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SUMMARY

 

We found previously that immunosuppressive macrophages (M

 

f

 

s) induced by 

 

Mycobacterium intrac-
ellulare

 

 infection (MI-M

 

f

 

s) transmitted their suppressor signals to target T cells through cell contact
with target T cells. In this study, we examined what kinds of M

 

f

 

 surface molecules are required for such
cell–to–cell interaction. First, it was found that a B7-1-like molecule (B7–1LM) recognizable with one
of three test clones of anti-B7-1 monoclonal antibodies (mAbs) was required for expression of the M

 

f

 

suppressor activity. Neither anti-B7-2, anti-ICAM-1, nor anti-VCAM-1 mAb blocked the M

 

f

 

 suppres-
sor activity. Second, MI-M

 

f

 

s increased the expression of B7–1LM in parallel with the acquisition of the
suppressor activity. Moreover, MI-M

 

f

 

s bound with target T cells in a B7–1LM-dependent fashion.
Third, mAb blocking of CTLA-4 on target T cells did not reduce the suppressor activity of MI-M

 

f

 

s, sug-
gesting the role of a putative molecule on target T cells other than CTLA-4 as the receptor for B7–1LM
of MI-M

 

f

 

s. Fourth, concanavalin A (Con A) stimulation of MI-M

 

f

 

s was needed for effective cell contact
with target T cells and subsequent expression of the suppressor activity of MI-M

 

f

 

s. Fifth, the Con A-
induced increase in the suppressor activity of MI-M

 

f

 

s was inhibited by KN-62 but not by herbimycin A,
H-7, nor H-88, indicating that Con A-induced up-regulation of MI-M

 

f

 

 function is mediated by calm-
odulin-dependent protein kinase II or ATP/P2Z receptors, but independent of protein tyrosine kinase,
protein kinase C, and protein kinase A. These findings indicate that a B7/CTLA-4-independent mech-
anism is needed for the transmission of the suppressor signals from MI-M

 

f

 

s to target T cells.
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INTRODUCTION

 

Intractable mycobacterioses including multidrug resistant tuber-
culosis and 

 

Mycobacterium avium

 

 complex (MAC) infections are
frequently encountered in AIDS patients [1,2]. During the course
of mycobacterioses in humans and experimental animals, gener-
ation of immunosuppressive macrophages (M

 

f

 

s) is frequently
encountered [3,4]. These M

 

f

 

s suppress T cell functions, including
proliferative response and Th1 cytokine production responding to
T cell receptor ligation, causing suppression of cellular immunity
in the advanced stages of infection [5–7]. Previously, we found
that  immunosuppressive  M

 

f

 

s  were  induced  in  the  spleens  of

 

M. intracellulare

 

-infected mice and that such M

 

f

 

 populations
(designated MI-M

 

f

 

s) displayed potent suppressive activity

against Con A-induced mitogenesis of splenic T cells [8,9]. The
suppressor activity of the MI-M

 

f

 

s was mediated by humoral
mediators including reactive nitrogen intermediates, transform-
ing growth factor-

 

b

 

, prostaglandin E

 

2

 

, free fatty acids, which were
produced by MI-M

 

f

 

s themselves in response to Con A stimula-
tion [10–12].

Recently, we found that cell contact of MI-M

 

f

 

s with target T
cells is required for efficacious manifestation of the suppressor
activity of MI-M

 

f

 

s [12,13]. The suppressor signals of MI-M

 

f

 

s,
which are transmitted to the target T cells via cell contact, prin-
cipally cross-talk with the early signalling events before the acti-
vation of protein kinase C and/or intracellular calcium
mobilization [13]. In the present study, we examined which kinds
of M

 

f

 

 cell surface molecules are responsible for the cell–to–cell
interaction between MI-M

 

f

 

s and target T cells. We found that a
B7-1-like molecule (designated B7–1LM) on MI-M

 

f

 

s plays
important roles in the transmission of suppressor signals from MI-
M

 

f

 

s to target T cells through a cell–to–cell interaction.
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MATERIALS AND METHODS

 

Microorganisms
M. intracellulare

 

 N-260 strain isolated from a patient with MAC
infection was used.

 

Mice

 

Eight to 10-week-old male BALB/c (Japan Clea Co., Osaka,
Japan) were used.

 

Special agents

 

Special agents used in this study were as follows: Con A (Sigma
Chemical Co., St. Louis, MO, USA), genistein (Sigma), herbimy-
cin A (Sigma), H-7 (Sigma), H-88 (Seikagaku Industry Co.,
Tokyo, Japan), KN-62 (Sigma), hamster anti-mouse B7-1 (CD80)
monoclonal antibody (mAb) (clone 16–10A1) (Pharmingen Co.,
San Diego, CA, USA), rat anti-mouse B7-1 mAb (clone RMMP-
1) (PBL Biomedical Laboratories, New Brunswick, NJ, USA), rat
anti-mouse B7-1 mAb (clone 1G10) (Southern Biotechnology
Associates, Inc., Birmingham, AL, USA), rat anti-mouse B7-2
(CD86) mAb (Pharmingen), hamster anti-mouse CTLA-4 mAb
(Pharmingen), rat anti-mouse CD54 (ICAM-1) mAb (Seika-
gaku), rat anti-mouse CD106 (VCAM-1) mAb (Serotec Ltd,
Oxford, UK), rat anti-mouse CD3 mAb (Serotec), alkaline phos-
phatase (ALP)-conjugated goat anti-hamster IgG antibody (Ab)
(Southern Biotechnology Associates), ALP-conjugated mouse
anti-rat IgG Ab (Jackson Immuno Research Laboratories, West
Grove, PA, USA), rat IgG (Organon Teknika Corp., Durham,
NC, UK), hamster IgG (Organon Teknika), horseradish peroxi-
dase (HRP) conjugated-goat anti-hamster IgG mAb (Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA), HRP conjugated-
goat anti-rat IgG mAb (Santa Cruz Biotechnology, Inc.) and [

 

3

 

H]
thymidine (

 

3

 

H-TdR) (NEN Life Science Products Inc., Boston,
MA, USA),

 

Medium

 

RPMI 1640 medium supplemented with 25 m

 

M

 

 HEPES, 2 m

 

M

 

glutamine, 100 

 

m

 

g/ml of streptomycin, 100 units/ml of penicillin G,
5 

 

¥

 

 10

 

-

 

5

 

 M 2-mercaptoethanol and 5% (v/v) heat-inactivated fetal
bovine serum (FBS) was used for cell culture.

 

Suppressor activity of MI-M

 

f

 

s

 

Spleen cells (SPCs) were harvested from mice infected intrave-
nously with 1 

 

¥

 

 10

 

8

 

 CFUs of 

 

M. intracellulare

 

 at 2–3 weeks after
infection and cultured in 0·2 ml of the medium in four wells each
of flat-bottom 96 well microculture plates (Corning, NY, USA) at
the cell densities of 5 

 

¥

 

 10

 

5

 

-

 

2 

 

¥

 

 10

 

6

 

 cells/well at 37

 

∞

 

C in a CO

 

2

 

incubator (5% CO

 

2

 

-95% humidified air) for 2 h. The wells were
vigorously rinsed with Hanks’ balanced salt solution containing
2% (v/v) FBS by pipetting and then 0·1 ml of the medium was
poured onto the resulting wells. This procedure usually gave more
than 90% pure M

 

f

 

 monolayer cultures, with active pinocytic abil-
ity of neutral red and with phagocytic ability against latex parti-
cles, containing about 6 

 

¥

 

 10

 

4

 

 cells per culture well from 2 

 

¥

 

 10

 

6

 

 of

 

M. intracellulare

 

-induced SPCs (MI-SPCs). Then, 2·5 

 

¥

 

 10

 

5

 

 of nor-
mal SPCs in 0·2 ml of the medium containing 2 

 

m

 

g/ml Con A were
poured onto the resultant M

 

f

 

 cultures. SPCs were then cultivated
at 37

 

∞

 

C in a CO

 

2

 

 incubator for 72 h and pulsed with 0·5 

 

m

 

Ci of 

 

3

 

H-
TdR (2 Ci/mmol) for the final 6–8 h. Cells were harvested onto
glass fibre filters and counted for radioactivity using a 1450 Micro-

beta Trilux scintillation spectrometer (Wallac Co., Turku, Fin-
land). Suppressor activity of MI-M

 

f

 

s was calculated as:

 

Western blotting

 

SPCs (4 

 

¥ 

 

10

 

7

 

) harvested from normal or MI-infected mice in 8 ml
of 5% FBS-RPMI1640 were cultured at 37

 

∞

 

C for 2 h in an 90-mm
plastic culture dish which precoated with FBS. After rinsing with
2% FBS-HBSS (six times), adherent cells were gently scraped off
using rubber policemen into 20% FBS-HBSS and collected by
subsequent centrifugation at 250 

 

¥

 

 g for 5 min. The obtained M

 

f

 

s
were suspended in an appropriate volume (1 

 

¥

 

 10

 

7

 

 cells/ml) of cell
lysis buffer which consist of 50 m

 

M

 

 Tris-HCl (pH 7·4) containing
150 m

 

M

 

 NaCl, 1% Triton X-100, 1% (v/v) sodium deoxycholate,
0·1% (w/v) sodium dodecyl sulphate (SDS), 1 m

 

M

 

 Na

 

3

 

VO

 

4

 

, 1 m

 

M

 

phenylmethanesulphonyl fluoride (PMSF) and 5% (v/v) protease
inhibitor cocktail (SIGMA). Samples were centrifuged at
22 000 

 

¥

 

 g to remove insoluble matter. Equal volume of cell lysate
were subjected to SDS – 10% polyacrylamide gel electrophoresis,
and transferred to Immobilon

 

PSQ

 

 PVDF membranes (Millipore
Corp. Bedford, MA, USA). Membranes were first incubated for
over night at 4

 

∞

 

C in 1% bovine serum albumin (BSA) in TBST
buffer which consist of 10 m

 

M

 

 Tris-HCl (pH 7·5) containing
100 m

 

M

 

 NaCl and 0·1% Tween 20. The blot was then incubated
with anti-B7-1 mAb (clone 1G10 or 16–10A1), diluted in 1%
BSA-TBST buffer (1 : 500 dilution) for 4 h at room temperature.
After rinsing, membranes were exposed to a HRP-conjugated
anti-rat IgG mAb or HRP-conjugated anti-hamster IgG mAb
which diluted in 1% BSA-TBST buffer (1 : 7500 dilution) for 2 h
at room temperature. After rinsing, membranes were incubated in
ECL plus (Amersham Pharmacia Biotech Inc., Piscataway, NJ,
USA) for 5 min, and then exposed to X-ray film until a signal was
detected.

 

B7-1 expression on MI-M

 

f

 

s

 

B7-1 expression on MI-M

 

f

 

s was measured by ELISA and flow
cytometry as follows.

ELISA. MI-M

 

f

 

s (5 

 

¥ 

 

10

 

4

 

-

 

2 

 

¥

 

 10

 

5

 

 cells) were cultured in four
wells each of flat-bottom 96 well microculture plates (Corning) at
37

 

∞

 

C for 1 h, washed with HBSS, fixed with 0·5% (v/v) glutaral-
dehyde, and washed again with phosphate-buffered saline (PBS).
After blocking with PBS containing 1% (w/v) BSA for over night
and subsequent washing with 0·05% (v/v) Tween 20-PBS, the
resultant cells were stained with hamster anti-mouse B7-1 mAb
(clone 16–10A1) at a concentration of 1 : 200 at room tempera-
ture for 2 h, and washed again with 0·1% BSA-PBS. The resultant
M

 

f

 

s were further stained with ALP-conjugated goat anti-hamster
IgG Ab for 2 h and washed with 0·1% BSA-PBS. Colour devel-
opment was achieved by using 

 

p

 

-nitrophenyl phosphate (

 

p

 

-NPP)
tablets (Sigma) as the substrate.

 

Flow cytometric analysis.

 

MI-SPCs (4 

 

¥

 

 10

 

7

 

) suspended in
8 ml of the culture medium were incubated in FBS-coated 90-mm
cell culture dish at 37

 

∞

 

C for 2 h. After washing with 2% FBS-
HBSS, adherent cells were scraped off using a rubber policemen
and collected into polypropylene tube (17 

 

¥

 

 100 mm) by subse-
quent centrifugation. After washing with 1% BSA-PBS by cen-
trifugation, the resultant M

 

f

 

s (

 

>

 

90% pure) (2 

 

¥

 

 10

 

6

 

) were
subjected blocking with 1% BSA-PBS containing 10% (v/v)

% suppression of SPC mitogenesis
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inactivated BALB/c mouse serum at 0

 

∞

 

C for 30 min and then
washed with 1% BSA-PBS. The resultant cells were reacted with
FITC-conjugated hamster anti-mouse B7-1 mAb (clone 16–
10A1) at a concentration of 1 : 500 at 0

 

∞

 

C for 3 h, washed with 1%
BSA-PBS and thereafter with PBS, and fixed with 1% paraform-
aldehyde in PBS (pH 7·2) for over night. The resulting M

 

f

 

 cells
were subjected to flow cytometry using FACStar (Becton Dickin-
son, Mountain View, CA, USA).

 

Assay for binding of MI-M

 

f

 

s with T cells

 

The monolayer cultures of MI-M

 

f

 

s prepared by seeding 4 ¥ 106 of
MI-SPCs on 16-mm culture wells (Corning) were preincubated in
the medium containing 2 mg/ml of Con A at 37∞C for 4 h. After the
addition of anti-B7-1 mAb (final 20 or 50 mg/ml), 1·25 ¥ 106 of
nylon wool column-purified splenic T cells suspended in the
medium free from Con A were added, subjected to brief centrif-
ugation, and allowed to bind to MI-Mfs by cultivating at 37∞C for
6 h. After gentle washing with PBS to remove T cells nonadherent
to MI-Mfs and subsequent fixation with 0·1% glutaraldehyde fol-
lowed by rinsing with PBS, the resultant wells were subjected to
blocking with 1% BSA-PBS for 3 h. Then, T cells which were
binding to MI-Mfs on the wells were stained with rat anti-mouse
CD3 mAb at 37∞C for 1 h, washed with 0·1% BSA-PBS, and fur-
ther stained with ALP-conjugated mouse anti-rat IgG Ab at 37∞C
for 1 h. After rinsing with 0·1% BSA-PBS, colour development
was achieved by using p-NPP tablets as the substrate.

Statistical analysis
Statistical  analysis  was  performed  using  Bonferroni’s  multiple
t-test.

RESULTS

B7-1-mediated expression of the suppressor activity by MI-Mfs
Figure 1 shows the effects of anti-B7-1 (clone 16–10A1), anti-B7-
2, anti-ICAM-1, and anti-VCAM-1 mAbs on the suppression by
MI-Mfs of SPC mitogenesis. It was found that anti-B7-1 mAb
(clone 16–10A1) markedly reduced the suppressor activity of MI-
Mfs (P < 0·01), whereas the other mAbs did not. Anti-VCAM-
1 mAb slightly decreased the suppressor activity of MI-Mfs.
Notably, in separate experiments indicated that the two different
clones of anti-B7-1 mAbs (clones RMMP-1 and 1G10) failed to
display such significant efficacies in blocking the suppressor activ-
ity of MI-Mfs as in the case of the anti-B7-1 mAb (clone 16–
10A1) (data not shown). These findings suggest that a B7-1-like
molecule (B7–1LM), which shared in part the same epitopes with
B7-1 molecules, is required for expression of the suppressor activ-
ity of MI-Mfs through cell-to-cell contact with target T cells. This
concept is supported by the following findings.

As shown in Fig. 2, Western blotting experiments using the
two clones of anti-B7-1 mAb (1G10, 16–10A1) revealed that
clone 1G10 mAb bound to 33-kD, 38-kD, 48-kD, 52-kD and 62-
kD proteins in MI-Mf cell lysate. The multiplicity of detected
bands is not enigmatic, because B7-1 protein is expressed in var-
ious molecular weights due to differential glycosylation and
mRNA splicing among various types of cells [14–16]. For instance,
it has been reported that 1G10 mAb binds to a 46- and 52-kD pro-
teins in the cell lysates of B cell lineages [15]. As shown in Fig. 2,
16–10A1 mAb bound to 33-, 38-, 48-, 52- and 56-kD proteins in
MI-Mf cell lysate. Notably, Western blotting experiment indi-
cated that 16–10A1 mAb specifically bound to 56-kD protein. In

addition, the expression of 56-kD protein was markedly increased
in MI-Mfs compared to the control Mfs. On the contrary, the
expression of 33-, 38-, 48- and 52-kD proteins did not increase in
MI-Mfs compared to that in control Mfs. These findings indicate
that the 56-kD protein recognized by 16–10A1 mAb corresponds
to B7–1LM protein.

Figure 3a shows the relationship between Mf suppressor
activity and the extent of Mf expression of whole B7-1 (B7-1 and
related proteins) and B7–1LM. The level of expression of whole
B7-1 and particularly B7–1LM were increased in MI-Mfs than in
control Mfs, and this increase clearly paralleled with the increase
in their suppressor activity. Furthermore, when the level of whole
B7-1 expression by MI-Mfs was determined by flow cytometric
analysis, significantly increased whole B7-1-highly positive cell
populations were detected in MI-Mfs (Fig. 3b). The mean fluo-
rescence intensity of MI-Mfs (11·7) was almost double that of
control Mfs (6·5). These findings confirm the concept that the
suppressor activity of MI-Mfs is associated with the increase in
their B7–1LM expression.

Profiles of B7–1LM-dependent cell contact between MI-Mfs and 
target T cells
Next, we examined profiles of the binding of MI-Mfs with target
T cells. As shown in Fig. 4a, the binding of splenic T cells to MI-
Mfs (cluster formation of T cells around MI-Mfs) was observed
by microscopy, when MI-Mfs had been stimulated with Con A for
4 h prior to cocultivation with T cells. In this case, the average
number of T cells binding to MI-Mfs was 2·7 ± 0·2 (range 0–8). As
indicated in Fig. 4b. T cell binding to MI-Mfs was significantly
inhibited by the addition of the anti-B7-1 mAb (clone 16–10A1)
in a dose-dependent manner. In this case, the inhibition rate due
to the treatment with 50 mg/ml of the anti-B7-1 mAb was

Fig. 1. Blocking of the suppressor activity of M. intracellulare-induced
macrophages (MI-Mfs) with anti-B7-1 mAb. MI-Mfs on microculture
wells were pretreated with (a) the indicated mAb anti-B7-1 mAb (clone
no. 16–10A1), anti-B7-2 mAb, anti-ICAM-1 mAb, or control Ab (hamster
IgG) at 50 mg/ml each or (b) treated with 25 mg/ml of anti-VCAM-1 mAb,
or control Ab (rat IgG) at 25 mg/ml each for 2 h. After washing with 2%
FBS-HBSS, SPCs were added onto the resultant Mfs (4 ¥ 104/well) and
measured for their Con A mitogenic response. Each bar indicates the mean
± SEM (n = 4). *Significantly reduced compared to the control value
(+control Ab) (P < 0·01). Results are representative of five independent
experiments.

0 2 4
Con A-induced T cell mitogenesis
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25·8 ± 2·8% (n = 3) (P < 0·05). These findings indicate that MI-
Mfs are capable of binding to target T cells through B7–1LM.

Receptor on target T cells for B7–1LM
It is known that B7 molecule-mediated suppressor signals are
transmitted to T cells through B7/CTLA-4 interaction [17,18]. It
is thus of interest to examine whether or not MI-Mf derived sup-
pressor signals are transmitted to target T cells through an inter-
action between B7–1LM (MI-Mfs) and CTLA-4 (T cells). As
shown in Fig. 5, pretreatment of target T cells with anti-CTLA-
4 mAb failed to block the expression of MI-Mf suppressor activ-
ity. Moreover, in separate experiments, CTLA-4 Ig was incapable
of blocking the suppressor activity of MI-Mfs even when added at
20 mg/ml (data not shown). Therefore, the possibility is excluded
that CTLA-4 acts as a B7–1LM receptor on target T cells and
plays crucial roles in the transmission of MI-Mf suppressor

signals through the interaction with B7–1LM. It thus appears that
there exists unknown receptor(s) on for B7–1LM on target T cells
other than CTLA-4.

Profiles of Con A stimulation of MI-Mfs required for cell contact 
with target T cells
As shown in Fig. 6, binding of MI-Mfs with target T cells was
markedly enhanced when MI-Mfs had been stimulated with Con
A. It thus appears that Con A stimulation of MI-Mfs is required
for the effective cell contact between MI-Mfs and target T cells.
In this context, we previously found that Con A stimulation of
MI-Mfs is required for the effective expression of their suppres-
sor activity, since TNF-a and IFN-g produced by Con A stimu-
lated MI-Mfs augment the Mf suppressor activity in an autocrine
fashion [11]. Figure 7 shows the effects of some metabolic inhib-
itors on the suppressor activity of MI-Mfs. A panel of metabolic

Fig. 2. Profiles of B7-1 protein expression in M. intracellulare-induced macrophages (MI-Mfs). MI-Mf cell lysate was analysed by Western
blotting using anti-B7-1 mAbs (clone 1G10 and 16–10A1). Cell lysate of control Mfs was prepared from splenic Mfs without MI infection.
In the bottom table, band intensities of the 33-, 38-, 48-, 52- and 56-kD proteins which are recognized by the 16–10A1 mAb using
densitometer are indicated.

1G10

Control Mf

M.W.
(kD)

66
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56-kD

52-kD
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M.W. of
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(kD)

Band intensity
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* The relative intensity of each protein expression in terms of MI-Mf/control Mf ratios were
estimated from the data indicated by Western blotting.
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inhibitors was used in attempt to identify the signalling pathways
responsible for Mf Con A-stimulation. These included herbimy-
cin A (an inhibitor of protein tyrosine kinase (PTK)), H-7 (an
inhibitor of protein kinase C (PKC)), H-88 (an inhibitor of pro-
tein kinase A (PKA)) and KN-62 (an inhibitor of Ca2+/calmodu-
lin-dependent protein kinase II (CaMKII)). MI-Mfs were
pretreated with them at the concentration of 10 mM, which can
inhibit these protein kinases without exhibiting cytotoxicity
against Mfs [19]. As shown in Fig. 7, KN-62 partly but signifi-
cantly diminished expression of the suppressor activity by Con A-
stimulated MI-Mfs (P < 0·05). In contrast, the other protein
kinase inhibitors did not exhibit such an inhibitory effect. It thus
appears that CaMKII may play important roles in signalling path-
ways of Con A-stimulated MI-Mfs to exhibit their suppressor
activity.

DISCUSSION

In the present study, we examined which kinds of surface mole-
cules on MI-Mfs are responsible for cell–to–cell interaction
between MI-Mfs and target T cells, and the following findings
were obtained. First, MI-Mf suppressor activity was blocked by
an anti-B7-1 mAb but not by anti-B7-2, anti-ICAM-1, nor anti-

Fig. 3. Expression of whole B7-1 and B7–1LM by M. intracellulare-
induced macrophages (MI-Mfs). (a) MI-Mfs or control Mfs (splenic Mfs
from normal mice) were measured for the expression of whole B7-1 and
B7–1LM by ELISA and Western blotting analysis, respectively, using 16–
10A1 mAb (� and , respectively) and suppressor activities in terms of
percentage inhibition of Con A-induced SPC mitogenesis ( ). Each bar
indicates the mean ± SEM (n = 4). Results are representative of three or
four independent experiments. (b) Whole-B7-1 expression on MI-Mfs ( )
and control Mfs ( ) were measured by flowcytometric analysis using
FITC-conjugated anti-B7-1 mAb (clone no. 16–10A1). Open histogram
indicates the basal level of fluorescence on MI-Mfs without anti-B7-
1 mAb staining. Results are representative of two independent
experiments.
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VCAM-1 mAb. Notably, only one (clone 16–10A1) of the three
test clones of anti-B7-1 mAbs was capable of blocking expression
of the suppressor activity by MI-Mfs. These findings suggest that
transmission of the suppressor signals from MI-Mfs to target T
cells via cell contact was dependent on a novel B7-1-like molecule
(B7–1LM), which shares in part the same epitope with B7-1. This

concept is further supported by the following findings. First, only
16–10A1 mAb binds 56-kD protein, the expression of which is
markedly increased in MI-Mfs. Second, the expression of B7–
1LM on MI-Mfs was correlated with their suppressor activity.
Third, cell-to-cell binding of MI-Mfs with target T cells was inhib-
ited by the anti-B7-1 mAb (clone 16–10A1). Fourth, the mAb
blocking of CTLA-4 molecules on target T cells did not attenuate
the MI-Mf suppressor activity, indicating that CTLA-4 does not
act as a B7–1LM receptor, and that MI-Mf-derived suppressor
signals are transmitted to target T cells through the interaction of
B7–1LM with unknown receptor(s) on T cells other than CTLA-
4. Separate experiments indicated that CD28 also does not act as
a B7–1LM receptor (data not shown). As shown in Fig. 7, neither
herbimycin A, H-7, nor H-88 exerted inhibitory effects against the
expression of the suppressor action by MI-Mfs in response to
Con A stimulation. The negative results obtained with these met-
abolic inhibitors suggest that Con A signal-associated expression
of the suppressor activity by MI-Mfs does not involve signalling
pathways which are mediated by PTK, PKC, or PKA. On the
other hand, the CaMKII inhibitor KN-62 partially attenuated the
suppressor activity of MI-Mfs, indicating that CaMKII-mediated
signalling events may play important roles in the activation of
MI-Mfs to exhibit their suppressor activity in response to Con A
signals.

In this context, it is noteworthy that KN-62 has an inhibitory
activity against ATP/P2Z (P2X7) receptors [19,20]. Recently, it
has been reported that ATP-induced stimulation of P2Z receptors
on Mfs is associated with marked increase in the activity of phos-
pholipase D, causing potentiation of Mf antimycobacterial activ-
ity [21–23]. Notably, it has been reported that ATP-induced
microbicidal activity of Mfs is attenuated by KN-62 but not by
inhibitors of PTK, PKC, and adenylate cyclase [19]. Therefore, it
is possible that ATP/P2Z interaction on MI-Mfs is needed for effi-
cacious expression of their suppressor activity against target T
cells.

Fig. 5. Failure of treatments of target splenic T cells with anti-CTLA-
4 mAbs in blocking the suppressor activity of M. intracellulare-induced
macrophages (MI-Mfs). SPCs were pretreated with the indicated mAb
(100 mg/ml each) for 2 h. After washing with 2% FBS-HBSS, the resultant
SPCs were co-cultured with MI-Mfs (2 ¥ 104/well) and measured for their
Con A mitogenic response. Each bar indicates the mean ± SEM (n = 4).
*Significantly different from the value of T cells treated with control Ab
(hamster IgG) (P < 0·05). Results are representative of four independent
experiments.
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Fig. 6. Enhancement of binding of M. intracellulare-induced macrophages
(MI-Mfs) with target T cells by Con A-stimulation. MI-Mfs were stimu-
lated with Con A at 2 mg/ml for 4 h, then co-cultured with purified splenic
T cells in the presence or absence of Con A at 2 mg/ml for 16 h, and
measured for T cell binding ability by ELISA as described in ‘Materials
and methods’. Each bar indicates the mean ± SEM (n = 3).
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Fig. 7. Effects of inhibitors of various types of protein kinases (PTK,
PKC, PKA, and CaMKII) on the expression of the suppressor activity by
Con A-stimulated M. intracellulare-induced macrophages (MI-Mfs). MI-
Mfs were pretreated with indicated inhibitors at 10 mg/ml at 37∞C for 2 h.
After washing with 2% FBS-HBSS, the resultant MI-Mfs were cocultured
with SPCs (2·5 ¥ 105) in the presence of 2 mg/ml of Con A in order to
measure their suppressor activity. Each bar indicates the mean ± SEM
(n = 4). *Significantly greater than the value of the solute control [MI-Mfs
were pretreated with 0·1% dimethyl sulphoxide (DMSO)] (P < 0·05).
Results are representative of four independent experiments.
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In summary, the present study indicated that suppressive sig-
nals from MI-Mfs are transmitted to target T cells through cell
contact between a novel B7–1LM on MI-Mfs and certain recep-
tor(s) on target T cells other than CTLA-4. Further studies are
currently underway to identify the B7–1LM.
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