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The role of p53 in the immunobiology of cutaneous squamous cell carcinoma
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SUMMARY

Cutaneous squamous cell carcinoma is typically characterized by the over-expression of the tumour sup-
pressor protein p53. Considerable evidence suggests that immune competence is important in the con-
trol of cutaneous SCC. We discuss the immunobiology of p53 and its relevance to cutaneous SCC,
including the potential interaction with human papillomavirus.
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INTRODUCTION

Non-melanoma skin cancer is the most common cancer amongst
Caucasians with cutaneous squamous cell carcinoma (SCC) com-
prising approximately 20% and carrying a significant risk of
metastasis [1]. Exposure to ultraviolet (UV) radiation is believed
to be a major aetiological cofactor in the development of cutane-
ous SCC with other risks including ionizing radiation, chemical
carcinogens, and viral infection (see below [1]). Immunosuppres-
sion also significantly increases the risk of cutaneous SCC devel-
opment, for example 20 years after renal transplantation the risk
of skin cancer development approached 40% [2].

THE IMMUNE RESPONSE TO p53

Up to 90% of cutaneous SCC lesions have UV-induced signature
mutations, such as the formation of thymidine dimers, in the p53
gene [3,4]. p53 normally functions in cell cycle arrest, DNA repair
and apoptosis, thus mutations in pS3 may result in the unre-
strained proliferation of keratinocytes (Fig. 1). During the early
stages this may manifest as actinic keratoses which can then
possibly progress to cutaneous SCC. Indeed some authors suggest
that actinic keratoses represent in situ cutaneous SCC [5,6]. It
has been observed that mutant p53 accumulates in the cell cyto-
plasm, probably due to increased half-life of the protein [7,8] and
over-expression of p53 in squamous epithelium correlates with
sun exposure [9,10]. In nonmalignant tissue, the ubiquitin-
proteasome pathway rapidly degrades wild-type p53 [11] and the

Correspondence: Dr Graham Ogg, Weatherall Institute of Molecular
Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK. E-mail:
gogg@molbiol.ox.ac.uk

© 2003 Blackwell Publishing Ltd
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human papillomavirus

high levels of p53 expression in cutaneous SCC and other tumours
contrasts to the low levels of p53 found in normal tissues.

Identification of tumour-associated antigens (TAA) remains a
major goal of tumour immunology. Once identified, vaccines may
be designed to induce immune response against the appropriate
TAA. Interest in pS3 as a TAA stems from the observation that it
is over-expressed in a wide variety of tumour types and therefore
a vaccine against p53 could potentially be used in a broad range of
malignancies. In cutaneous SCC, as the majority of the mutations
are missense point mutations, over-expression of the mutant pro-
tein may alter MHC presentation of wild-type epitopes. Induction
of an immune response directed against p53 may therefore
enhance tumour rejection in cutaneous SCC. However, in order
for p53 to be used for therapeutic intervention, a number of issues
must be addressed.

Down-regulation and mutation of TAA is one mechanism
whereby tumours may be able to evade the immune system.
Tumours from patients with head and neck SCC in whom p53-
specific cytotoxic T lymphocytes (CTL) were present appeared to
have lower expression of p53 compared to those patients in whom
no p53-specific CTL were detected. In addition, some tumours
were found to have mutations within or adjacent to an immuno-
dominant epitope of p53 [12,13]. Processing and presentation of
this immuno-dominant epitope can be blocked by mutation of a
flanking amino acid situated on a mutation hotspot of p53 [14].
These observations suggest immune evasion by tumours can take
place, possibly by outgrowth of tumours expressing low levels of
p53 or p53 mutated in or around immunodominant epitopes. An
immune response to p53 may enhance this kind of immune evasion.

A further difficulty in the attempt to induce immune
responses against p53 arises from the fact that, as a self-antigen,
p53 specific CD4 and CD8 T cells may be tolerant, or of low
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Fig. 1. p53 CTL epitopes and functional domains. Mutational hotspots are those most commonly found in skin cancer (p53 mutation
database; hitp://perso.curie.fr/tsoussi). Epitopes shown are those defined for CTL recognizing peptides presented on HLA-A2 MHC class

I with numbers representing amino acids [18,20,25-31].

affinity. p53-specific CTL generated from normal (p53+/+) mice
have an avidity 10-fold lower than those generated from p53-/—
mice probably due to deletion of high avidity p53-specific CTL in
the normal mice [15,16]. Significantly, it is possible to induce
increased number (but not avidity) of p53-specific CTL by elicit-
ing CD4 T cell help and blocking CTLA-4 whilst immunizing mice
with p53 peptide [17]. Immune nonresponsiveness to p53 may
also be overcome by use of modified p53 epitopes that are more
efficient than wild-type epitopes for inducing CTL responses to
p53 [18-21].

It remains unclear whether there is a protective antip53
response in cancer patients. Antibodies against p53 are rare in
normals but may occur in up to 30% of patients with cancer [8].
Mice injected with p53 expressing tumours also develop antibod-
ies to p53, possibly due to necrosis of tumour and release of p53
into the serum [22]. The protective value of these antibodies is not
known. Also, the relevance of antip53 antibodies to cutaneous
SCC is unclear as one recent study found that, despite the high
expression of p53 in tumours, patients with cutaneous SCC had
low prevalence of antip53 antibodies [23]. The authors suggested
that the antip53 response might be inhibited by UV-induced
immuno-suppression.

Finally, it has been shown that tumour recognition and lysis
may not be dependent on the level of p53 expression but rather on
its rate of turnover. Those tumour cells with a high rate of p53
degradation may generate a high number of epitopes for recog-
nition by T cells [24].

Despite these caveats, research into the immune response to
pS3 and its potential for therapeutic application has yielded

promising results. Many studies have focused on the CDS8 cyto-
toxic T cell (CTL) response to pS3 and a number of human CTL
epitopes have been described (Fig. 1.) [18,20,25-31]. Human CTL
lines and clones specific for epitopes within p53 have been derived
from the peripheral blood of normal individuals and cancer
patients. Importantly, pS3 specific CTL have been shown to rec-
ognize and kill a variety of tumour cell lines including SCC lines
[32-38].

Little is known about the CD4 response to p53 in cutaneous
SCC or other cancers. CD4 T cells from normal individuals have
been shown to recognize peptides derived from the core domain
of p53 [39] and peptides generated from mutant and cryptic p53
sequences also induce CD4 T cell response [40]. Interestingly,
there is a proliferative response to p53 protein in patients with
breast cancer who have p53 antibodies but not normals or those
without antibodies [41]. In contrast, peripheral blood mononu-
clear cells from a cohort of colorectal cancer patients without p53
antibodies also displayed proliferative responses in vitro to
recombinant p53 and peptides [42]. These observations have
implications for cutaneous SCC given that CD4 T cells infiltrate
the tumours and have been suggested to play a role in tumour
regression [43,44].

pS3-specific CTL capable of mediating protective immunity to
tumours have been generated in a number of murine models.
Adoptive transfer of pS3-specific CTL generated in p53-/— mice
confers immunity on the recipient to p53 overexpressing murine
tumour [45]. pS3-specific CTL generated in normal mice by vac-
cination with peptide also display antitumour immunity when
adoptively transferred into recipients with established pulmonary
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metastasis [46]. The use of HLA-A2 transgenic mice has demon-
strated the feasibility of generating protective CTL responses to
epitopes within human p53. CTL generated in these mice follow-
ing peptide vaccination were able to lyse a number of human
tumour cell lines [47] and also confer immunity to pancreatic
tumour following adoptive transfer to nude mice in vivo [48].

Canarypox virus vectors expressing mutant or wild-type p53
conferred immunity on BALB/c mice challenged with a mouse
fibroblast tumour cell line that expressed high levels of p53 [22].
Other vaccines used to induce p53-specific immune responses in
mice include peptide pulsed dendritic cells [49], recombinant ade-
novirus transduced dendritic cells [50,51], recombinant DNA [52]
and recombinant vaccinia virus [53].

Concerns about the safety of inducing immune responses to
self-antigen have been addressed by immunization of macaques
with recombinant canary pox (ALVAC) expressing p53 protein.
This regimen does not induce adverse autoimmunity despite the
appearance p53 antibodies [54]. More recently, a recombinant
ALVAC-p53 vaccine has been used to successfully induce
antip53 T cell responses, without obvious autoimmune symp-
toms, in end-stage colorectal cancer patients [55]. These data
contrast to another recent study in which p53-recombinant aden-
oviral vaccination did not generate pS3-specific CTL or antibod-
ies in six cancer patients [56]. These studies may be relevant to
cutaneous SCC given the high levels of expression of p53 in the
SCC lesions.

INTERACTIONS OF p53 WITH HUMAN
PAPILLOMAVIRUSES

Human papillomaviruses (HPV) are believed to be additional
cofactors in the development of cutaneous SCC. Interaction with
p53 may prove to be a mechanism by which HPV may alter the
immunobiology of cutaneous SCC.

HPV are nonenveloped viruses with double stranded DNA
approximately 5kb in size. They infect epithelial cells of the skin
and mucosa and replicate in differentiating keratinocytes. The
viruses consist of seven early proteins (E1-E7) and 2 late struc-
tural proteins (L1 and L2). HPV types are defined according to
DNA homology and over 80 types have been described but are
difficult to culture in vitro — possibly due to their inability to grow
differentiated keratinocytes (reviewed in [57]).

A link between HPV infection and cervical cancer has been
established for a long time. HPV16 and HPV18 — the ‘high risk’
types — are commonly found in cervical cancer lesions. The trans-
forming properties of HPV 16 are mediated by the E6 protein
that disrupts p53 expression [58] and the E7 protein that inter-
feres with the retinoblastoma tumour suppressor protein [59,60].
Human vaccine trials with cervical cancer patients are currently
underway using vaccines designed to induce immune response to
high risk HPV (reviewed in [61]).

The role of HPV infection in the development of cutaneous
SCC is less well established. Evidence comes from the link
between HPV infection and cutaneous SCC development in epi-
dermodysplasia verruciformis (EV) patients and immuno-
suppressed patients. EV is an autosomal recessive disease in
which warts and macular lesions are widespread on the body,
particularly on sun-exposed skin. The disease is associated with a
high risk of nonmelanoma skin cancer — approximately one third
of EV patients develop cutaneous SCC. A susceptibility to
infection with specific HPV types (such as HPV 5, 8,20, 21, 23, 24,

38) is thought to be responsible for the high occurrence of warts
and malignancies in EV [62,63].

Immunosuppressed patients, such as transplant recipients,
show up to 100 fold increased susceptibility to development of
cutaneous SCC on sun-exposed skin [64]. Although the HPV
types vary according to the detection method used, it is believed
that there is a high prevalence of EV type HPV in the lesions of
these patients [65-68].

Some of the inconsistencies associated with detection of HPV
DNA are due to use of different primers by different investigators
[69]. Such problems have been overcome by the employment of a
degenerate PCR technique, making use of nested primers that are
specific for a broad range of HPV types [70,71] (reviewed in [72]).
These studies have confirmed the presence of multiple HPV
types, predominantly EV-types, in lesions from EV and immuno-
suppressed patients as well as immunocompetent patients with
cutaneous SCC. However, no particular HPV type appears to be
strongly associated with cutaneous SCC. Detection of HPV DNA
in the skin of normal individuals also questions the significance of
the presence of HPV in cutaneous SCC [73]. There have been few
serological investigations into the role of HPV infection in cuta-
neous SCC. One study found an increased prevalence of antibod-
ies against the EV-associated HPV 8§ in individuals with actinic
keratoses [74].

As mentioned above, E6 protein from the cervical associated
HPV-16 mediates degradation of p53. A common p53 polymor-
phism at position 72 replacing proline with arginine renders p53
more susceptible to E6 mediated degradation. The arginine allele
was found to be a risk factor in the development of cervical can-
cers and there was also a significant association with cutaneous
SCC development in renal transplant patients [75]. The two allelic
variants of p53 also differ in their ability to induce apoptosis fol-
lowing DNA damage [76]. These findings stimulated investiga-
tions into the association of the p53 polymorphism and cutaneous
SCC. Unfortunately, conflicting data has clouded the results of
these studies, possibly due to interlaboratory variation in proto-
cols [77]. Some groups confirmed an association of the polymor-
phism with development of cutaneous SCC in immunosuppressed
patients [78] whilst others have found no association with the
development of cutaneous SCC [79-82].

The presence of UV-induced p53 mutations in cutaneous
SCC tumours contrasts with tumours induced by ‘high risk> HPV
types, which contain wild-type p53. It remains a tantalizing pos-
sibility that the arginine allele of p53, perhaps in combination
with UV induced mutation, is more susceptible to interference
from particular HPV types and subsequent malignant
transformation.

Lastly, sunlight may play a role in the pathogenesis of cuta-
neous SCC other than the induction of p53 mutation. HPV 77, a
type only so far detected in cutaneous lesions of renal transplant
patients, contains a p53-DNA binding site. Once activated by UV,
p53 may stimulate HPV 77 promoter activity [83]. Also, UV
induced pro-inflammatory cytokines released by keratinocytes
can regulate promoter activity of HPV 20 and HPV27 [84].

CONCLUSIONS

Overall there is significant evidence supporting a role for CD8+T
cells in the control of cutaneous SCC and induction of a specific
CTL response is an important aim of tumour vaccination
(reviewed in [85]). As p53 is over-expressed in the majority of

© 2003 Blackwell Publishing Ltd, Clinical and Experimental Immunology, 132:379-384



382

cutaneous SCC, vaccination against p53 is an appealing strategy
to induce tumour-reactive immunity. This may be particularly rel-
evant for individuals with recurrent or metastatic cutaneous SCC
but may also be considered in individuals thought to have a high
risk of primary SCCs. Several problems would need to be over-
come in order to generate protective immunity using a pS3 vac-
cine. Whilst studies showing loss of p53 CTL epitopes in human
cancer patients [12,13] and down-regulation of pS3 in ALVAC-
pS3 immunized mice [22] argue for the significance of p53 specific
CTL, they also underline the problem of escape mutations and
tumour evasion. However, down-regulation of pS3 by a tumour
may diminish a dominant negative effect of a p53 missense muta-
tion and thus represent a selective disadvantage for the tumour.
Furthermore, vaccination with multiple epitopes or whole pro-
tein, concurrent cytokine vaccination, use of pS3 variant peptides
and/or dendritic cell therapies may overcome these difficulties.
The roles of HPV in the aetiology of cutaneous SCC and their
interactions with p53 have yet to be fully characterized. The
development of techniques to detect HPV-specific T cell
responses in an HPV-type independent manner will contribute to
our understanding of their role in cutaneous SCC pathogenesis
and therapeutics.
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