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SUMMARY

 

Stress-associated immune responses were compared between young (8 weeks of age) and old
(56 weeks) mice. Since stress suppresses the conventional immune system (i.e. T and B cells) but
inversely activates the primordial immune system (i.e. extrathymic T cells, NKT cells, and granulocytes),
these parameters were analysed after restraint stress for 24 h. The thymus became atrophic as a function
of age, and an age-related increase in the number of lymphocytes was seen in the liver. Although the
number of lymphocytes in both the thymus and liver decreased as the result of stress, the magnitude was
much more prominent in the thymus. To determine stress-resistant lymphocyte subsets, two-colour
immunofluorescence tests were conducted in the liver and spleen. NKT cells were found to be such cells
in the liver of young mice. On the other hand, an infiltration of granulocytes due to stress was more
prominent in the liver of old mice than in young mice. Liver injury as a result of stress was prominent
in young mice. This age-related bias in the function of NKT cells and granulocytes seemed to be asso-
ciated with a difference in the responses of catecholamines (high in old mice) and corticosterone (high
in young mice) after stress. Indeed, an injection of adrenaline mainly induced the infiltration of gran-
ulocytes while that of cortisol activated NKT cells. The present results suggest the existence of age-
related bias in the function of NKT cells and granulocytes after stress and that such bias might be pro-
duced by different responses of sympathetic nerves and steroid hormones between young and old mice.
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INTRODUCTION

 

In a series of recent studies [1–5], we have revealed that stress
induces the arrest of T-cell differentiation in the thymus, resulting
in thymic atrophy. This pathway is termed the mainstream of T-
cell differentiation in the thymus, by which conventional high
TCR cells (TCR

 

high

 

 cells)

 

1

 

 are generated [6,7]. The decreased level
of T-cell differentiation in the thymus due to stress then results in
immunosuppression in various peripheral immune organs. On the
other hand, an alternative intrathymic pathway which produces
natural killer T (NKT) cells [8–10] and an extrathymic, hepatic
pathway which produces NK1·1

 

–

 

 intermediate TCR cells (TCR

 

int

 

cells) [11,12] are inversely activated by stress. A similar phenom-
enon was also seen with ageing (i.e, thymic involution and the
activation of extrathymic T cells) [6]. This reciprocal immune
response after stress may be extremely important for adaptation

of our body under emergency conditions. Abnormal self-cells
which are generated by emergencies may be processed by autore-
active T cells with primordial properties (i.e. NKT cells and
NK1·1

 

–

 

TCR

 

int

 

 cells) [13,14] and auto antibody-producing B cells
(i.e. B-1 cells) [15].

In light of these findings, we further investigated how the
immune system was modulated by stress in young and old mice.
This age-related examination is of interest because these differ-
ent pathways of the immune system vary as a function of age
apart from stress [16–18]. Our findings revealed that young and
old mice had somewhat different immune responses to restraint
stress. Namely, liver injury which was induced by the functional
activation of NKT cells after stress was much more predominant
in young mice than in old mice. This unique bias in the function
of NKT cells seen in young mice seemed to be related to the
higher production of steroid hormones after stress. In contrast,
old mice rather deviated to sympathetic nerve activation after
stress, which resulted mainly in an infiltration of granulocytes
into tissues. Therefore, we report two different aspects of the
immune system in this study, namely, age-related change of
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immune responses after stress and an intimate association of
change with the sympathetic nervous system and steroid hor-
mone secretion.

Finally, we propose the existence of two axes of immune
responses after stress, including [1] an ‘adrenocortical axis’ which
induces mainly NKT cells and [2] a ‘sympathetic nerve axis’ which
induces granulocytes. These axes connect stress with subsequent
tissue injury. In adult animals, these two axes are interwined.
However, the ‘adrenocortical axis’ is dominant in young animals
while the ‘sympathetic nerve axis’ becomes predominant in old
animals.

 

MATERIALS AND METHODS

 

Mice

 

C57BL/6 (B6) mice were used at the age of 8, 12 or 56 weeks. All
mice were fed under specific pathogen-free conditions in the ani-
mal facility of Niigata University (Niigata, Japan).

 

Restraint stress

 

Mice were fixed in stainless steel mesh and kept for 24 h in a cage.
As shown previously [5], these periods of stress are sufficient to
induce granulocytosis in the gastric mucosa and result in gastric
ulcers.

 

Cell preparations

 

Hepatic mononuclear cells (MNC) were isolated by a previously
described method [19]

 

.

 

 Briefly, the liver was removed, pressed
through 200-gauge stainless steel mesh, and suspended in Eagle’s
MEM (Nissui Pharmaceutical, Tokyo, Japan) supplemented with
5 mm HEPES and 2% heat-inactivated newborn calf serum.
After being washed once with medium, the cells were fraction-
ated by centrifugation in 15 ml of 35% Percoll solution
(Amersham Pharmacia Biotech, Piscataway, NJ) for 15 min at
2000 r.p.m. The pellet was resuspended in erythrocyte lysing
solution (155 mm NH

 

4

 

Cl, 10 mm KHCO

 

3

 

, 1 mm EDTA-Na, and
170 mm Tris, pH 7·3).

Thymocytes and splenic MNC were obtained by forcing the
thymus and spleen, respectively, through 200-gauge stainless steel
mesh. Splenic MNC were also used after treatment with the
erythrocyte lysing soulution.

 

Immunofluorescence tests

 

FITC-, PE- or biotin-conjugated reagents of mAbs were used
and biotin-conjugated reagents were developed with Tricolor-
conjugated streptavidin (Caltag Laboratories, San Francisco, CA,
USA) [20]. The mAbs used here were anti-CD3 (145–2C11), anti-
NK1·1 (PK136), anti-CD4 (RM4-5), anti-CD8

 

a

 

 (Lyt-2), anti-
macrophage (M1/70), and anti-granulocyte (RB6–8C5) mAbs
(BD PharMingen, San Diego, CA, USA). Cells were analysed by
FACScan (BD Biosciences, Mountain View, CA, USA). To pre-
vent nonspecific binding of mAbs, CD16/32 (2·4G2; BD PharM-
ingen) was added before staining with labelled mAb. Dead cells
were excluded by forward scatter, side scatter, and propidium
iodide gating.

 

Measurement of transaminases

 

Liver injury was used to estimate the activity of asparate ami-
notransferase (AST) and alanine aminotransferase (ALT) in sera.
The activity in each supernatant was quantified with an STA
TEST KIT (Wako Pure Industries, Tokyo, Japan).

 

Cytotoxic assay

 

Using YAC-1 targets, NK-like cytotoxicity was examined by spe-
cific 

 

51

 

Cr-release assay with an incubation time of 4 h [21]. YAC-1
cells labelled with sodium chromate (

 

51

 

Cr) (Amersham Int.,
Arlington Heights, IL, USA) were used, and effector cells were
identified as hepatic or splenic MNC. Percent cytotoxicity was
determined using 10

 

4

 

 YAC-1 cells at the indicated target-to-
effector ratios in triplicate cultures. During a 4-h incubation assay,
spontaneous chromium release of targets ranged from 10 to 15%.
This release was eliminated by calculation

 

.

Measurement of plasma concentration of catecholamines 
and corticosterone

 

Plasma pooled from 4 mice was used to measure the concentra-
tion of adrenaline, noradrenaline, dopamine, and corticosterone.
The plasma levels of these catecholamines were analysed by the
HPLC method. Plasma corticosterone of mice was also detected
by radioimmunoassay with minor modifications. In the case of
mice, corticosterone is the major steroid hormone.

 

Administration of adrenaline and hydrocortisone sodium 
succinate

 

To investigate the effect of catecholamines, 100 

 

m

 

g (per mouse)
of adrenaline (Sigma Chemicals Co., St Louis, MO, USA) was
intraperitoneally injected. To investigate the effects of steroid
hormones, 10 mg (per mouse) of hydrocortisone sodium succi-
nate (Pharmacia Co., Tokyo, Japan) was intraperitoneally
injected. MNC were then examined at 24 h after administration.
In earlier experiments [2,5], we decided the maximum responses
of these reagents in terms of doses of reagents and evaluation
time.

 

Statistical analysis

 

Differences among the data were analysed by two-factor anova
test.

 

RESULTS

 

Age-related change in the number of lymphocytes in various 
immune organs and resistance to stress of liver lymphocytes

 

To examine age-dependence of stress in various lymphoid organs,
the numbers of lymphocytes were first enumerated in the thymus,
liver, and spleen of young and old mice (Fig. 1). Restraint stress
was conducted for 24 h. The number of thymocytes showed an
age-associated decrease, namely, the number in old mice
decreased up to 50% of the number in young mice. On the other
hand, the number of liver lymphocytes increased as a function
of age while that of splenic lymphocytes remained almost
unchanged. Stress-associated decreases in the number of thy-
mocytes was seen in both young and old mice. As a result of
restraint stress, a decrease in the number of lymphocytes in the
liver and spleen was also seen in both young and old mice but the
magnitude of the decrease in these organs was not as prominent
as that in the thymus.

 

Identification of stress-resistant lymphocyte subsets in 
the liver

 

To examine the level of stress-resistance among various lympho-
cyte subsets, two-colour stainings of lymphocytes for various
combinations were conducted in the liver and spleen (Fig. 2a).
Two-colour staining for CD3 and NK1·1 showed the most
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stress-resistant lymphocyte subset to be CD3

 

int

 

NK1·1

 

+

 

 cells (i.e.
NKT cells) in the liver. The majority of these cells were CD4

 

+

 

NKT cells as estimated by the staining of CD4 and NK1·1. In the
spleen, the change was minimal in all tested subsets.

It is known that thymic atrophy is always accompanied by a
decrease in the proportion of double-positive (DP) CD4

 

+

 

8

 

+

 

 cells
[2]. Reflecting this situation, the proportion of DP cells decreased
significantly as shown by the staining of CD4 and CD8 (i.e. 85·6 to
42·7% in young mice and 74·6 to 38·3% in old mice).

In a final portion of these experiments, two-colour staining
for Mac-1 and Gr-1 was conducted to identify granulocytes
(Gr-1

 

+

 

Mac-1

 

+

 

) and macrophages (Gr-1

 

–

 

Mac-1

 

+

 

). The proportion
of granulocytes was also found to increase in the liver as the result
of restraint stress. This response was prominent in old mice.

All these experiments were repeated (

 

n

 

 = 4) and the mean
and one SD in the populations of lymphocytes subsets and gran-
ulocytes were determined (Fig. 2b). The change of NK cells was
minimal, but that of NKT cells and granulocytes was statistically
significant (

 

P

 

 

 

<

 

 0·05 or 

 

<

 

 0·01). The increase in the proportion of
NKT cells was prominent in young mice, whereas that of granu-
locytes was prominent in old mice.

 

Cytotoxic activity and liver injury

 

It is known that NKT cells mediate NK-like cytotoxicity when
they are activated. In this experiment, such NK-like activity
against YAC-1 cells was examined by using lymphocytes in the
liver and spleen (Fig. 3). In the liver of both young and old mice,
a prominent inactivation of NK-like cytotoxicity was demon-
strated after stress. Although the proportion of NK and NKT cells
was higher in old mice than that in young mice, the cytotoxicity
was inversely high in young mice before stress. These results sug-
gested that NKT cells were initially activated in number but that
long-lasting stress finally induced functional inactivation.

The possibility that NKT cells stimulated by stress mediated
liver injury was then investigated (Fig. 4). The serum levels of
transaminases (AST and ALT) were examined in mice before and
after stress. The highest levels of AST and ALT were always seen
in young mice after stress. In other words, the activation of NKT
cells in number (see Fig. 2) and the level of liver injury seemed to
be correlated, especially in young mice.

 

Mechanisms underlying the activation of NKT cells 
and granulocytes

 

It is well established that stress induces the activation of the sym-
pathetic nervous system and the secretion of steroid hormones
[2,3]. In this experiment, the serum levels of catecholamines (i.e,
adrenaline, noradrenaline and dopamine) and corticosterone
were examined in mice before and after restraint stress (Fig. 5).
As expected, a prominent elevation in the concentration of cate-
cholamines and corticosterone was observed. In the case of cate-
cholamines, old mice tended to show an elevated level, especially
in the levels of noradrenaline and dopamine. In contrast, the
increased level of corticosterone was moderate in both young and
old mice, although the baseline of corticosterone was higher in
young mice than in old mice.

 

Induction of granulocytes by the administration of adrenaline 
but induction of NKT cells by the administration of steriod 
hormone

 

The experiments thus far described indicated corticosterone to be
related to the induction of NKT cells while catecholamines
seemed to be related to the induction of granulocytes after stress.
This hypothesis was confirmed by 

 

in vivo

 

 injections (Fig. 6).
Adrenaline (100 

 

m

 

g/mouse) or hydrocortisone (10 mg/mouse)
was intraperitoneally injected into adult mice (12 weeks of age)
and the phenotype of cells was examined 24 h after the injection.
When adrenaline was injected, the proportion of NKT cells
remained almost unchanged (Fig. 6a). Thymic atrophy was not
prominent, namely, there was only a moderate decrease of DP
CD4

 

+

 

8

 

+

 

 cells in the thymus (88·3 to 61·6%). Interestingly, the pro-
portion of granulocytes (Mac-1

 

+

 

Gr-1

 

+

 

) increased prominently,
especially in the liver (8·6 to 36·3%, indicated by an arrowhead).

When hydrocortisone was injected, the proportion of NKT
cells increased prominently in the liver (Fig. 6b). CD3

 

int

 

NK1·1

 

+

 

cells belonged to the CD4

 

+

 

 subset (indicated by arrowheads,
respectively). At this time, the proportion of DP CD4

 

+

 

8

 

+

 

 cells
decreased (84·8 to 20·0%) in the thymus. Interestingly, the pro-
portion of granulocytes remained unchanged by this injection.

 

DISCUSSION

 

Findings of the present study indicate the existence of two axes
which induce immune responses and subsequent tissue damage

 

Fig. 1.

 

Age-related and stress-associated changes in the number of MNC
yielded by the thymus, liver and spleen. Young mice at the age of 8 weeks
and old mice at the age of 56 weeks were used. Restraint stress was con-
ducted for 24 h. The number of MNC was enumerated in 4 mice and the
mean and one SD were produced.
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after stress (Fig. 7). One axis was the ‘adrenocortical axis’ which
connected stress with the secretion of corticosterone (i.e. steroid
homones) and the activation of NKT cells. At such time, thymic
atrophy, which suggested an arrest of the mainstream of T-cell dif-
ferentiation in the thymus, occurred. Another axis was the ‘sym-
pathetic nerve axis’ which connected stress with sympathetic
nerve stimulation (i.e. the secretion of catecholamines) and the
activation of granulocytes. It is conceivable that NKT cells
may induce tissue damage 

 

in vivo

 

 by their cytotoxicity while
granulocytes may induce tissue damage through the production of
superoxides.

Primarily, these two axes of stress-associated immune
responses seemed to be intertwined under usual conditions.
However, these axes were found to be biased in one direction in
young and old mice, respectively. When young mice were
exposed to restraint stress, thymic atrophy and the activation of
NKT cells in the liver became prominent. When old mice were
exposed to the same stress, granulocytosis became prominent,
especially in the liver. In parallel with these responses seen in leu-
cocytes, the elevation in the serum level of corticosterone was
mainly seen in young mice while the elevation in the serum level
of catecholamines was mainly seen in old mice. In other words,

 

Fig. 2.

 

Estimation of stress-resistant lymphocyte subsets in the liver and spleen. (a) Two-colour staining of lymphocytes for various
combinations. (b) Increase in the proportion of NKT cells in young mice and of granulocytes in old mice. MNC were obtained before and
after stress in young and old mice and the phenotype of cells was identified by immunofluorescence tests. Numbers in the figure indicate
the percentages of fluorescence-positive cells in corresponding areas. The mean and one SD in the proportion of NK cells, NKT cells and
granulocytes were produced by repeated experiments (

 

n

 

 = 4).
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although both young and old mice showed liver injury after
stress, the associated mechanisms appeared to deviate toward
one direction of the axes.

In recent studies [2,3], we have reported that the mainstream
of T-cell differentiation in the thymus and the extrathymic path-
way of T-cell differentiation in the liver are reciprocally regulated,
especially by steroid hormones. In addition to ageing [16–18], an
activation of the extrathymic pathway is induced by stress [1–5],
malignancy [22,23], autoimmune diseases [24–26], pregnancy
[27,28], and chronic GVH disease [29,30]. When ageing and stress
were both present, a reciprocal response was prominently seen in

the present study (see Fig. 1). NKT cells are primarily generated
by an alternative intrathymic pathway and then home to the liver
[8–10]. However, it has been found that the population of NKT
cells in the liver is maintained without a continuous supply from
the thymus during adult life [31]. In other words, their precusors
home to the liver at the neonatal stage and are renewed 

 

in situ

 

thereafter.
The present results also revealed that the axis of sympathetic

nerves and granulocytes became prominent as a function of age.
The connection between sympathetic nerves and granulocytes
is due to the presence of surface adrenergic receptors on

 

Fig. 3.

 

NK-like cytotoxicity before and after stress in young and old mice.
Lymphocytes were isolated from the liver and spleen, and NK-like cyto-
toxicity against YAC-1 cells was determined by 4 h-incubation at the indi-
cated E/T ratios. The mean and one SD were produced in triplicate
cultures.
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A comparison of the magnitude of liver injury between young and
old mice after stress. To determine the magnitude of liver injury, serum
levels of AST and ALT were measured. The mean and one SD were
produced from 4 mice.
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Comparisons of serum levels of catecholamines and corticosterone between young and old mice after stress. Sera were obtained
from 4 mice at each column to produce the mean and one SD.
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granulocytes [32]. Many adrenergic stimulations eventually acti-
vate the function of granulocytes in the periphery [33,34] and the
number of granulocytes in the bone marrow [35].

In the present study, it was found that the increase in the pro-
portion of NKT cells was prominent or that the increase in the
proportion of NK cells was not so prominent in the liver after
stress. Since NKT cells mediate NK-like cytotoxicity when they
are activated [11,36], the level of such cytoxicity was examined in
this study. A prominent inactivation of NK-like cytotoxicity was
demonstrated in the liver, but not in the spleen. This cytotoxicity
might be associated with liver injury after stress, especially in
young mice. However, long-lasting stress finally suppressed the
cytotoxicity of NKT cells. We previously reported that NK-like
cytotoxicity by NKT cells is mediated through both the Fas ligand/
Fas system [21] and the perforin system [37]. It is well established
that NKT cells activated by 

 

a

 

-galactosilceramide and other
stimuli can mediate tissue damage due to their autoreactivity

[34,38,39]. Even in these cases, the function of activated NKT cells
are finally exhausted 

 

in vivo

 

.
On the other hand, liver injury induced by granulocytes might

be mediated by superoxides. It is well established that granulo-
cytes are the main source of cells for superoxide production
[40,41]. It is also known that activated granulocytes or neutrophils
are intimately related to tissue damage, including that of the liver,
lung and other organs [42–44].

Finally, to confirm our hypothesis (i.e. the existence of two
axes of stress-associated responses), we conducted 

 

in vivo

 

 injec-
tions of adult mice with adrenaline and glucocorticoid. By the
injection of adrenaline, thymic atrophy was not so prominent, but
the induction of granulocytes was. By the injection of glucocorti-
coid, thymic atrophy and the activation of NKT cells were prom-
inent, but the induction of granulocytes was minimal. These
results support our speculation about stress-associated immune
responses. The concept of two axes of stress-associated immune

 

Fig. 6.

 

In vivo

 

 injection of adult mice (12 weeks of age) with (a) adrenaline (Adr) or (b) hydrocrotisone (Cor). MNC were isolated from
the liver, spleen and thymus before and after each injection (24 h). Two-colour stainings for the indicated combinations were conducted.
Representative results of three experiments are depicted.
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Fig. 7.

 

Hypothesis on two axes which connect stress with tissue injury, including (1) the adrenocortical axis with the activation of NKT
cells and (2) the sympathetic nerve axis with the activation of granulocytes.
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responses seems to be extremely important for properly under-
standing the physiological responses after stress and subsequent
tissue injury. Age-associated bias in this phenomenon is also
interesting.
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