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In the previous issue, Rada 

 

et al

 

. [1] demonstrated an aspect of
the mechanism by which neutrophils regulate their cytosolic Ca

 

2

 

+

 

.
They show a clear link between the activity of the nonmitochon-
drial (NADPH) oxidase and Ca

 

2

 

+

 

influx in neutrophils. In view of
the importance of Ca

 

2

 

+

 

 in regulating various neutrophil activities,
this has important implications both for our understanding of
chronic granulomatous disease (GCD), where the oxidase is
totally inoperative, and, perhaps at first thought, paradoxically,
for suppressing inflammatory disease. In this short overview,
some of the theory underlying the results of Rada 

 

et al

 

. [1] is
briefly explained and the potential importance of this type of Ca

 

2

 

+

 

regulation for restraining neutrophil ‘aggression’ during inflam-
mation is discussed.

 

A NEW FUNCTION FOR THE NEUTROPHIL 
OXIDASE?

 

It can be argued that the purpose of the programme of activity
that begins with the neutrophil leaving the circulation and ends in
phagocytosis of infecting bacteria is to bring the neutrophil non-
mitochondrial oxidase in close proximity to the bacterium. The
oxygen metabolites, such as superoxide ions (O

 

2
–

 

), which are gen-
erated by this oxidase, are highly reactive, and thus have short
life-times with consequently small diffusion distances. It is thus
reasonable to assume that if the highly reactive oxygen metabo-
lites generated are involved in the killing of the bacterium, they
do so within the phagosome. As the product of the dismutation of
superoxide ions is peroxide (H

 

2

 

O

 

2

 

)

 

,

 

 there would also seem to be a
role for myeloperoxidase which is secreted into the phagosome
after phagosomal closure, especially since its product, hypochlo-
rite (OCl

 

–

 

) is also highly toxic to bacteria. However, there are
some arguments against this latter mechanism. For example,
while dysfunction of the neutrophil oxidase has serious conse-
quences for the patient (i.e. CGD), myeloperoxidase deficiency is
relatively common and has no obvious clinical manifestations.
Also, Reeves 

 

et al.

 

 [2] have argued that the main purpose of the
oxidase may be as a proton pump, regulating the intraphagosomal

pH or controlling K

 

+

 

 concentration, both releasing the proteolytic
activity of neutral proteases in the phagosome. Whatever the
details, there is general agreement that the oxidase is involved in
bacterial killing. However, could the oxidase have a second func-
tion not related to bacterial toxicity?

The key feature of the nonmitochondrial oxidase is its ability
to transfer electrons from NADPH (the electron donor) to oxy-
gen (the electron acceptor) across a membrane. While NADPH is
within the cytosol, the oxygen acceptor is within the phagosome
or external to the cell (Fig. 1a). There is consequently a vectorial
movement of electrons (negative charge) across the phagosomal
or plasma membrane. Although this movement of charge could
be compensated for by an accompanying flow of positive charge
(e.g. H

 

+

 

), it has been shown that there is a significant current
which results in a change in the potential across the membrane
towards the positive [3–5]. Thus the neutrophil oxidase (like the
mitochondrial oxidase) is electrogenic, i.e. it creates a change in
the potential across the membrane in which it is operating. This
raises the question of whether the electrogenic nature of the oxi-
dase is merely an inevitable but unimportant accompaniment to
oxidant generation or whether this aspect of its activity also has
any biological consequences.

 

RESTRAINT OF CA

 

2++++

 

 INFLUX BY THE OXIDASE-
GENERATED MEMBRANE POTENTIAL

 

Although neutrophils are not electrically excitable cells, like
nerve or muscle, and do not have voltage sensitive ion channels,
the electrogenic effect of the oxidase is not trivial. When acti-
vated, the oxidase can result in the membrane potential rising to
between 

 

+

 

 30 and 

 

+

 

 50 mV [3–5]. At these positive levels, it would
be expected that the movement of charged ions, such as H

 

+

 

, K

 

+

 

and especially Ca

 

2

 

+

 

 would be affected. Ca

 

2

 

+

 

 influx occurs when
Ca

 

2

 

+

 

 channels are open in the phagosomal and plasma membranes
[6,7]. With the extracellular (or intraphagosomal) Ca

 

2

 

+

 

 concentra-
tion at about 1 m

 

M

 

 and the cytosolic Ca

 

2

 

+

 

 at about 100 n

 

M

 

, there
is a 10,000-fold difference in concentration. In the absence of any
electrical effect, Ca

 

2

 

+

 

 ions would flood in through the open Ca

 

2

 

+

 

channels (Fig. 1b). In fact, in the resting neutrophil, the mem-
brane potential, which is negative (inside), exerts an even steeper
electrochemical gradient. However, when the oxidase is activated
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Fig. 1.

 

Electrogenic effect of the oxidase on Ca

 

2

 

+

 

 influx. The figure shows the schematic lay-out of (a) the oxidase, transporting electrons
across the phagosomal or plasma membrane and generating a transmembrane potential (V) and (b) the open Ca

 

2

 

+

 

 channel with Ca

 

2

 

+

 

 ions
moving against the electron flow. These opposite effects balance when the Nernst equation (c) is true, where R,T and F are the gas constant,
the absolute temperature and the Faraday constant, respectively; 2 is the valency of Ca

 

2

 

+

 

 and the square brackets denote the equilibrium
concentrations of Ca

 

2

 

+

 

 outside the cell and in the cytosol (denoted by the subscripts o and c, respectively) at the transmembrane potential,
V. (d) shows the effect of a stimulus on an oxidase-competent neutrophil, causes Ca

 

2

 

+

 

 influx, which activates outwardly directly electron
transport via the oxidase. This results in an increase in membrane potential towards the positive, limiting Ca

 

2

 

+

 

 influx. (e) shows the effect
on an oxidase-defective cell, the Ca

 

2

 

+

 

 influx restraint is lost and more Ca

 

2

 

+

 

 enters the cell causing other cellular events including the release
of proteases from stored granules to occur.
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and the membrane potential reverses, the inside of the cell
becomes positive relative to the outside, so that the influx of pos-
itively charged ions, like Ca

 

2

 

+

 

, would be impeded, a phenomenon
termed here ‘oxidase restraint’. From the Nernst equation
(Fig. 1c), it can be seen that at positive membrane potentials of
30–50 mV (those reported when the oxidase is active), the inward
Ca

 

2

 

+

 

 electrochemical gradient would cease when the concentra-
tion of Ca

 

2

 

+

 

 on the cytosolic face of the Ca

 

2

 

+

 

 channel was about
24–100 

 

m

 

M

 

. In other words, despite the Ca

 

2

 

+

 

 channels being open,
there would be no further net flux of Ca

 

2

 

+

 

 into the cell. The inward
concentration gradient would be balanced by the opposing volt-
age gradient (Fig. 1d). This theoretical possibility has been tested
by Ligeti’s group [1,8]. They have shown previously with neutro-
phils from patients with GCD, which are unable to mount an oxi-
dase response, that Ca

 

2

 

+

 

 influx is exaggerated [8]. This result in
CGD neutrophils has more recently been confirmed by another
group [9]. Now Ligeti’s group have also shown, both in a geneti-
cally modified cell-line devoid of the oxidase component gp91

 

phox

 

and in neutrophils in which oxidase activity was inhibited phar-
macologically, that there is a demonstrable linkage between oxi-
dase activity, its accompanying membrane depolarization and the
extent of Ca

 

2

 

+

 

 (or Mn

 

2

 

+

 

) influx [1]. There is thus now good exper-
imental support for the theoretical basis of the ‘oxidase restraint’
model outlined here.

 

SIGNIFICANCE OF CA

 

2++++

 

 INFLUX FOR NEUTROPHIL 
BEHAVIOUR

 

It is well known that neutrophil responses to a variety of stimuli
are triggered by rises in cytosolic free Ca

 

2

 

+

 

 [10]. This Ca

 

2

 

+

 

 signal is
often initiated by a release of Ca

 

2

 

+

 

 from intracellular stores within
the neutrophil, which is coupled, either within a few tens of mil-
liseconds [11] or tens of seconds [12] to the opening of Ca

 

2

 

+

 

 chan-
nels on the plasma membrane and a consequent influx of Ca

 

2

 

+

 

.
While there is no clear role for the release of stored Ca

 

2

 

, the
accompanying Ca

 

2

 

+

 

 influx is crucial for a number of neutrophil
responses [10]. Ca

 

2

 

+

 

 influx locally raises the cytosolic free Ca

 

2

 

+

 

 just
under the plasma membrane to over 50 

 

m

 

M

 

 [13], and is sufficient
to activate submembrane 

 

m

 

-calpain to cleave 

 

b

 

2 integrin from its
cytoskeletal tether [14], with a kD for Ca

 

2

 

+

 

 of about 30 

 

m

 

M

 

. How-
ever, at higher submembranous cytosolic free Ca

 

2

 

+

 

 concentrations
(100–300 

 

m

 

M

 

), exocytosis of myeloperoxidase-containing and pro-
tease-containing granules is also triggered [6,15]. This latter event
would be pathogenic if uncontrolled. Fortunately, as Ca

 

2

 

+

 

 influx is
also important for activating the oxidase system [10], the accom-
panying voltage change would have a self-restricting effect on
Ca

 

2

 

+

 

 influx. For example, during phagocytosis, Ca

 

2

 

+

 

 channels on
the phagosomal membrane (presumably arising from the invagi-
nated plasma membrane) are opened and Ca

 

2

 

+

 

 effluxes from the
phagosome into the cytosol [7], causing the oxidase to be acti-
vated, and the potential across the phagosomal membrane to
increase. As the oxidase-generated membrane potential change
approaches the Ca

 

2

 

+

 

 reversal potential, the tendency for Ca

 

2

 

+

 

 to
influx into the cytosol would be reduced and so limit the possibil-
ity of pathogenic degranulation.

 

OXIDASE RESTRAINT ON NEUTROPHIL 
AGGRESSION

 

From the above discussion, it can be seen that as well as being a
mechanism for intraphagosomal killing of bacteria, the oxidase

may also be key to limiting the pro-inflammatory effects of cyto-
solic free Ca

 

2

 

+

 

 within the neutrophil. In this issue, Rada 

 

et al

 

. [1]
suggest that this effect may underlie some of the pathology of
CGD [16]. For example, while changes in cytosolic free Ca

 

2

 

+

 

 are
not necessary for chemotaxis by neutrophils [17,18], high cytoso-
lic free Ca

 

2

 

+

 

 causes them to become immobile [17]. In CGD this
may result in the accumulation of immobile neutrophils at infec-
tion foci producing granulomas. This would be especially the
case if high Ca

 

2

 

+

 

 were also antiapoptotic [19]. Perhaps more
importantly, if this mechanism exerts a limitation on neutrophil
‘aggression’, there are wider implications for this mechanism.
Any reduction in oxidase activity, while perhaps not sufficiently
severe to totally inhibit bacterial killing, may have a pathological
consequence by failing to limit Ca

 

2

 

+

 

 influx. Such cells would be
easily activated, hyper-responsive and prone to degranulate, all
conditions that may lead to inappropriate activation and inflam-
matory disease. It is thus interesting that hyperactivation of neu-
trophils has been described in CGD, and attributed to an
accelerated Ca

 

2

 

+

 

 influx [9]. Perhaps a more striking effect of the
lack of ‘oxidase restraint’ is seen in a recent report that inflam-
matory arthritis in rats was linked to a polymorphism of a gene
expressing neutrophil cytosolic factor (Ncf1), the analogue of
human p47

 

phox

 

 of the neutrophil oxidase, and that decreased neu-
trophil oxidase activity was associated with increased arthritic
severity [20]. Strategies that increased neutrophil oxidase activity
were found to be beneficial in reducing inflammatory tissue dam-
age in this animal model [20]. Thus the activity of the neutrophil
oxidase may be exerting a crucial role under inflammatory con-
ditions in providing a restraint over Ca

 

2

 

+

 

 influx and consequently
acting as a brake on neutrophil aggression. Clearly, there is much
to be done to establish this model and to identify ways in which
it could be beneficially exploited. However, it is clear that
the recent papers connecting the neutrophil oxidase, Ca

 

2

 

+

 

 influx
and neutrophil behaviour are already laying the necessary
groundwork.
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