Clin Exp Immunol 2003; 134:159-166

doi:10.1046/j.1365-2249.2003.02260.x

Memory B lymphocytes determine repertoire oligoclonality early after
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SUMMARY

The objective of this study was to investigate if oligoclonality of the Ig repertoire post-haematopoietic
stem cell transplantation (HSCT) is restricted to memory B lymphocytes or if it is a general property
among B lymphocytes. As a measure of B lymphocyte repertoire diversity, we have analysed size dis-
tribution of polymerase chain reaction (PCR) amplified Ig H complementarity determining region 3
(CDR3) in naive and memory B lymphocytes isolated from patients before HSCT and at 3, 6 and
12 months after HSCT as well as from healthy controls. We demonstrate a limited variation of the IgH
CDR3 repertoire in the memory B lymphocyte population compared to the naive B cell population.
This difference was significant at 3 and 6 months post-HSCT. Compared to healthy controls there is a
significant restriction of the memory B lymphocyte repertoire at 3 months after HSCT, but not of the
naive B lymphocyte repertoire. Twelve months after HSCT, the IgH CDR3 repertoire in both memory
and naive B lymphocytes are as diverse as in healthy controls. Thus, our findings suggest a role for mem-
ory B cells in the restriction of the oligoclonal B cell repertoire observed early after HSCT, which may

be of importance when considering reimmunization of transplanted patients.

Keywords B lymphocyte repertoire
IgH gene expression immune reconstitution

INTRODUCTION

Reconstitution of the immune system after haematopoietic stem
cell transplantation (HSCT) is dependent on the conditioning reg-
imen, the effect and treatment of graft-versus-host disease
(GVHD) and time after HSCT [1]. Components of the non-
specific immune system, such as granulocytes, monocytes/
macrophages and NK cells, recover within 2—-6 months after HSCT
whereas functional recovery of B and T lymphocytes can take from
1 to several years [2]. Patients who develop chronic GVHD might
never regain normal immune function [3]. Remaining dysfunction
of the immune system after HSCT results in increased suscepti-
bility to infections. In a study of mononuclear cell subsets the
importance of B lymphocytes in the stem cell recipient’s suscep-
tibility to infections was demonstrated. Agematsu et al. used sur-
face markers to separate subpopulations of B lymphocytes and
demonstrated that CD27* B lymphocytes were absent in cord
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blood and increased with age [4]. It was also demonstrated that
CD27* B cells produce large amounts of Ig upon stimulation,
whereas no Ig production was found in CD27" B cells under the
same conditions. Thus, CD27 molecule expression on the surface
of B lymphocytes is a marker of memory B cells [5-7]. Using the
CD27 memory B cell surface marker in combination with the B
lymphocyte surface marker CD19, naive (CD19* CD27") and
memory (CD19" CD27") B lymphocytes can be separated.

The most variable part of the IgH is the third complementa-
rity determining region (CDR3), which is formed by the junctions
between the Vii—D-J; gene segments. We have previously dem-
onstrated an oligoclonal pattern in the Ig gene expression after
HSCT using nucleotide sequence analysis [8,9]. A more global,
but less detailed, view of clonal diversity in the B lymphocyte rep-
ertoires post-HSCT can be achieved by analysis of the CDR3
region with CDR3 spectratyping [10,11]. CDR3 spectratyping has
been used frequently in the study of the T lymphocyte repertoire
[12,13]. Using this technique, Gokmen et al. demonstrated oligo-
clonal repertoire among IgM* and IgG* B cells early after HSCT.
Nédsman and Lundkvist demonstrated clonal dominance by dif-
ferent CDR3 regions at different time-points after HSCT and this
property was supposed to be shared by both naive as well as
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(Becton Dickinson, San Jose, CA, USA) for 20 min at + 4°C dur-
ing rotation. The cells were separated on a MPC and cell fractions
containing CD19* CD27" (memory) B lymphocytes and
CD19* CD27 (naive) B lymphocytes were collected.

Flow cytometry

Flow cytometry was used to verify the purity of the bead-sorting
procedure. PBMC before and after enrichment with immunomag-
netic beads, were stained with fluorescein-conjugated monoclonal
antibodies. The cell fractions were incubated with biotin-
conjugated anti-CD27 MoAb (PharMingen, San Diego, CA,
USA) for 20 min at room temperature (RT). The cells were
washed twice and incubated with FITC-conjugated anti-CD20
MoAb (Becton Dickinson, San Jose, CS, USA) and RPE-
conjugated streptavidin for 20 min at RT. A second washing step
was performed and the cells were analysed on a Becton Dickinson
FACSort (Becton Dickinson, San Jose, CA, USA). Data were
analysed using the software Cellquest™ (Becton Dickinson).

Preparation of genomic DNA

DNA was prepared with the QlAamp DNA Blood Mini Kit
(Qiagen, Hilden, Germany), according to the protocol supplied
by the manufacturer. The concentration and purity of the prepa-
ration was determined by measuring the absorbance at 260 and
280 nm (UV4 Unicam UV/Vis Spectrometer, ATTUnicam, Cam-
bridge, UK).

Polymerase chain reaction (PCR) and PCR primers

PCR was performed in a total volume of 10 ul 1xPCR buffer
[1-5 mMm MgCl,, 50 mm KCl, 10 mM Tris-HCI pH 8-3, 0-2 mM of
dNTPs, 0-5 uM of the forward primer and 0-5 uM of the reverse
primer, 5% glycerol, 0-03 U/ul Tag polymerase (AmpliTaq, Per-
kin Elmer, Roche Molecular System, Branchburg, USA)] con-
taining 30-60 ng DNA. The PCR was performed using a thermal
cycler (PTC-200 Peltier Thermal Cycler, MJ Research Inc., CA,
USA) and the PCR programme was as follows: preheating at
94°C for 3 min followed by 37 cycles of denaturation at 94°C for
30 s, annealing at 58°C for 1 minute, extension at 72°C for 1 min
and a final elongation step at 72°C for 4 min. The Vy-FR3 primer
was labelled at the 5" position with a fluorescent dye, 6-fluorescein
phosphor amidite (6-FAM). The following primers, synthesized
by CyberGene AB (Huddinge, Sweden), were used: Vy-FR3
(Vy-consensus), 5-ACACGGCCGTGTATTACTGT-3", Jpst
(Jy-consensus), 5-AACTGCAGAGGAGACGGTGACC-3".

CDRS3 fragment size analysis

The size distributions of the PCR products were analysed with
ABI Prism GeneScan™ by Cybergene AB (Huddinge, Sweden).
In the ABI Prism GeneScan™ analysis the PCR products were
separated by size on a 4-5% polyacrylamid gel allowing a 1 base
pair (bp) resolution. The GeneScan™ software was used to quan-
tify the fluorescein labelled PCR products by the fluorescence
intensity.

Chimerism analysis

Chimerism analysis was performed as described previously
[19,20]. Briefly, pretransplant recipient and donor DNA samples
were amplified with six different minisatellite pairs to obtain at
least one informative locus. PCR analysis was performed with the
chosen primer pair on sequential patient samples. PCR samples
were separated on 12,5% non-denaturating polyacrylamid gels in

a ready-to-use system from Pharmacia Biotech (Pharmacia Bio-
tech, Uppsala, Sweden). The gels were analysed after automated
silver staining (Pharmacia Biotech).

Statistical analysis

Differences between the groups were compared using the Wil-
coxon rank-sum test. Significance was achieved when P <0-05.
Calculations were performed using the software JMP™ (SAS
Institute Inc., Cary, NC, USA).

RESULTS

Patient outcome

The median follow-up time was 9 months. The main clinical data
of the patients are listed in Table 1. Seven patients developed
acute GVHD, five with grade I, one with grade II and one with
grade IV. The patient with grade IV aGVHD died during the
follow-up period. None of the patients relapsed during the time of
the study. The most common viral infections were cytomegalovi-
rus (CMV) infections. Patients 3 and 6 suffered from symptomatic
reactivated CMV infection at 6 weeks after HSCT and were
treated with ganciclovir. Bacterial infections were caused pre-
dominantly by Staphylococcus epidermidis. In patients number 3
and 9 low variability in the CDR3 of memory B lymphocytes was
detected at 12 months post-HSCT. The clinical outcome of these
patients did not differ from the others, except that patient 3 had
more infections than the other patients.

Enrichment of naive and memory B lymphocytes

To evaluate the enrichment procedure for naive and memory B
lymphocytes, flow cytometric analysis of the separated cell frac-
tions was performed. Figure 1 demonstrates the quality of the
enrichment for CD19* CD27* (memory) B cells and
CD19* CD27 (naive) B cells in a sample from a donor. Because
CD19 was used for separation of memory and naive B cell sub-
populations, CD20 was used as B cell marker in the flow cytomet-
ric analysis. In Fig. 1a, the cell distribution before the sorting is
displayed. After the sorting procedure is completed there is a 40-
fold enrichment of the memory B cells (Fig. 1c) and a fivefold
enrichment of the naive B cells (Fig. 1b). Some T lymphocytes and
natural killer cells (CD27" CD19") were present in the sorted pop-
ulations but because they do not express complete IgH rearrange-
ments, the PCR reaction is not affected. The cell counts for CD19,
CD4 and CDS8 positive cells are given in Table 2.

Reconstitution of the CDR3 repertoire in naive and memory

B lymphocytes

The pattern of CDR3 size distribution in memory and naive B cell
repertoires was analysed. CDR3s were amplified with PCR and
the products were separated by size on a polyacrylamid gel as
described in Methods. The high resolution of the gel allows sep-
aration of the PCR product by 1 bp. The fluorescence intensity of
each band was quantified with the GeneScan™ software and
translated into a histogram displaying the length and intensity of
each CDR3 fragment. Figure 2 demonstrates the distribution of
CDR3s in memory (A, C, E, G) and naive (B, D, F, H) B cells in
patients 1,6, 7 and 8 before HSCT and at 3, 6 and 12 months post-
HSCT, compared to four healthy controls. Each peak represents
CDR3 fragments of the same length, also called CDR3 spec-
tratypes. Fragments of different sequences may be of the same
size.
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Fig. 1. Enrichment of naive and memory B lymphocytes. B cell subsets
separated by flow cytometry, according to CD19/CD20 and CD27 expres-
sion as described in Methods. (a) PBMC from a donor before enrichment
with immunomagnetic beads; (b) CD19" CD27" (naive) B lymphocytes;
and (c) CD19" CD27* (memory) B lymphocytes after enrichment with
immunomagnetic beads.

Table 2. Cell counts in peripheral blood from patients undergoing HSCT

Number of cells

Time after HSCT Range (10°1) Mean (10°/1)

3 months
CD19 positive cells 0-140 30
CD4 positive cells 0-410 90
CD8 positive cells 0-1300 400
6 months
CD19 positive cells 0-50 30
CD4 positive cells 0-360 50
CDS8 positive cells 0-1290 165
12 months
CD19 positive cells 0-180 30
CD4 positive cells 0-300 60
CD8 positive cells 0-1440 210

In samples collected from the recipients before HSCT, the
variation in the CDR3 distribution spans between no detectable
peaks to a complete repertoire. This variation depends on the
given conditioning regimen, the sampling time-point (before or
after conditioning) and the underlying disease. We found no cor-
relation between low peak numbers in the samples collected
before HSCT and the reconstitution of the CDR3 repertoire after
HSCT. As all patients in this study had B lymphocytes of full
donor origin at 3 months after HSCT the results from samples col-
lected from the recipients before HSCT will not be discussed
further.

In the healthy controls, there is a pattern of normal CDR3
distribution in the naive B lymphocyte population that is absent
in the memory B lymphocytes. At 3 months post-HSCT, the B
lymphocyte CDR3 repertoire is strongly restricted. At 6 months
post-HSCT diversity increases and at 12 months post-HSCT the
pattern of distribution is as varied as in the healthy control. The
naive B cell population displays a varied pattern of distribution
at all time-points and regains the pattern of normal distribution
at 12 months.

To investigate if there were differences in the CDR3 reper-
toire between the memory and the naive B lymphocyte popula-
tion we counted the number of peaks in the histograms obtained
from the GeneScan™ analysis. This count was used as a measure
of the variation in the CDR3. Each peak in the spectratype pro-
file represents CDR3 fragments of one size and the intensity of
the peak corresponds to the amount of fragments.

Figure 3 demonstrates the peak numbers for all controls and
patients at all time-points after HSCT in memory and naive B
lymphocytes together (a), in naive B cells (b) and in memory B
cells (c). In Fig. 3a there is a significant (P < 0-01) decrease in the
number of CDR3 spectratypes at 3 months after HSCT compared
to the control group. This difference between the controls and the
samples at 3 months post-HSCT cannot be detected in the naive
B lymphocyte population (Fig. 3b), but it is significant (P < 0-001)
in the memory B cell population (Fig. 3c).

When comparing the naive B cell population (Fig.3b) with
the memory B cell population (Fig. 3c) there is a significant dif-
ference in the number of CDR3 spectratypes at 3 months
(P <0-05) and 6 months (P <0-01) post-HSCT. This indicates a
restricted repertoire in the memory B cell population compared
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Fig. 2. CDR3 spectratype repertoire in four representative patients compared to a normal control. Size distribution of CDR3 fragments,
also called CDR3 spectratypes, in memory (upper panels) and naive (lower panels) B lymphocytes from patient 1 (A + B), patient 6 (C + D),
patient 7 (E + F) and patient 8 (G +H) before HSCT and at 3, 6 and 12 months post-HSCT. The vertical line in (g) and (h) indicates 100 bp.
The peaks between 75 bp and 140 bp were counted from the datasheet generated by the computerized GeneScan analysis.

to the naive B cells at these time-points. In the pre-HSCT group
and at 12 months post-HSCT there is no significant difference
between the B cell populations.

CDRS3 fragment length analysis

Length of the CDR3 can be used as a marker of B lymphocyte
development, e.g. one of the characteristics of a fetal repertoire is
the small size of IgH CDR3 [21,22]. The longest spectratype of the
CDR3 in our study is 22 triplet codons. Comparing the length of

the CDR3 between the memory and naive B lymphocytes, the
CDR3s of the naive B cells were significantly longer than the
memory B cells in the control group (25bp versus 32 bp,
P <0-001) and at 12 months post-HSCT (24 bp versus 34 bp,
P <0:01). In the memory B cell population there was no signifi-
cant difference in the CDR3 size distribution when different time-
points were compared. In the naive B cell population, CDR3 was
significantly shorter at 3 months compared to CDR3 length at
12 months post-HSCT (26 bp versus 34 bp, P < 0-05).
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Fig. 2. Continued

Determination of chimerism

Chimerism analysis was performed in seven of the 10 patients in
samples taken at the same time-points as for the CDR3 spec-
tratyping analysis. All analysed samples were of full donor origin
in the CD19 positive cell fraction (data not shown).

DISCUSSION

In this study, the CDR3 spectratype repertoires of naive and
memory B lymphocytes in peripheral blood have been analysed.
At 3 and 6 months after HSCT there is a statistically significant
restriction of the IgH CDR3 repertoire in the memory B lympho-
cyte subpopulation compared to the naive B lymphocyte popula-
tion. Three months after HSCT, there is a restriction of the total B
lymphocyte repertoire compared to the healthy controls. This

restriction is statistically significant in the memory B lymphocytes
but it cannot be detected in the naive B lymphocyte population.
Thus, we suggest a role of the memory B lymphocytes in the
restriction of the B lymphocyte repertoire early after HSCT.

It has been demonstrated previously that the reconstitution of
the B lymphocyte repertoire after HSCT follows an oligoclonal
pattern [8,9,11]. Oligoclonality of the antibody repertoire can
remain for years after HSCT [23,24]. Analysing the RNA expres-
sion of CDR3 in B lymphocytes using CDR3 spectratyping, Gok-
men efal. demonstrated that the IgG repertoire remains
restricted for 9 months. The IgM repertoire, on the other hand,
regained an adult repertoire diversity at 3-4 months [11].
Nésman-Bjork et al. demonstrated a restricted serum IgM reac-
tivity in 60% of HSCT patients during and after the first year post-
HSCT and revealed a polyclonal serum IgG repertoire in the

© 2003 Blackwell Publishing Ltd, Clinical and Experimental Immunology, 134:159-166
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Fig. 3. CDR3 spectratype repertoire in memory and naive B lymphocytes
in patients and controls. The number of peaks in the CDR3 spectratype
profile for total (a), naive (b) and memory (c) B lymphocytes for all
samples are plotted (M). The median for each group is represented by a
horizontal bar and the medians are connected with a line. The number of
individuals in each group is indicated under the plot. **P <0-01,
##%P < 0-001 versus healthy controls.

majority of the patients during the same period of time [25].
Taken together, these different results indicate a functional defect
among serum antibodies that cannot be detected when measuring
the total number of B cells, circulating antibody levels or genetic
analysis of the B lymphocytes.

Even though the recovery of B lymphocytes numbers often is
completed at 1 year post-HSCT, the fact remains that some
patients suffer from infections with encapsulated bacteria [26].
Low serum levels of IgG, and IgG, in stem cell recipients have
been associated with an increased number of late infections and
failure to respond to polysaccharide antigens [27,28]. The inability
of T lymphocytes to support the antigen driven B lymphocyte
response has also been questioned. Suzuki ef al. demonstrated a
lack of somatic mutations in Ig gene rearrangements consistent
with a defect in the T lymphocyte dependent antigen-driven B
lymphocyte response detectable from 3 to 12 months after HSCT
[26]. Recently, Glas eral. co-cultured B lymphocytes from

patients 1 year post-HSCT with T lymphocytes from healthy
subjects and found that the inability of naive B lymphocytes to
accumulate somatic mutations was independent of T lymphocyte
function. They also demonstrated that this defect was not corre-
lated with the inability to differentiate in culture as isotype switch
did occur [29]. At 3 months after HSCT there are not enough
CD4" T lymphocytes to support the antigen driven B lymphocyte
response but a T cell independent pathway cannot be ruled out
because there is a remaining inability of the B lymphocytes to
respond to polysaccharide antigens at 1 year after HSCT.

We found a difference in the variation of the CDR3 reper-
toire between naive and memory B cells in a normal population
of healthy control subjects. This difference can be expected, as
the repertoire of naive cells is the source of endless variation in
B lymphocytes whereas the memory B lymphocyte population
has been selected by antigens. Because this difference between
naive and memory B lymphocytes is seen in a normal popula-
tion, it is not surprising that we found it in patients after HSCT
as well. Storek showed a delayed recovery of the number of
membrane IgD-negative B lymphocytes after HSCT and sug-
gested a very slow recovery of memory B lymphocytes [30]. This
may suggest a role for memory B lymphocytes in the long-time
recovery of B lymphocytes but further studies must be con-
ducted. The results of this study suggest that the memory B lym-
phocyte population contributes to the restriction of the total Ig
repertoire early after HSCT but the underlying mechanism is
unclear. A possible explanation can be the lack of CD4" cells
early after HSCT resulting in failure to support activation of
naive B lymphocytes. Another explanation involves the data
from Nasman et al. that demonstrated clonal dominance by dif-
ferent CDR3 regions at different time-points after HSCT sug-
gesting a clonal expansion of B lymphocytes similar to that of T
lymphocytes after HSCT. This kind of expansion could result in
oligoclonality of the B lymphocyte repertoire. The main differ-
ence between B and T lymphocytes is that the B lymphocytes do
not expand from transferred mature cells but from cells devel-
oped from the donated stem cells [8,9].

Considering our finding that the genetic variation of the mem-
ory B lymphocyte repertoire often is recovered at 12 months post-
HSCT, active reimmunization of transplanted patients is possible
at this time-point. Today, 95% of the European centres perform-
ing HSCT re-immunize their patients [31,32] and recommenda-
tions from the European Group for Blood and Marrow
Transplantation (EBMT) include a reimmunization programme
that starts at 6 months post-HSCT. According to our data, the
recovery of the memory B lymphocytes at this time-point varies
among patients. This variation may explain why some re-
immunized patients do not gain long-term immunity.

In addition, the fragment size of the CDR3 spectratypes was
analysed. We demonstrate significantly shorter CDR3 fragments
in the CD19" CD27" (memory) B lymphocyte population com-
pared to the CD19* CD27 (naive) B lymphocytes in the control
group and at 12 months post-HSCT. Even though differences
between the populations could be spotted, the size distribution of
the CDR3 fragments was within the normal range (7-24 triplet
nucleotide codons) [10] for mature B cells in healthy adults, in all
samples. Taken together, there was no sign of a fetal CDR3
distribution in memory or naive B lymphocytes post-HSCT.
This confirms the results of others, as they conclude that the
reconstitution of the B lymphocyte repertoire after HSCT does
not recapitulate human fetal development [1,10,11].
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In conclusion, our findings suggest a memory B lymphocyte

specific restriction, important to the forming of an oligoclonal B
cell repertoire early post-HSCT. Total genetic recovery of CDR3
polyclonality, however, does not exclude remaining functional
defects among memory B lymphocytes due to cGVHD or immu-
nosuppressive treatment.
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