not take account of any potential bias asso- accepted. The process may be repeated with
ciated with their position. Under these conditions, the remaining differences if a second outlier is
the total response of the f replicates for each suspected.
treatment (Ti) is the more logical unit. If pre- The gap test may be applied to a randomized
ferred, this can be computed directly as Tt = vitamin B12 assay in three replicated racks
100f - J:(per cent transmittance) and desig- (table 2). The reading of 26.5 in rack II for 1.5
nated as y, following the U.S.P. XV assay for ml of Standard was marked "omit" by the ex-
vitamin B12. perimenter. Was this justified? The N = 13

Aberrant and missing values. When replicates differences, I + III - 2(II), were formed for
are compared, grossly discrepant values may be each treatment, and then rearranged in order
discarded at once, but an occasional reading of decreasing size. Since the relative gap, G2 =
may seem suspiciously aberrant. An objective 0.469, was less than 0.578, the critical level for
rule for identifying such aberrant tubes is given N = 13 in table 1, the observed difference did
in U.S.P. XV from tables prepared by Dixon not exceed the experimental error. All observa-
(1951). We assume that each reading is equally tions should be retained in computing the assay.
subject to experimental error, whether the re-
sponse is large or small, and that these errors TABLE 1
follow a normal distribution. It can then be shown Critical levels of GI to Ga
that the differences between corresponding tubes N G. N G- N G- N Gs N Gs
in replicate racks will also be distributed nor- _-l
mally. 3 0.976 8 0.780 14 0.602 20 0.502 26 0.450
In an assay with duplicate tubes, for example, 4 0.846 9 0.725 15 0.579 21 0.491 27 0.443

each reading in rack 1 is subtracted from its 5 0.729 10 0.678 16 0.559 22 0.481 28 0.437
mate in rack 2 to obtain a difference which may 6 0.644 11 0.638 17 0.542 23 0.472 29 0.431
be plus or minus. When these differences are 7 0.586 12 0.605 18 0.527 24 0.464 30 0.425
arranged in order of size, does an outlying end 13 0.578 19 0.514 25 0.457
difference belong in the series? If the odds are P = 0.04 in the gap test for outliers at either
less than 1 in 25 that it does belong, one of the end of a series of N ordered differences (Dixon,
two tubes in the difference is assumed to be 1951).
aberrant, is identified from its relation to the G, = (Y2 - Y1)/(YN - Yl)-
rest of the assay, and rejected. In an assay with G2 = (y3 - y1)/(YN-1 - Yl).
triplicate tubes, one reading in a set of three may G3 = (y3 - y)/(YN-2 - Yl).
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TABLE 2 selves as to the vitamin B12 content of a given
Gap test for outliers applied to a vitamin B12 assay Unknown. This tallied with the statistical evi-

in three randomized sets dence from two collaborative studies (Brownlee,

Growth Response 1952; Bliss, 1956b), that the variation among
PrepaD in Rack Difference independent assays in the same and in differentraion 2 (II) laboratories could be two to three times as large

as that estimated from the variation within a
mnl single run. At least part, and perhaps all, of this

S 1.5 20.0 26.5 20.0 -13.0 -13.0 = Yi discrepancy is a byproduct of the systematic
2 29.5 30.5 29.5 -2.0 -6.5 arrangement of tubes. Thus, in randomized
3 45.544.545.01.05350 5 =3 assays with 95 per cent confidence intervals of
4 56.055.057.0 3.0 -3.0 -:5 to -=110 per cent, Campbell et al. (1953)

____63_5_63_0_63_0___-2.0could check their assayed potencies upon repe-
U1 1.537.041.038.5 -6.5 -2.0 tition within limits based upon these internal

2 49.0 49.5 49.5 -0.5 -1.0 errors. Until randomization has been tried more
3 63.0 66.0 63.5 -5.5 -0.5 widely and been shown to be a complete cure,
4 72.0 72.0 74.0 2.0 +0.5 independently replicated runs are a necessary

l___--. - - safeguard in the assay of vitamin B12.
U2 1.520.520.519.5 -1.0 +1.5 A similar but less marked discrepancy has been

2 29.0 30.5 30.0 -2.0 +2.0 observed with calcium pantothenate and it is a
3 45.045.543.0 -3.0 +3.05 YN1 potential factor in all microbial assays. Before

+3.it can be disregarded, the agreement of inde-
-5.5 - (-13.0) 7.5 pendent runs of the same preparation should be

N =13,G2= =- =0.469.3.0 - (-13.0) 16.0 compared with the precision expected from the
variability within each run.

Evaluating an assay. To take advantage of the
A subsequent analysis of variance demonstrated Eatinhern relia.bT temmingefom the
good assay validity, with less variation about

Fetrihrn eiblt tmigfo hsgoodassyvlidiy, ithles varatin aoutimprovements, the assayed potency needs to be
parallel straight lines for the three preparations computed rather than interpolated graphically.
than in079witheintaion of sets by treatments Its reliability can then be estimated in terms
(F = 0.79, with ng= 9, n2 = 24). of a confidence interval which would be expected
With tubes arranged in separate racks o include the true potency of the Unknown in a

blorcksutatreject purormissingevalues replacd given proportion of assays, usually in 19 out of 20.
foredscomputaonal purposestbyremainumb which The calculation is not difficult and may take

or replicates,noto ly upon heweann replite one of two forms; both will be described. The
orerepicates,butvalsecomupoe h the rackr withsfirst is the numerical equivalent (with extensions)
the missing value compares with the other racks of th .rdtoa nepoaini lte
intheassa.This techique has log been use

of the traditional interpolation in a plottedm intthis tehniq hs logmeeiued Standard curve. While more objective and pre-

bygebiologsts8 i
o

the are inthe
i astsummrizon. cise than a graphic estimate, it uses only part

page 868 ofS XVan in therlast sectn of of the latent information in an assay. Factorial
this paper. More than one aberrant value can be aayitescn rcdrmkstems
replaced similarly by statistically valid substi-

anlss th eodpoeurmkstemsreplacedsimilarlybysatiticalyalof the data and, in consequence, gives more re-
tutes, but if many tubes are aberrant or much liable estimates of potency and its precision.
outside the response range for the Standard, the Factorial analysis has been used effectively for
assay would ordinarily be repeated.

Independent replicates. Another feature in the Th anim amirobial assays.
U.S.P. XV assay for vitamin B12 is the require-
ment that the potency of a given Unknown must microbial assays do not exhaust the possibilities
be based upon two or more runs on different for increasing their efficiency. Restricting the
days with independently prepared test solutions. randomization of tubes within a rack by means
An informal poll of a vitamin B12 panel showed of a balanced or confounded design may segre-
that some members repeated an assay on three gate additional patterns of variation, so that they
or four different days before committing them- will neither bias the estimated potency nor con-
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tribute to the error. Brownlee and Lapedes ity of the test organism may shift the log-dose
(1951) have described several alternatives. response curve sufficiently, within as well as be-
Another advance would increase the number of tween laboratories, that four dosage levels are

replicates of the Standard in multiple assays. usually preferred for each Unknown. The curve
Several Unknowns may be assayed against the for the Standard often includes two additional
same tubes of Standard, with one complete set doses, one below and one above the range adopted
of dosage levels for each Unknown in each ran- for the Unknowns. These are a check on the valid-
domized rack. For three to six Unknowns, ity of linear extrapolation beyond range of the
maximum efficiency would call for allotting two usual four doses and allow for inaccuracies in the
tubes per rack to each dose of Standard; for assumed potency of the Unknowns.
seven to 12 Unknowns per rack, the number of The equation for the Standard curve. The first
tubes at each dose of Standard should be in- step is to plot the total response T of the f
creased to three (Finney, 1952). Doubling or replicates at each dosage level against x, the log-
trebling the tubes of Standard in these two cases ml of test solution. Inspection of the points will
could increase the potential precision over equal indicate any obvious curvature which could be
numbers for each preparation by a maximum of corrected by transforming y to z = log y, or to
11 and 25 per cent, respectively (for four and z = 2 - log (per cent transmittance). The
nine Unknowns). One form that the calculation plotted responses y or z may be approximately
might then take is described elsewhere (Bliss, linear except at one end; without this end dose
1956c). These and other refinements are beyond the curve may still cover a wide enough range
the scope of the present paper. for an acceptable assay. Convenient dosage

series for various combinations of three to six
CALCULATION FROM THE STANDARD CURVE levels in the range from 1 to 5 ml are given in
The range of log-doses against which the per- table 3.

centage growth response y, or its logarithm z, When the relation is apparently linear, the
can be plotted linearly varies with the vitamin, best-fitting straight line can be computed in
the laboratory, and the assay within a labora- units of Tt as
tory. If the linear range were reasonably stable,
the individual tubes were randomized, and the = Tj + b(x - f) = a' + b (
number of replicates increased, the most efficient where Y is the estimated total response, =
design statistically would be a three-dose assay. ,Tt/k is the average total response over the
However, unpredictable changes in the sensitiv- k dosage levels of the Standard, b is the slope,

TABLE 3
Orthogonal polynomials xi and x2 based upon the log-ml per tube for different dosage sequences

Dose per Tube Polynomials for Indicated Sequence of k Doses

ml. X Xi X2 xi xi xi X2 xi X2 XI X2 xi X2 xi Xi xi Xi xi X2

1 0 -1 1 -13 1 -47 19 -34 11 -15 52
1.5 0.1761 -29 1 -6 -1 -20 20 -8 -21
2 0.3010 0 -2 -28 22 -12 -1 -6 -33 -61 28 -11 -12 -9 -14 -3 -44
3 0.4771 3 -53 12 -1 6 -1 18 -12 -12 -41 2 -23 5 -10 4 -35
4 0.6020 1 1 25 31 29 1 35 26 23 -21 11 -615 0 9 1
4.5 0.6532 13 1
5 0.6990 50 34 18 21 23 13 13 47

s0= idt 2 1418 1970 410 3794 6894 970 2016 564
ax2 =K6 4254 4 4 2270 4062 1550 586 8516
it= i 0.30103 0.0056798 0.0073433 0.025117 0.0073416 0.0035839 0.013737 0.012293 0.025003
i= 0./k0.30103 0.46007 0.38908 0.32661 0.34505 0.51980 0.45105 0.41584 0.37588
jei 0.20069 2.6847 3.6166 2.5745 6.9635 6.1769 2.6650 4.9565 2.3503
jc't' 0.12083 0.030497 0.053115 0.12933 0.10225 0.044274 0.073218 0.12186 0.11753

-,-7U)1IXz i

jc'i' - 21' }/2/k.
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TABLE 4
A turbidimetric vitamin B12 assay

Preparation Dose log-mi Response y in Set Polylnomials
I II | xi xi

ml

S 1 0 33 32.5 32.5 98.0 -15 52
1.5 0.1761 41 39.5 41.5 122.0 -8 -21
2 0.3010 46 47 48 141.0 -3 -44
3 0.4771 55 53 53 161.0 4 -35
4 0.6021 59.5 58.5 59.5 177.5 9 1
5 0.6990 64 62.5 64.5 191.0 13 47

Total 890.5 0 0

U1 1.5 0.1761 48.5 46 45.5 140.0 0.1358
2 0.3010 53 52.5 52 157.5 0.1439 0.1470
3 0.4771 62 58.5 62.5 183.0 0.1616
4 0.6021 66 66 65.5 197.5 0.1468

Total 0.5881

U2 1.5 0.1761 41.5 42 43.5 127.0 0.0370
2 0.3010 47.5 48 49.5 145.0 0.0489 0.0264
3 0.4771 55.5 52.5 55.5 163.5 0.0134
4 0.6021 58 61.5 59.5 179.0 0.0062

Total 0.1055

Us 1.5 0.1761 42.5 43 42 127.5 0.0408
2 0.3010 48.5 49.5 46 144.0 0.0413 0.0454
3 0.4771 57 54.5 53.5 165.0 0.0248
4 0.6021 61.5 62.5 64 188.0 0.0746

Total 0.1815

Total, T., 1.5-4 ml 843.0 834.5 841.0 2518.5

Design: each set of tubes placed at random in a different rack; assumed potencies of Unknowns, B1y
in each ml: U1 = 2.4;&g, U = 56 jig, and Us= 28pg;f =3, h = 3.

Standard curve: b = 1855.5/14.1017 = 131.58 (equation2), where 2(xTg) =-15 X 98.0 - 8 X 122.0 -
*.. + 13 X 191.0 = 1855.5 and i'2xi2 = 0.025003 X 564 = 14.1017 from table 3, last column; a' = 148.42
-131.58 X 0.37588 = 98.956 (equation 1), where T = (98.0 + 122.0 + - * - + 191.0)/6 = 148.42 for k =
6, and 2 = 0.37588 from table 3, last column; B2 = 1855.52/3 X 564 = 2034.80 and Q2 = -150.52/3 X 8516
-0.887 (equation 5), where 2x2Tt = 52 X 98.0 - 21 X 122.0 - *-* + 47 X 191.0 = -150.5.

Log-relative potency from Standard curve: at each dosage level, from equation 6, X' = 0.007600(T$ -
98.956), where b-' = 1/b = 1/131.58 = 0.007600; for U1 at 1.5 ml, X' = 0.0076(140.0 - 98.956) - 0.1761 =
0.1358, at 2 ml, X' = 0.0076(157.5 - 98.956) - 0.3010 = 0.1439; for U1, M' = X' = 0.5881/4 = 0.1470.

Precision of M' from Standard curve: 82 = 2(0.100342 - 0.097484)/9 = 0.000635 (equation 8), where
2X12 = 0.13582 + 0.14392 + * + 0.07462 = 0.100342, 2(22X'/k) = 0.58812/4 + 0.10552/4 + 0.18152/4 =
0.097484, and n = 3 X 4 - 3 = 9; ML = 0.0252 X 2.262/VT= 0.0285 (equation 9), where s =

N/0.000635 = 0.0252, t = 2.262 from table of Student's t at n = 9 and P = 0.05, and k = 4; percentage
limits = 100 antilog(0.0285) - 100 = 100 X 1.068 - 100 = 6.8.
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I is the mean log-dose in ml of test solution 210
(table 3), and a' - Tt-b. The slope b may be
computed conveniently with the coded log-doses
xi in table 3. These are small whole numbers, ,
with nearly the same relative spacing as the ISOX
x's, which total 0 in each series. The slope of Tt /
upon x is computed with the xi's as j

50b = jxjTt)/iExl' °2 _ /

where E stands for the sum of the terms which Wz
0follow it, and i' is the interval in logarithms per°

unit of xi. Both i' and 1xi2 are given in table 3 /
for each dosage sequence. Since the spacing of 2 120
the xi's differs slightly from that of the log-ml a
per tube, each i' is a weighted average, computed /
by weighting the ratio (x -x)/xi for each dosage
level by xl2. 90
The numerical example in table 4 is a vitamin

By assay based upon the procedure in U.S.P. o 0.3 0.6 0.9
XV but with three instead of two replicates. DOSE PER TUBE - LOG- ML.
The tubes of each replicate or set were placed Figure S. The log-dose response curve for the
in a separate rack at random. The reading for Standard in the assay of vitamin B,, in table 4,
inch tube is in erms of y = 1

a separa from a test solution containing 0.02 pug of cyano-
eachmttubeisinthems ofve =een100aled-percnt cobalamin per ml in an overnight turbidimetric
transmittance); these have been totaled in each assay with Lactobacillus leichmanii. The straight
row to obtain the T's'. The Tt's for the Stand- line has the equation Y - 98.956 + 131.58x, where
ard have been plotted against their log-doses Y is the predicted total response in three replicate
x in figure 2 and fitted with the straight line: tubes and x is the log-ml of Standard test solution
V = 98.956 + 131.58 x. As shown beneath table per tube.
4, its slope by equation 2 is b = 131.58, its mean
response is T - 148.42, and its mean log-dose response at each dosage level may be computed as
2 from table 3 (last column) is I = 0.3759. The
relation is obviously linear. YT.+Blxt +B~x, (4)
A test for curvature. Occasionally, the plotted where

points may form a slightly convex or concave
curve about the fitted straight line. A small cur- B1 -
vature canbe disregarded and potencies computed and
as if the log-dose response line were straight. To
test whether this approximation is acceptable in B,
a given case, we may fit a parabola and compare The variation in units of y2 attributable to B,
the amounts of variation attributable to its linear and to B2, respectively, is computed as
and quadratic terms.
The parabola is defined as B2 =- (XIT)/f 2 12

Y-a+ biz+ boz (3) and (5)

Just as the log-doses x have been coded to xi,
Qs

' (x2Ts)/fEx,
the x's can be replaced similarly by orthogonal where f is the number of replicates or racks and
polynomials x2, which measure the quadratic E' indicates the square of the sum of the suc-
curvature, total 0 (lx2 = 0), and have the ceeding terms in parentheses. If B2/Q2 > 100,
property that (xzx2) 0 (Bliss and Calhoun, the error in the estimated potencies due to ig-
1954). The corresponding x2's parallel the xi's noring the curvature is usually negligible (Fin-
for each dosage sequence in table 3. When de- ney, 1952; Bliss, 1957).
termined from the Tt's, the predicted parabolic From figure 2, the log-dose response curve for
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the Standard in table 4 is obviously linear, but in table 4, all solutions, were assigned assumed
it may be used to illustrate the numerical test. potencies per ml of 2.4 Mg, 56 ,ug and 28 Mug,
The effect of the linear term or slope is B2 = respectively. For U1, for example, log R = log
1855.52/(3 X 564) = 2034.80. From the coeffi- (2.4) = 0.3802, from which the log potency M =
cients x2 for quadratic curvature, Z(x2Tt) = 0.1470 + 0.3802 = 0.5272 by equation 7. From
-150.5, from which Q2 = 150.52/(3 X 8516) = the antilogarithm of M, the three Unknowns
0.887. The ratio B2/Q2 = 2295 is far above the had assayed contents of vitamin B12 per ml of
proposed minimal level for disregarding the 3.367, 59.51, and 33.31 Mug, respectively.
curvature. Precision of an assayed potency. The error
Log potencies from the equation for the Standard. variance of each log-relative potency M' =

A separate estimate of the log-relative potency X' depends upon terms involving both the Stand-
of each Unknown is computed from the Tt at ard curve and the Unknown. Although an exact
each dosage level, substituting each Tt in turn calculation would be impracticable, it may be
for Y in equation 1. Each treatment total may approximated from the k values of X' and their
be calculated alternatively as Tt = 100f- E totals EX' for each of the h Unknowns as

(per cent transmittance), or, if logarithms are
required, as Tt = log I lOOf- E(per cent trans- s2 = 2{X'2-(E2x'/k)J/n (8)
mittance) } or Tt = 2 + log f - log E(per cent with n O2k - h degrees of freedom. The
transmittance). By rearranging equation 1, confidence interval for each M' is then
the log-relative potency X' from each dosage
level of each Unknown is determined as L= 2st/ (9)

X' = b-1(Tt- a') - x (6) where t is Student's t at P = 0.05 (tabled in
U.S.P. XV, p. 875, and elsewhere). The approxi-

where x = log-mi of test solution. The k values mate confidence limits in logs, M' X M2L,
of X' are then averaged to obtain for a given would enclose the true log-relative potency of
test solution the log-relative potency M' = the Unknown at odds of about 19 in 20 if there

X' ZX'/k A strongly marked increase (or were no interassay error. To express these limits
decrease) in X' at successive dosage levels of as a percentage of the assayed potency, compute
the same test solution would throw doubt on 100 antilog(j2L) - 100. Approximate upper
the parallelism of the dosage-response curves and lower confidence limits of the potency in
of the Unknown and the Standard, and, in con- terms of vitamin content are given by the anti-
sequence, upon their qualitative equivalence- logarithms of XM = M + M2L and M - Y2L.
if the assay has been randomized. If the assay For the numerical example in table 4, the
has not been randomized, the "drift" may be values of X' and their sums in the next to last
due instead to the relative positions of the tubes column of the table lead by equation 8 to s2 =
during the assay. 0.000635 with 9 degrees of freedom, from which
An assayed log-relative potency can be con- s = 0.0252. With t = 2.262, the half-confidence

verted to vitamin content as interval in equation 9 is M2L = 0.0285. From

P* = antilog M = antilog (M' + log R) (7) the antilog of Y2L, the approximate confidence
limits on each side of an assayed potency are

R is the Mg of the vitamin assumed to be present 6.8 per cent. The confidence limits for Ui are
in each mg (or ml) of the original Unknown when 3.15 and 3.60 Mg per ml; the others could be
preparing its test solution. obtained similarly. Since this was a randomized
For computing the log-relative potencies of assay, these are more likely to approximate the

the Unknowns in table 4, the reciprocal of the true limits than if a systematic design had been
slope of the Standard curve is determined as followed.
b-i = 1/131.58 = 0.007600. Substitution in
equation 6 gives the four estimates for each FACTORIAL ANALYSIS
Unknown as X' = 0.0076(Tt - 98.956) - x. Factorial analysis takes advantage of two as-
Their averages (X') are the assayed log-relative sumptions basic to these and all other parallel-
potencies M' in the last column of table 4. Based line assays: (1) that operationally the response
on preliminary assays, the three Unknowns is a linear function of the log-dose, and (2) that
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all preparations have the same assay slope. culating the potency of each Unknown, initially
The calculations are made with a relatively in logarithms.
stable combined slope, which measures the aver- The log-relative potency M' is essentially
age relation between the response and the log- a ratio of two statistics, the difference between
dose over all preparations. The error variance two mean responses (gu - Vs) divided by the
and confidence interval are free of the approxi- assay slope b of the log-dose response curve, or

mations inherent in equations 8 and 9. If the M' = (gu - Vs) lb. In factorial assays, this
tubes have been intermingled at random in the ratio can be reduced to a very simple pattern.
tube racks, the response in a single tube forms For an assay with one Standard and several
the preferred unit. Unknowns, each log-relative potency is
The analysis falls into several stages. Calculat-

ing the potency of each Unknown is the first = jcih'T1/Ti (10)
and easiest. In many assays, nothing more may where the constant term,
be required. Some assays are more precise than
others, so that a statistic C is defined in the next = i'x12/k,
section, which measures assay precision. If an is given in table 1 for selected dosage sequences,
assay does not exceed a predetermined level of C, and T. = T - Ts is the difference between the
the calculation may not be carried further. Con- totals Tp for the given Unknown and for the
fidence limits, measuring the precision of each Standard. MI is converted to the assayed
assayed potency, follow readily from C. The potency P* by equation 7.
statistical tests for curvature and nonparallelism In the numerical example of table 5, + and -
in the next two sections are available for critical values of T,' tend to balance one another, so
or doubtful assays; they need not be computed that there is clearly no curvature. The percent-
routinely. Since missing values are a normal age range in Tb' for slope, 100(2006.5 - 1730.0)/
experimental hazard, the calculation of incom- 1730.0 = 16 per cent, is not so large as to com-
plete assays is treated separately. promise the assumption of parallel log-dose re-
Calcation of the log-reaive potency. Poten- sponse lines. T. is then computed from the Tp's.

cies are determined from the k dosage levels, From table 3, jci = 3.6166 and for the h' = 4
in ml per tube, which are common to the Stand- preparations, iih'/Tb = 3.6166 X 4/7559.5 =
ard and the h Unknowns, a total of h' = h + 1 0.0019137. By equation 10, M' = 0.0019137 T.
preparations. The totals Tt for the response to for each Unknown. After adjustment for their
each treatment, as given in table 4, may be respective assumed potencies by equation 7,
rearranged conveniently by preparations and the three Unknowns had assayed potencies of
dosage levels in the form shown in table 5. The P* = 3.362, 59.30 and 30.99 ug of vitamin B12
columns and rows are totaled to obtain TP = per ml. The potencies obtained by interpolation
ETt for each preparation and Td = ETt for in the equation for the Standard curve and by
each dosage level. For each preparation, the factorial analysis are in substantial agreement.
Tt's are multiplied in turn by the coefficients Assay precision. The precision of an assay is
lI and x2, and the products totaled to obtain epitomized most conveniently by the statistic

Tb' = L(X~T~) and Tq' = ~(x2Tt). The same C, which measures the reliability of the assay
procedure, applied to the Td's in the last column, C meaes the riation a ssay
checks the totals Tb = E~b and T.=E slope. C depends upon the variation attributablechecksheto=Tbad Tq = Tq to the slope (B2), the error variance (02) for the
If the row for Tq' includes both + and - assay, and t2 from a table of Student's t, such as
values, the relation can ordinarily be considered that in U.S.P. TV (p. 875), for the degrees of
as linear. If the range in Tb' does not exceed 15 freedom insfr
or 20 per cent of its smallest value, the chances The variation in y attributable to the assay
are good that the log-dose response lines for the slope (B2) is essentially the same statistic as
h' preparations will prove to be parallel with a that computed for the Standard alone with equa-
common assay slope based upon Tb. In most tion 5 and hI = 1. Here, however, it is restricted
assays, a further test for curvature and for di- to the k dosage levels that are common to both
vergence in slope is not needed, and after scan- the Standard and the h' - 1 Unknowns, and it
ning the results one can proceed directly to cal- gains in reliability by including all h' prepara-
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TABLE 5
Factorial analysis of the vitamin B12 assay of table 4

Dose (MI Coefficients Total Response Tt For: Total
perTube) -U s U s -

xi xi S Ui Us us Td

1.5 -29 1 122.0 140.0 127.0 127.5 516.5
2 -12 -1 141.0 157.5 145.0 144.0 587.5
3 12 -1 161.0 183.0 163.5 165.0 672.5
4 29 1 177.5 197.5 179.0 188.0 742.0

Tp = ZT, 601.5 678.0 614.5 624.5 2518.5 = T
TV = Zx1Tg 1849.5 1973.5 1730.0 2006.5 7559.5 = Tb
Tq' = -X2Tt-2.5 -3.0 -2.5 6.5 -1.5 = Tq

Ta= Tu' -Ts'76.5 13.0 23.0
M' = 0.0019137T. 0.14640 0.02488 0.04402
SL (C = 1.00309) 0.02825 0.02696 0.02704

For 2 to 4 ml only M' 0.15257 0.02086 0.04564
EL 0.03582 0.03286 0.03308

Assay precision (k = 4): B' =7559.52/ (3 X 4 X 1970) = 2417.35 and Q2 = (-1.5)2/(3 X 4 X 4) = 0.047
(equation 11); s2 = 1134916.75 - 132145.02 - 134860.75 + 2518.52/481/30 = 53.53/30 = 1.784 (equation
12), where 2y2 = 412 + 462 + ..* + 53.5' + 642 = 134916.75 and 2T,2/kh' = (843.0' + 834.5' + 841.0')/
4 X 4 = 132145.02 from table 4 (omitting doses of 1 and 5 ml), 2Tt/f = (122.02 + 141.02 + - * * + 188.02)/
3 = 134860.75, and n = (4 X 4 - 1) (3 - 1) = 30; tV = 4.171 for n = 30 and P = 0.05 from a table of
Student's t; and C = 2417.35/(2417.35 - 1.784 X 4.171) = 1.00309 (equation 15). Alternative if not
randomized: [Tt2] = 134860.75 - 132424.73 - 2417.35 - 0.05 = 18.62 (equation 13), where 2T,2/kf =
(601.52 + 678.02 + 614.52 + 624.52)/4 X 3 = 132424.73 and n = 4(4 - 1) - 2 = 10; 5t2 = 18.62/10 =
1.862 (equation 14).
Test for nonparallelism (k = 4): [B2] = 2425.43 - 2417.35 = 8.08 (equation 18), where2Tb'2/f2x12 =

(1849.52 + 1973.52 + 1730.02 + 2006.52)/3 X 1970 = 2425.43; F = 8.08/3 X 1.784 = 1.51 with n, = 3 and
2= 30. Alternative if not randomized: F = (4(4 - 2) - 1}8.0/3(18.62 - 8.08) = 1.79 with li = 3 and

n2 = 7.
Calculation in last 2 rows for 2, 3, and 4 ml only (k = 3): Tb = 4117.5; T. = 538.0 - 479.5 = 58.5

for U1, 8.0 for U2, 17.5 for Us; M' = 2.6847 X 4T0/4117.5 = 0.002608T. (equation 10); s2 = 44.56/22 =
2.025 (equation 12); t' = 4.301 from table of Student's t; B' = 4117.5'/3 X 4 X 1418 = 996.34 (equation
11); C = 1.00882 (equation 15); L2/4 = 0.00882(1.00882M'2 + 0.12199) (equation 16).

tions. There is a similar gain in measuring the where T = >2Tr = ETt and the degrees of
effect of single or quadratic curvature (Q2), freedom in 82, n = (kh' - 1) (f- 1), is dimin-
if it is required. They are computed as ished by 1 for every gap in the original table

B2 = Tb2lfh''x,2 (11) which has been filled by computation.
and In all systematic assays, and in some that

2/u are randomized, the error variance is based
Q2 = TZV/fh'Ex22 upon the scatter of the treatment means rather

where f is the number of replicate responses in than of the individual responses. The variation
each Tt. of the Tt's for each treatment around a series

In a randomized assay, the error variance s2 of parallel parabolas, in the same units of y2
is computed from the variation among the N as equation 12, is computed as
individual responses y (or z), segregating the [Tt,2 = ET,2/f - IT,2/kf - B2 - Q2 (13)
differences due to the totals for sets or racks leading to the alternate error variance of
Tr and for treatments T to obtain

S2= Ly' - ET7'/kh' 5t2 = [Tj2]/n (14)

(12) where n = h'(k - 1) - 2 degrees of freedom.
- ZTt'/f + T2/Nj/n If the ratio F - 8t'/5' is considerably larger than



1956] CALCULATION OF MICROBIAL ASSAYS 253

1, 8?2 is a safer estimate than 02 for the assay val for each Unknown depends upon how closely
variance of a randomized assay. The error van- its assayed potency confirms its assumed po-
ance of a systematic assay is necessarily 8e. tency, i.e., upon how nearly M' approaches 0.
Given B2 from equation 11 and a' (or 8A), the Each interval is computed as

slope factor C is computed as
L =2/(-)C '+ ch) (16)

C - B2/(B2-s't') (15) In order to retain three-figure accuracy in the

where P depends upon the degrees of freedom confidence interval, C and M' should be com-
in,a (or in 8e). The more nearly C approaches puted to five decimal places. M' may later be
unity, the more precise is the assay. A microbial rounded to three or four decimals. The log-
assay with C > 2 or C negative is of little or no relative potency for each Unknown then has
value. confidence limits of
For the assay in table 5, the variation in y I,,, = CM'/ ML (17)

attributable to the assay slope is B' = 7559.52/ Xt cMe t

3 X 4 X 1970 = 2417.35 and that due to curva- In terms of vitamin content, the upper and lower
ture is Q2 = 1.52/3 X 4 X 4 = 0.047 (equation confidence limits are R(antilog XMZ), where R
11). Since the tubes were randomized in the f = is defined as in equation 7.
3 racks, the error variance is computed from the In addition to C = 1.00309 and M' from table
y's in table 4, omitting the responses at dos 5, the other term required for the confidence
of 1 and 5 ml. Substituting in equation 12, interval in our numerical example is WcAih'.

= 53.53/30 =1.784 with 30 degrees of free-. For the present dosage sequence, c'i =
dom. Witht3 = 4.171 for 30 degrees of freedom 0.053115 from table 3, and with hI = 4 prepara-
C = 2417.35/(2417.35 - 1.784 X 4.171) tions, the constant terms 0.21246. Substituting
1.00309. the M' for Us in equation 16,

If the assay had not been randomized, its ML = O/0.00309(1.00309 X 0.1464P + 0.21246)
error variance would be based instead upon the
variation in the Ts's about four parallel parab- = 0.0282.
olas, giving by equation 13, ITt'] = 18.62, The half-intervals for the three Unknowns
and by equation 14, 8S? = 18.62/10 = 1.862. in table 5 are all somewhat smaller than the
The ratio, F = 1.862/1.784 = 1.04 is here so single half-interval of 0.0285 obtained with
near unity that C would be computed with 82 equation 9. If the assay had not been randomized,
as above. If the away had not been randomized, the half-intervals would have been determined
it would be computed instead with 8-s = 1.862 instead with C = 1.00384 from the variation in
and P = 4.965 for 10 degrees of freedom to ob- the Tt's, giving larger values of ½2L = 0.0300,
tapieC-=f1.00384. 0.0286, and 0.0287 for U1 to U3, respectively.

The preciion of M'. The confidence limits for To transform the confidence limits in logarithms
factorial M' avoid the approximations inherent to content of vitaminB12, XM' is determined with
in those for an interpolated estimate of the log- equation 17; for U1, XM' = 0.1464 X 1.00309 +
potency. In 19 assays out of 20 they are ex- 0.0282 = 0.1751 and 0.1187. As noted earlier,
pected to bracket the true potency of the Un- the assumed potency of U1 was R = 2.4 ug
known, provided there are no interassay vax- per ml, from which the two limits are 2.4(anti-
ance components. The confidence interval be log 0.1751 and 0.1187) = 3.59 and 3.15 Mg
tween these limits is a function of three terms, per ml, bracketing the most probable value of
the log-relative potency M', the statistic C de- 3.362 M&g per ml.
fined in the preceding section, and a constant Statistical test for curvature. The factorial
determined by the design of the experiment calculation of potency is based upon an assumed
and not by its outcome (Bliss, 1956a). This linear relation between the response and the log-
constant is the ratio of two variances, that for dose within the observed range of doses. A
the numerator of M' divided by that for its simple comparison of the signs of Tq', as de-
denominator. It may be designated as ic'i2h'. scribed above, is usually adequate. If all values of
For each sequence of k doses in table 3, Ic'i2 = T,' are of the same sign, however, the variation
2i"2Fxz2/k as listed in the last row of the table. attributable to combined curvature, as measured
Given the above terms, the confidence inter- by Q2 (equation 11), can be tested for signifi-
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cance by computing t2 = Q2/s2 or Q2/St2, with n2 = n for s2, to any standard table of F (Fisher
n equal to the degrees of freedom in s2 or in st2. and Yates, 1953). If it exceeds the tabular value
In a randomized assay, the test is definitive, materially at the 5 per cent point (P = 0.05),
but if the tubes have been placed systematically, the parallelism of the slopes is open to question.
an apparently significant curvature, tested neces- Sometimes a single Unknown with a divergent
sarily with s?2 rather than s2, may be due to their slope can be spotted at a glance and the test
arrangement in the racks rather than to a non- repeated with the remaining Unknowns and the
linear relation of the response to the log-dose. Standard to determine whether they are satis-
In either case, a clearly significant Q2 may be factorily parallel. In doubtful cases, the test of
small enough, relative to B2, that it can be dis- parallelism may be merged in a more general
regarded and the assay analyzed as if the lines test of assay validity by computing F = S82/8;,
were straight. Empirical studies of the vitamin with n1 and n2 equal to the degrees of freedom
B12 assay (Bliss, 1956b, 1957) suggest that if B2/ (n) in st2 and s2, respectively. If F is not sig-
Q2 > 100, we can proceed as if the relation nificantly larger than the tabular value at the 5
were linear. per cent level, the assay can be accepted as
When the assumption of linearity is adopted, valid, even though an F that is considerably

should significant average curvature in the log- larger than 1 may lead to adopting st2 as the assay
dose response curve be included or omitted in variance.
estimating the assay variance? If the true rela- In a systematic assay, the test for lack of
tion is parabolic, the variability measured by parallelism includes possible discrepancies due
Q2 is presumably common to all curves and would to tube position. Within this limitation, we may
have little influence upon the internal error of compute
the assay. If the tubes are arranged systemati- F I h'(k - 2) - 1 [BIJ/h([Tt2] - [B2]) (19)
cally, however, part of the assay error may ap-
pear as combined curvature, and the omission with n1 = h and n2 = h'(k - 2) - 1 degrees of
of Q2 could lead to an underestimate of the vari- freedom. If F exceeds the tabular value for P =
ance. In the absence of randomization, a con- 0.05, the parallelism of the log-dose response
servative rule is to modify equation 13 by not lines for the h' preparations is in doubt.
subtracting Q2 in computing [T?2] and st2. The range in Tb' for the example in table 3

In the randomized assay in table 3, the com- suggests satisfactory parallelism, but since the
bined curvature Q2 = 0.047 is far less than the assay was randomized, this can be tested criti-
error variance 02 = 1.784 and still smaller than cally. In units of y2, the sum of squares for dif-
B2 = 2417.35. The relation is clearly linear. ferences in slope is [B2] = 2425.43 - B2 = 8.08
-Statistical test for nonparallelism. The agree- (equation 18), leading to F = 8.08/3 X 1.784 =

ment of preparations in slope can be tested criti- 1.51 with n1 = 3 and n2 = 30 degrees of freedom.
cally, if the tubes have been placed in each rack This does not approach the 5 per cent level
at random. If an Unknown and the Standard (2.92) for significant nonparallelism. If the assay
were to differ significantly and materially in had not been randomized, its error variance
slope, the same relative potency would not hold would have been based instead upon the varia-
at different levels of response. However, if the tion in the Tt's (equation 13). For the corre-
tubes have been arranged systematically, an sponding test of parallelism by equation 19, F =
apparent discrepancy in slope may be due to 7 X 8.08/3(18.62 - 8.08) = 1.79, with ni = 3
differences in the positions of the tubes, and the and n2 = 7 degrees of freedom, the critical level
test for parallelism is no longer clean-cut. at P = 0.05 being 4.35. Because of the randomi-
The total variation due to differences in slope zation, the test here is not confounded with tube

between the h' = h + 1 preparations is measured position but is less sensitive than in the preced-
by ing case.

[B2] = ErTI2/1f X2 - B2 (18) CALCULATING INCOMPLETE ASSAYS

with h degrees of freedom. In a randomized assay, The initial balance of an assay may be de-
any divergence in slope is tested by referring the stroyed by losses during the test or through the
variance ratio, F = [B2]/hs2, with ni = h and later rejection of an aberrant response. In other
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assays, test solutions that are too concentrated temporarily in all empty places but one, for
or too dilute, because of a poor guess as to the which y' is computed by equation 20. Each
potency of one or more Unknowns, may lead initial substitution is replaced in turn by a com-
to an end response outside the range of the puted y', and the process repeated in successive
straight log-dose response line. The balance of an approximations until a stable y' is obtained for
incomplete assay can usually be restored so that each mising observation.
its calculation is changed but little. An end dos- Occasionally an entire treatment total (Tt)
age level may be dropped or replacements may may be replaced by the same equation. The
be computed to fill the one or more gaps. remaining Tt's are arranged by dosage levels

Dropping an end dosage level. An assay initially and preparations as in table 5 or 6. The mising
with four or more dosage levels may still give total is then computed as
quite respectable estimates of log-potency even
though an end dose is eliminated. The assay is T h'Tp' + kTd'- (21)
then computed as described above, but with (h' - 1)(k - 1)
coefficients and constants for the curtailed where Tp', Td' and T' are the incomplete totalssequence of doses. This may be the simplest ex- for the preparation, dosage level and assay from
pedient for obtaining a linear log-dose relation, which the treatment total is missing, and thereor unavoidable if there are many gaps at an end are h' preparations and lc dosage levels.dosage level. Although the computed log poten- An unbiased log-relative potency MI is com-
cies are unbiased, their precision is less than if puted from the completed set of readings forthe original complement of doses could have each Unknown, exactly as if there had been
been retained. no replacement. Its precision, however, is lessTo show the effect of basing an assay upon than if no observations had been lost, as shownthree instead of four dosage levels, the example in the next section.
in table 5 has been recomputed without the re- The calculation of the log-relative potency
sponses at 1.5 ml per tube. The coeffcients xlapondse and othmlpercntants fThe curtaciledx (M') with a substitute value may be illustratedand o2, 3, andt4ntspertu e given by a turbidimetric assay of calcium pantothenate
sequence of 2, 3, and4new alsTn with duplicate tubes (f = 2). Since the tubes

andediffere =1175ndncetheorecomputedvalues o were not randomized, only the Tt's are given inand= Ta i the nexttolast table 6. The assumed potency of one Unknown

row of thetable. Thelirsreducnthed precision is (U2) was underestimated, so that at a dose of 5row of the table. Their reduced precision is
m e ueit bevdrsoneo 6

reflected in a larger C = 1.00882 and in half- mlp tube ts obser renseofth = 164
cofdec inevl ( .Lintelstrwta fell outside the linear range of the log-dose re-

sponse curve. If the log-relative potencies wereare 22 to 27 per cent wider than when com- estimated from equation 6 for the Standard
puted from the original four-dosage levels.putedfcurve, there would be only three values of X'Log potnnies from assays vith replacements. fofai
In order to retain valid observations and to fowut.
simplify the analysis, each gap may be filled Fort o
with~~ ~ ~anube whcilM n h ro

For a factorial estimate, the original Tt forwitaumerhih wll inmiz te ero U2 at 5 ml per tube is replaced by equation 21
variance (Fisher, 1951). The replacement for a

gle lost tube is computed by the well-known with
equation Tt' = (5 X 428 + 4 X 571 -2361)/(5-1) (4-1)

= 172.
=fT7' + kTg-V(-) With this one replacement, the calculation is(f - 1)Qk - )

completed as shown in table 6. Since the range
where f is the number of sets or tube racks, k in TV' is only 10 per cent of its smallest value,
is the number of treatments or doses, and T,', all preparations could be assumed to have paral-
Tt' and T' axe the incomplete totals for the ran- lel log-dose response lines. Although all values of
domized set, treatment and assay from which Tq' are negative, the ratio of B2/Q2 = 3584.09/
an observation is mising. If more than one y 10.95 = 327 (equation 11) does not suggest
is missing, the treatment mean is substituted excessive curvature. To determine the log-
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TABLE 6
Factorial analysis with a replacement

Dose (Ml Coefficients Total Response Ts For:
er Total Td

Xi x S U s us Ut

2 -61 28 103 56 123 97 110 489
3 -12 -41 126 86 145 124 134 615
4 23 -21 143 96 160 139 148 686
5 50 34 154 109 172* 150 158 743

TP = 2T 526 347 600 510 550 2533
Tb '= 2xT 3194 3210 3037 3292 2986 15719
To' = 2x2T* -49 -268 -13 -187 -150 -667

T. = Tu'- Ts' -179 74 -16 24
M' = 0.0019648T., -0.35170 0.14540 -0.03144 0.04716
XL (C = 1.00316) 0.03399 0.03094 0.02768 0.02775

Turbidimetric calcium pantothenate assay from T4 = Zy for f = 2 replicates, h' = 5, k - 4; tubes
not randomized.

* Replaced end value: 5 ml of U2 with observed Tg = 164 fell outside linear range of log-doses reponse
curve and response was omitted. Replacement Ts' - (5 X 428 + 4 X 571 - 2361)/(5 - 1) (4 - 1) = 172,
where Tp' = 123+ 145+ 160= 428, Td'= 154+ 109+ 150+ 158= 571 and T' = 489 + 615 + 686 +
571 = 2361. (equation 21).

Assay precision: Be = 157192/2 X 5 X 6894 = 3584.09 and Q2 = (-667)2/2 X 5 X 4062 = 10.95 (equa-
tion 11); [T42] = 168573.5 - 164960.62 - 3584.09 = 28.79 (equation 13 + Q'), 8e = 28.79/13 = 2.215,
where n = 5(4 - 1) - 1 - 1 = 13; C = 3584.09/(3584.09 - 1.09066 X 2.215 X 4.667) = 1.00316 (equation
23), where t = 4.667 from table of Student's t, 2(xz2/fb) = (612 + 12' + 232)/10 + 50'/8 = 751.9, and
j = 2 X 5 X 751.9/6894 = 1.09066 (equation 22).

Confidence interval: j' = (2 X 4 X 2 - 2)j/2(4 X 2 - 2) = 14 X 1.09066/12 = 1.27244 (equation 24)
with r = 2; (jc'i2)h'j = 0.044274 X 5 X 1.09066 = 0.24144 (table 3), LV/4 = 0.00316 (1.00316M" +
0.24144) for U1, Us and U4 (adjusted equation 16); (Jc'i2)hIj' = 0.044274 X 5 X 1.27244 = 0.28168,
L2/4 = 0.00316(1.00316M'2 + 0.28168) for U2 (adjusted equation 16).

relative potencies, we read jci = 6.1769 from puted, loses f degrees of freedom. Because of the
table 3, and, with h' = 5 and Tb = 15719, sub- reduction in n, t2 will be larger. A further adjust-
stitute in equation 10 to obtain M' = 0.0019648 ing term j is computed as
T. for each Unknown, just as in a complete j = fh'E(X2/fb)/1X1 (22)
assay with no replacements.

The precision of assays uith replacements. If where fb is the number of observed responses y
each log-relative potency is computed from the in the Td for each xi. To allow for the replace-
equation for the Standard, its approximate error ment, the slope factor in equation 15 is computed
variance (82) and confidence interval (L) are as
given by equations 8 and 9. In equation 9, C = B21(B2 j82t2) (23)
however, the number (k) of individual estimates
of X' will be less for the Unknown with a missing If there is no replacement in T., the last term
T4, and, with a smaller k, it will have a longer in equation 16 for the confidence interval,
confidence interval than the other Unknowns. jc'i2h', is also multiplied by j. However, if T.
When M' is computed factorially, a replace- is computed with a replacement, *c'i2h' is

ment requires several adjustments in computing multiplied instead by
the confidence intervals. The degrees of freedom (2kf- r)j
(n) in the denominator of s2 is reduced by one f (24)
for each y that is replaced. If a T is replaced 2(kf - r)
with equation 21, st2 has similarly one less degree where r is the number of replaced y's.
of freedom in the denominator, and 82, if com- Since the assay in table 6 was not randomized,
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the more conservative course is not to subtract inherent in an assay. With the aid of factorial
Q2 (= 10.95) when computing [Tt2] = 28.79 by coefficients for the selected dosage sequence,
equation 13. The error variance is then deter- little 'computation is required to determine the
mined by equation 14 as 8s2 = 28.79/13 = 2.215 log-relative potency for each Unknown by
with n = 13 degrees of freedom and t2 = 4.667. methods that have long been used in animal
The adjusting term from equation 22 is j = assays. The inherent precision of an assay de-
2 X 5 X 751.9/6894 = 1.09066, leading to pends upon the reliability of the assay slope,
C = 3584.09/(3584.09 - 1.09066 X 2.215 X which is measured by the statistic C, a number
4.667) = 1.00316 by equation 23. For Unknowns slightly larger than 1.0. Exact confidence limits
U,, Us and U4, none involving the replacement, defining the precision of each assayed potency
the constant term in computing the confidence follow directly from C. The validity of critical
interval L by equation 16 is Ic'i2h'j = .044274 X and borderline assays can be checked by statis-
5 X 1.09066 - 0.24144. For U2, however, where tical tests for curvature and for nonparallelism
TtIreplaces r =f = 2valuesofy, j' = 14j/12 = to complete the factorial analysis.
7j/6 from equation 24, and we have instead Since discrepancies may occur, or occasional
jc'i2h'j' - 0.28168. The half-confidence inter- tubes give aberrant readings or be lost, the last
vals in the last row of table 6 have been deter- section concerns the calculation of incomplete
mined with these values. assays. In some cases an end dose may be omitted.

More often, replacements are determined with
SUMMARY which the log potencies may be computed fac-

Four practices which increase the precision torially. These are not as precise as in complete
and reliability of many microbial assays are: assays, so that adjustments are described for
(1) selecting dosage levels and a function of the measuring their precision.
growth response that lead to a straight log-dose
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