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SUMMARY

 

Leptin, the 16 kDa product of the 

 

ob

 

 gene, is a an adipocyte-secreted hormone that centrally regulates
weight. However, the physiological role of leptin is not limited to the regulation of food intake and
energy expenditure, and leptin has a variety of effects in peripheral tissues, such as a regulatory role
modulating the immune system. Thus, leptin receptor is expressed in human peripheral blood
mononuclear cells, mediating the leptin stimulation of proliferation and activation

 

,

 

 the production of
proinflammatory cytokines from cultured monocytes, and the prevention of apoptotic death in serum-
deprived monocytes. Because leptin can stimulate monocytes and the production of reactive oxygen
species (ROS) are the result of monocyte activation, we investigated the effect of leptin on ROS pro-
duction by human monocytes 

 

in vitro

 

. Oxidative burst was measured by oxidation of the redox-sensitive
dye 2

 

¢

 

,7

 

¢

 

-dichlorofluorescein diacetate, and analysed by flow cytometry. We have found that stimulation
with leptin produces oxygen radical formation by monocytes. This effect is dependent on the dose and
maximal response is achieved at 10 n

 

M

 

 leptin. Because HIV infection induces the production of ROS,
we next investigated the effect of leptin on ROS production in monocytes from HIV-positive (HIV

 

+

 

)
subjects. We have also found that monocytes from HIV

 

+

 

 subjects spontaneously produced increased
amounts of free radicals. In contrast, leptin stimulation of monocytes from these patients partially inhib-
ited the production of ROS. This effect of leptin was also dependent on the dose and maximal effect was
achieved at 10 n

 

M

 

. The effect of leptin stimulating the production of ROS is consistent with the proin-
flammatory role in the immune system. On the other hand, the inhibitory effect on monocytes from
HIV

 

+

 

 subjects may be explained by the attenuation of the oxidative burst by a delayed activation of
monocytes in a hyperinflammatory state.
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INTRODUCTION

 

Leptin, the 16-kDa non-glycosylated protein product of the 

 

ob

 

gene [1], is a hormone synthesized mainly in adipose cells [2] to
regulate weight control in a central manner [3]. Leptin can also be
expressed at lower levels in other tissues, such as placenta and
stomach [4,5]. Leptin is released into the circulation, and plasma
levels correlate with total body fat mass [6]. On the other hand,
there is increasing evidence that leptin has systemic effects apart
from those related to energy homeostasis, including regulation of

neuroendocrine, reproductive, haematopoietic and immune func-
tion [7].

Leptin amino acid sequence indicated that it could belong to
the long-chain helical cytokine family [8], and the leptin receptor
(Ob-R) shows sequence homology to members of the class I
cytokine receptor (gp130) superfamily [9]. Moreover, Ob-R has
been shown to have signalling capabilities of interleukin (IL)-6-
type cytokine receptors [10]. Besides, Ob-R expression is not
limited to the hypothalamus, but is widely distributed, including
haematopoietic cells [10–12]. In this context, a role for leptin in
haematopoiesis and the immune system at the stem cell level has
been proposed [13].

Obese leptin-deficient 

 

ob

 

/

 

ob

 

 mice and 

 

db

 

/

 

db

 

 mice, in which
the leptin receptor is truncated, display immune dysfunction and
lymphoid organ atrophy [14–16]. Thus, they have reduced levels
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of peripheral T and B cells [16] suggesting that leptin may have a
role in lymphopoiesis. Also, leptin protects mice from starvation-
induced lymphoid atrophy and increases thymic cellularity in 

 

ob

 

/

 

ob

 

 mice [16]. Consistent with these findings, human leptin defi-
ciency caused by a missense mutation also produces immune sys-
tem dysfunction [17]. In this regard, we have found recently that
leptin is able to promote activation and proliferation of human
monocytes and to enhance activation and proliferation of preac-
tivated T lymphocytes [18,19]. Moreover, leptin can induce the
synthesis of proinflammatory cytokines [IL-6 and tumour necrosis
factor (TNF)-

 

a

 

] by human monocytes and the production of Th1-
type cytokines [IL-2 and interferon (IFN)-

 

g

 

] by human T lympho-
cytes cultured 

 

in vitro

 

 [18,19]. These effects are mediated by the
leptin receptor which is present in peripheral blood monocytes
and T lymphocytes, and also triggers signal transduction [18–21].
The leptin receptor is up-regulated in blood mononuclear cells
stimulated 

 

in vitro

 

 with lectins, and 

 

in vivo

 

 in HIV-infected sub-
jects [22]. More recently, we have found that leptin promotes sur-
vival of human circulating blood monocytes prone to apoptosis in
serum-free culture, suggesting that leptin may have a role as a
trophic factor for the survival of blood monocytes [23].

Leptin enhances cytokine production granulocyte-macro-
phage colony stimulating factor (GM-CSF and G-CSF) in murine
peritoneal macrophages [24], and phenotypic abnormalities have
been found in macrophages from leptin-deficient, obese mice
[25]. Furthermore, leptin up-regulates both phagocytosis and the
production of proinflammatory cytokines by murine macroph-
ages [26].

Phagocytic cells, such as monocytes and macrophages play a
key role in the innate immune response [27]. Immunological acti-
vation of macrophages is achieved by Th1 cytokines and
lipopolysaccharide (LPS) [28]. Cell activation results in the
release of proinflammatory cytokines and oxygen species [28].
The generation of reactive oxygen species (ROS) during the res-
piratory burst is mediated by membrane-bound NADPH oxidase
[29].

As leptin can activate monocytes, promoting proliferation and
the production of proinflammatory cytokines, we wanted to invest-
igate the effect of leptin on ROS production by human circulating
monocytes. On the other hand, monocytes and macrophages from
HIV

 

+

 

 patients have often increased ROS production [30–32].
Also, because HIV-infected subjects have increased expression of
leptin receptor, we also sought to assess the effect of leptin on
ROS production by human circulating monocytes from HIV-
positive (HIV

 

+

 

) subjects.

 

MATERIALS AND METHODS

 

Materials

 

Human recombinant leptin was from R&D Systems (Minneapo-
lis, MN, USA). 2

 

¢

 

,7

 

¢

 

-dichlorofluorescin (DCF) diacetate was
obtained from Sigma-Aldrich (Alcobendas, Madrid, Spain).
Phycoerythrin (PE)-conjugated monoclonal mouse anti-CD14
(anti-CD14-PE) was from Becton Dickinson, Immunocytometry
Systems (San Jose, CA, USA)

 

Patients

 

HIV-infected patients were from the infectious diseases unit (Vir-
gen Macarena Hospital) and were selected by their similar clinical
characteristics, low viral load and low–intermediate number of
CD4

 

+

 

 T cells (Table 1). Most patients included were on highly

active antiretroviral therapy, and three had lypodystrophy.
Informed consent was obtained from the 13 patients and the stud-
ies had the approval from the ethical committee of the Virgen
Macarena University Hospital.

 

Cell preparation and culture

 

Peripheral blood mononuclear cells (PBMC), obtained from nor-
mal donors (six healthy subjects, three men and three women, age
26–33 years) and HIV-infected patients were isolated from hep-
arinized venous blood by density-gradient sedimentation over
Ficoll-Hypaque (Seromed Biochrom KG, Berlin, Germany) as
described previously [33,34]. Cells were then washed twice in
phosphate buffered saline (PBS) and resuspended in medium
appropriately for cell culture [35], RPMI-1640 supplemented with
25 m

 

M

 

 HEPES, 2 m

 

M

 

 

 

L

 

-glutamine, 100 

 

m

 

U/ml penicillin, 100 

 

m

 

g/
ml streptomycin and amphotericin B (2·5 

 

m

 

g/ml) (all from Biolog-
ical Industries, Beit Haemek, Israel). PBMC were cultured at
37

 

∞

 

C and 5% CO

 

2

 

. An aliquot of cells is used for CD14 staining to
help in forward-scattering gating. Cells were incubated for 20 min
with the stimulus. Then, we added DCF diacetate (2 

 

m

 

M

 

 final con-
centration), which enter the cells and hydrolyses into DCF, which
is fluorescent when oxydized. PBMC were washed with cold PBS
twice and analysed immediately by flow cytometry.

 

Flow cytometry data acquisition and analysis

 

Data were acquired on a FACScalibur flow cytometer using
CELLQuest software (BDIS). A total of 10 000 cells were
acquired routinely for analysis of monocyte cell population gated
in forward-scattering and as positive for CD14-PE (FL-2). During
monocyte oxidative burst, non-fluorescent DCF is oxidized pro-
ducing green fluorescence (FL-1). ROS production was assessed
as FL-1, and the mean fluorescence intensity was used to quantify
the responses from gated monocytes.

 

RESULTS

 

Leptin effect on ROS production by monocytes from 
control donors

 

Oxygen burst was determined by measuring the ROS production
using the fluorescence marker DCF. PBMC were incubated in the
presence or absence of 10 n

 

M

 

 leptin for 20 min, followed by

 

Table 1.

 

Features of HIV-infected patients (

 

n

 

 = 12)

Median age in years (range)  45 (33–46)
Male gender  12
Median evolution of HIV infection in years (range)  6 (1–15)
Risk behaviour
Parenteral drug use  8 (51·5)
Homosexual/bisexual  3 (23·1)
Heterosexual  2 (15·4)
Co-infection
HCV (%)  10 (76·9)
HBV (%)  1 (7·7)
Previous AIDS diagnosis (%)  3 (23·1)
Highly active antiretroviral therapy (%)  11 (84·6)
Undetectable viral load (

 

<

 

50 copies/ml) (%)  8 (61·5)
Viral load (log) in patients with 

 

≥

 

50 copies/ml
(range)

4·21 (3·2–

 

>

 

5·87)

Median CD4 cell count per mm

 

3

 

 (range)  143 (77–515)
Lipodystrophy (%)  3 (25)
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10 min of incubation in the presence of DCF. As shown in Fig. 1
leptin stimulated ROS production by human monocytes. The
effect was dependent on the dose and maximal effect was
achieved at 10 n

 

M

 

 leptin (Fig. 2), which increased the basal DCF
fluorescence about 40%. A significant effect was obtained when
monocytes were exposed to 1 n

 

M

 

 leptin, which increased DCF flu-
orescence about 20% from control monocytes.

Because leptin was obtained from recombinant sources, we
wanted to rule out a possible contamination of leptin with endot-
oxin (LPS) that could account, at least in part, for the leptin medi-
ated ROS production. Thus, we blocked the possible action of
LPS by adding to the PBMC culture 1 

 

m

 

M

 

 polymyxin B, a well-
known inhibitor of LPS binding to CD14 at low concentrations
(1–5 

 

m

 

M

 

). As previously found in monocyte activation experi-
ments [18], polymyxin B did not change the effect of leptin (data
not shown).

 

Leptin effect on ROS production by monocytes from HIV-
infected subjects

 

When we examined the ROS production by monocytes from
HIV-infected subjects we found increased DCF fluorescence
compared to healthy controls (750 

 

±

 

 80 in HIV

 

+

 

 

 

versus

 

 220 

 

±

 

 20 in
the control group).

PBMC from HIV-infected subjects were incubated in the
same conditions as described for control cells. Thus, cells were

challenged with 10 n

 

M

 

 leptin for 20 min and the incubation was
continued by 10 min in the presence of DCF. As shown in Fig. 3,
we noticed that 10 n

 

M

 

 leptin consistently reduced the oxidative
burst in monocytes from HIV

 

+

 

 subjects. Reduction of ROS for-
mation was almost complete. This effect of leptin was also depen-
dent on the dose, and maximal effect was obtained at 10 n

 

M

 

 leptin,
decreasing about 60% DCF fluorescence of non-stimulated HIV

 

+

 

monocytes. Significant inhibition was observed at 1 n

 

M

 

 leptin, pro-
ducing about 25% inhibiton of ROS production (Fig. 4).

 

DISCUSSION

 

Leptin has been demonstrated to modulate monocyte-macroph-
age function and to regulate the proinflammatory response
[25,26,36,37]. Moreover, leptin has been shown previously to
enhance cytokine production (GM-CSF and G-CSF) by murine
peritoneal macrophages [24] and human circulating monocytes
(TNF-

 

a

 

 and IL-6) [18], where the effect of leptin is comparable to
that produced by LPS or PMA. As LPS administration in mice
increases leptin expression and circulating leptin levels, these
effects of leptin may be physiologically important, functioning as
an amplification signal for monocyte activation [36]. Moreover,
leptin has been found to have a trophic effect on human mono-
cytes, preventing apoptosis induced by serum deprivation [23].
Therefore, leptin seems to be a potent stimulatory hormone on
human peripheral blood monocytes [38].

In this context, a role of ROS production in cellular responses
to proinflammatory cytokines, such as TNF-

 

a

 

 has been described
[39]. Therefore, we aimed to investigate the possible effect of lep-
tin on ROS production in human circulating monocytes. As
expected for a proinflammatory cytokine, leptin significantly
increases ROS production by human monocytes. A similar dose–
response to that observed for activation, proliferation and cytok-
ine production [18] was obtained. Therefore, ROS may be
another second messenger molecule to be considered for leptin

 

Fig. 1.

 

Reactive oxygen species (ROS) production in monocytes from
healthy subjects. Monocytes were immunostained with anti-CD14 to gate
the monocyte population in forward-side scattering (a). PBMC from
healthy donors were incubated in the absence (b) or presence (c) of 10 n

 

M

 

leptin for 20 min, followed by 10 min in the presence of the redox-sensitive
dye DCF. ROS production was analysed by flow cytometry. Data are the
results of a representative experiment.
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Fig. 2.

 

Reactive oxygen species (ROS) production in monocytes from
HIV-infected patients. Monocytes from were immunostained with anti-
CD14 to gate monocyte population in side-forward scattering (a). PBMC
from HIV-infected patients were incubated in the absence (b) or presence
(c) of 10 n

 

M

 

 leptin for 20 min, followed by 10 min in the presence of DCF.
ROS production was analysed by flow cytometry. Data are representative
of a representative experiment.
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receptor signalling in monocytes [20,21]. In fact, ROS potentiates
the production by monocytes of proinflammatory cytokines [40]
Alternatively, or in addition, ROS production may mediate the
role of monocytes in the defence against microorganisms, as they
are phagocytic cells [41]. Consistent with these results, leptin-
deficient mice exhibit defective macrophage function, including
phagocytosis [25,26]. More recently, it has been shown that leptin-
deficient mice have impaired alveolar macrophage phagocytosis
of 

 

Klebsiella pneumoniae in vitro

 

, which can be restored by the-
exogenous addition of leptin [42].

On the other hand, we have found that leptin reduces ROS
production in monocytes from HIV-infected subjects, which spon-
taneously produces increased ROS levels. Thus, in the present
work, we have confirmed the previously reported increased redox
status of monocytes from HIV-infected patients [32,43]. However,
when PBMC from HIV

 

+

 

 subjects were stimulated 

 

in vitro

 

 with
leptin, we observed the opposite effect of that observed in control
cells, i.e. a reduction in ROS production by monocytes. This inhib-
itory effect showed the same dose-dependency observed for the
stimulatory effect in monocytes from healthy controls. A possible
explanation for this discrepancy may be the monocyte desensiti-
zation in HIV

 

+

 

 subjects, in a similar way to that observed in other
hyper-inflammatory states such as sepsis, in which the function of

monocytes is shifted to a hypoinflammatory state characterized
by anergy to stimulation with LPS [44], or even attenuation of the
oxidative burst in response to LPS [45]. We know that HIV-
infected patients have increased expression of leptin receptor in
blood mononuclear cells, demonstrating further the hyper-
activation state of monocytes in these subjects [22]. Because ROS
production is one of the mechanisms that participate in T-
lymphocyte depletion by triggering programmed cell death (apo-
ptosis) [46], and monocytes can also induce their own apoptosis
by producing ROS [47], the low leptin levels that have been found
in these patients [48] may contribute to the immune deficiency of
HIV

 

+

 

 patients. In fact, leptin levels have been found to correlate
with CD4 numbers in HIV infection and to increase along with
CD4 T lymphocytes during highly active antiretroviral therapy
[49]. Moreover, this effect of leptin reducing oxidative burst is
consistent with the anti-apoptotic action of leptin on human
monocytes cultured in the absence of serum [23]. Therefore, lep-
tin may be considered as an important factor in the development
and evolution of the disease in HIV

 

+

 

 patients.
Redox status of monocytes from HIV-infected patients seems

to correlate with viral load [32]. However, even though we have
found increased ROS production consistently in every sample
studied, we have not found significant differences between HIV

 

+

 

samples. It should be noted, however, that we have studied mono-
cytes from patients with low viral load. In a similar way, we have
consistently found a decrease in ROS production by incubation
with leptin.

On the other hand, we do not know whether HCV co-
infection may contribute to the increased ROS production
observed in circulating monocytes, as most of the HIV-infected
patients of this study had HCV co-infection. Nevertheless, the
patients negative for HCV also have increased ROS production,
suggesting that HIV infection may be sufficient for this effect. On
the other hand, we do not know whether HCV infection in HIV
seronegatives may also have increased ROS production, because
non-structural 3 protein of HCV has been found to trigger an

 

Fig. 3.

 

Dose-dependency of the effect of leptin on ROS production by
monocytes from healthy controls. PBMC from healthy controls were incu-
bated in the absence or presence of increasing concentrations of leptin.
ROS production by monocytes was analysed by flow cytometry. Data are
means 

 

±

 

 s.e.m. of the mean DCF fluorescence of monocyte population.
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Fig. 4

 

. Dose-dependency of the effect of leptin on ROS production by
monocytes from HIV-infected patients. PBMC from HIV-infected patients
were incubated in the absence or presence of increasing concentrations of
leptin. ROS production by monocytes was analysed by flow cytometry.
Data are means 

 

±

 

 s.e.m. of the mean DCF fluorescence of monocyte
population. *

 

P

 

 

 

<

 

0·05; **

 

P

 

 

 

<

 

0·001 

 

versus

 

 control.
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oxidative burst in human monocytes via activation of NADPH
oxidase [50]. Even though we have not studied the effect of leptin
on ROS production in HIV-negative patients infected with HCV,
we think it may be worth investigating a possible role of leptin in
the regulation of oxidative burst in hepatitis C as well as other
inflammatory-infectious diseases.

In conclusion, we have found that leptin activation of human
monocytes stimulates ROS production, consistent with the
reported stimulatory effect on monocyte/macrophage cells. On
the other hand, we have found that leptin reduces the increased
oxidative status of monocytes from HIV

 

+

 

 patients, suggesting that
leptin may be an important factor for the redox status of mono-
cytes, which may be relevant for the immunological alterations in
HIV infection.
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