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SUMMARY

 

The acute phase of alopecia areata (AA) is characterized by an increase in CD44v3

 

+

 

 and CD44v10

 

+

 

skin-infiltrating leucocytes (SkIL). Induction of a contact eczema, one of the therapeutic options in AA,
can be mitigated strongly by a blockade of CD44v10. The observation that induction of a delayed type
hypersensitivity (DTH) reaction abrogates an autoimmune reaction, where both responses apparently
use similar effector mechanisms, is surprising and prompted us to search for the underlying mechanisms.
AA-affected C3H/HeJ mice were treated with the contact sensitizer SADBE (squaric acid dibutylester)
and leucocyte subpopulations and their activation state was evaluated in SkIL and draining lymph
nodes. AA-affected mice exhibited an increased number of SkIL with a predominance of T lympho-
cytes. After treatment with the contact sensitizer SADBE recovery of SkIL was reduced and monocytes
predominated. However, a significantly increased number of leucocytes was recovered from draining
lymph nodes. Draining lymph node cells from untreated and treated AA mice exhibited all signs of
recent activation with high-level expression of co-stimulatory and accessory molecules and an increased
percentage of CD44v3

 

+

 

 and CD44v10

 

+

 

 leucocytes. In contrast, SkIL of SADBE-treated AA mice con-
tained relatively few activated T cells and reduced numbers of CD44v3

 

+

 

 and CD44v10

 

+

 

 cells. Thus, the
activation state and the distribution of leucocyte subsets in SADBE-treated AA mice are consistent
with a blockade of leucocyte extravasation. Accordingly, the therapeutic effect of long-term SADBE
treatment may rely on impaired leucocyte traffic.
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INTRODUCTION

 

Alopecia areata (AA) is an autoimmune disease of the hair fol-
licles [1–3] that can be transferred by skin transplants as well as by
CD4

 

+

 

 plus CD8

 

+

 

 T cells [4–7]. It has been shown that induction of
AA is accompanied by major histocompatibility complex (MHC)
class I and class II expression on epithelial cells [8–10] that leads
to a loss of hair follicle immune privilege [11]. Like other autoim-
mune diseases, AA is treated typically with corticosteroids
[12,13], but at present, treatment with a contact sensitizer is
regarded to be the most effective for extensive scalp hair loss [14–
18]. In particular, squaric acid dibutylester (SADBE) has been
shown to induce hair regrowth very efficiently in an animal model

of spontaneously developing AA [10,19]. The underlying mecha-
nism has not yet been explored. We expected that induction of an
eczema may possibly restore immune homeostasis by expansion
of CD4

 

+

 

 CD25

 

+

 

 regulatory T cells (T-reg) or by restoration of
activation-induced cell death (AICD), defects in T-reg [20–22]
and in AICD [23–25] being associated frequently with autoim-
mune disorders, including AA [26].

As well as the possible involvement of regulatory T cells and
AICD, there has been another aspect that appeared of particular
interest. We had noted that CD44v10 is important for the devel-
opment of granulomas and for dinitrofluorobenzene-induced
delayed-type hypersensitivity (DTH) reactions [27]. In addition,
induction of AA can be prevented by anti-CD44v10 [28],
although anti-CD44v10 did not exert a therapeutic effect on overt
AA. CD44v10 is expressed in the basal cell layer of the skin and
of squamous epithelia [27,29]. On haematopoietic cells its expres-
sion is restricted mainly to monocytes [29,30]. Notably, it is the
extravasation of monocytes into the sensitized skin in particular
that could be prevented by anti-CD44v10 with high efficacy, i.e.
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CD44v10 is required mainly for the egress of monocytes [27]. It
has been decribed that CD44, particularly CD44 variant isoforms
including CD44v10 (CD44v), bind osteopontin ([31–33] and M.
Zöller, unpublished). Osteopontin exerts chemotactic and hapto-
tactic activity [34–36] and binding of osteopontin to CD44 sup-
ports inflammatory TH1 reactions [32,33].

Another CD44 variant isoform, CD44v3, is also known to
bind chemokines, such as basic fibroblast growth factor, that facil-
itate leucocyte recruitment and extravasation [37–39]. CD44v3 is
expressed by T cells, although at a low level, and by activated
endothelial cells [40]. CD44v3 is the only CD44 variant isoform
that is expressed by skin infiltrating lymphocytes (SkIL) and
expression on SkIL is up-regulated significantly in most autoim-
mune diseases affecting the skin. Anti-CD44v3, similar to anti-
CD44v10, inhibits the development of DTH reactions. Thus,
CD44v10 and CD44v3 function apparently as homing receptors
for SkIL, where CD44v10 probably affects predominantly mono-
cyte egress and CD44v3 T cell infiltration [27,31,34,40,42,43].

The fact that both induction of a DTH reaction as well as
induction of a skin-appendage autoimmune disease are associated
with up-regulation of the same homing receptors, CD44v10 and
CD44v3, and that antibody blockade prevents or mitigates both
pathological reactions, suggests similar modes of action in each
disease mechanism. However, the fact that one of these patholog-
ical reactions (AA) can be treated by induction of the other
(eczema) [10,14,44] seems to contradict the apparently shared
mechanism of leucocyte recruitment. Our study shows that the
therapeutic effect of SADBE is unlikely due to restoration of
immune homeostasis by expansion of CD4

 

+

 

 CD25

 

+

 

 T-reg or
AICD. Instead, the chronic inflammatory reaction was accompa-
nied by a a retention of CD44v10

 

+

 

 and CD44v3

 

+

 

 leucocytes in
draining lymph nodes and an apparent impairment of activated
leucocyte migration.

 

MATERIALS AND METHODS

 

Mice and treatment

 

All C3H/HeJ mice were supplied from stocks at the Jackson Lab-
oratory (Bar Harbor, ME, USA), a specific pathogen-free pro-
duction facility. Mice received conventional low soy oil diet
(altromin 1434, Altromin GmBH, Lage, Germany) and acidified
water (pH 2·8–3·0) 

 

ad libitum

 

. Five mice developed AA sponta-
neously and in 12 mice AA was induced by grafting lesional skin
from AA-affected mice [4]. These 17 mice, which displayed total
hair loss at the age of 11–20 months, were treated with the contact
sensitizer SADBE [10]. A 1·0 

 

¥

 

 1·0 cm area on the left dorsal skin
was treated with an initial application of 2% SADBE in acetone
followed by weekly application of 0·5% or 1% SADBE in ace-
tone over the entire left dorsal and ventral side of the body. The
concentration was chosen such that a moderately severe contact
eczema was induced, which persisted for 2–3 days post-
application. Treatment was terminated after 8–12 weeks, when
hair regrowth was observed on the treated skin. All mice showed
complete hair regrowth on the treated side, whereas no hair
regrowth was observed on the right, untreated side.

 

Tissue preparation

 

Mice were killed by cervical dislocation and skin was collected
from AA-affected and control mice. From SADBE-treated mice
only the treated half showing hair regrowth was collected. Dorsal
skin samples were fixed in Fekete’s acid–alcohol–formalin

solution and paraffin-embedded. For the isolation of SkIL, fat and
subcutaneous muscle tissue was removed and the skin was lay-
ered epidermis uppermost on sterile gauze. Skin was then incu-
bated three times for 30 min with a 1 mg/ml trypsin (Sigma,
Deisenhofen, Germany)/EDTA solution. After each incubation,
the skin was pressed against the sterile gauze and the isolated cells
were collected in RPMI-1640 medium containing 10% fetal calf
serum (Sigma, Deisenhofen, Germany). After the final trypsin
treatment cells were pooled, washed and resuspended in RPMI-
1640 containing 10% fetal calf serum plus 10

 

-

 

3

 

 

 

M

 

 HEPES buffer.
The cells were incubated at 37

 

∞

 

C, 5% CO

 

2

 

 in a humidified atmo-
sphere for 2 h for the recovery of cell surface molecule expression.
For the analysis of T lymphocyte subsets, SkIL from five animals
were pooled and SkIL were enriched further by Ficoll-Hypaque
gradient centrifugation. Viability was determined by Trypan blue
exclusion and was in the range of 70% in SkIL preparations. After
Ficoll-Hypaque centrifugation 

 

>

 

95% of cells were viable.
All skin-draining lymph nodes were collected from controls

and from AA-affected mice. From SADBE-treated mice, lymph
nodes were collected only from the treated side. Single leucocyte
cell suspensions were prepared by pressing lymph nodes through
fine gauze. Lymph node cells (LNC) from five mice were pooled.
Where indicated, LNC were separated into CD4-depleted and
CD4

 

+

 

 cells. The latter were subdivided further into the
CD4

 

+

 

 CD25

 

-

 

 and CD4

 

+

 

 CD25

 

+

 

 subsets using a CD4–CD25 mouse
isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany) and
the appropriate columns. Separation was performed according to
the manufacturer’s instructions. It should be mentioned that sep-
aration of CD25

 

+

 

 cells was achieved by binding of a phycoerythrin
(PE)-labelled anti-CD25 monoclonal antibody followed by the
addition of magnetic beads coated with an anti-PE antibody, i.e.
purified CD25

 

+

 

 cells were PE-labelled. Where such labelling
could have created difficulties, cells were separated by panning on
antibody-coated Petri dishes [45]. Cells were first depleted of
monocytes by 2 

 

¥

 

 1 h plastic adherence. Thereafter CD4

 

+

 

 cells
were isolated by incubating the cell suspension with anti-CD4
(YTA 3·2.1, rIgG) and subsequent adhesion to antirat IgG-coated
Petri dishes. The adherent cells were collected and were incubated
with an anti-CD25 monoclonal antibody (7D4, rIgM) and panned
on antirat IgM-coated Petri dishes. The non-adherent cells (CD4

 

+

 

/
CD25

 

-

 

) and the adherent cells (CD4

 

+

 

/CD25

 

+

 

) were collected. The
purity of the CD4

 

+

 

/CD25

 

+

 

 population, whether separated by mag-
netic bead sorting or by panning, was in the range of 90–95%. Via-
bility of unseparated LNC was in the range of 90% and the
viability of the CD4

 

+

 

 CD25

 

+

 

 population was 

 

>

 

95%.

 

Antibodies

 

The following primary antibodies were used: antimouse CD4
(clone YTA 3·2.1), unconjugated, fluoresceinisothiocyanate
(FITC)- or biotin-labelled, CD8 (clone YTS 169·4.2·1), CD11b
(clone YBM 6·6.10) (all European Animal Cell Culture Collec-
tion, Porton Down, UK), antimouse CD25 (clone 7D4) and
antipanCD44 (clone IM7) (both American Type Culture Collec-
tion, Manassus, VA, USA), unconjugated or biotinylated anti-
CD44v3 (clone PTS33) [40] and anti-CD44v10 (clone K926) [27],
biotinylated antimouse IL10 (clone JES3–16E3), IL12 (clone
C17·8), interferon (IFN)-

 

g

 

 (clone XMG1·2), transforming growth
factor (TGF)-

 

b

 

 (clone A75-3·1), unlabelled, FITC-, biotin- or PE-
labelled antimouse CD25 (clone PC61), CD28 (clone 37·51),
CD40 (clone 3/23), CD80 (clone 16–10A1), CD86 (clone GL1),
CD152 (clone 1B8), CD154 (clone MR1), antipanNK (clone
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DX5) and FITC-labelled annexin V (all Pharmingen, Hamburg,
Germany). Secondary reagents were biotinylated or PE-labelled
antirat IgG, streptavidin (strep)-FITC, strep-PE (all Dianova,
Hamburg, Germany) and strep-allophycocyanin (APC) (Becton
Dickinson, Heidelberg, Germany).

 

Flow cytometry

 

Each cell sample was aliquoted and incubated with 1–10 

 

m

 

g ml

 

-

 

1

 

 of
the primary antibody. Cells incubated with unconjugated mono-
clonal antibody (MoAb) were incubated subsequently with the
appropriate antimouse or antirat PE-labelled secondary antibody.
Cells labelled with biotinylated MoAb were detected with FITC-
, PE- or APC-labelled streptavidin. Negative controls were incu-
bated with a non-binding primary antibody and the same second-
ary reagents. For intracellular staining of cytokines and CD152,
cells were fixed and permeabilized in advance. For triple fluores-
cence analysis cells were stained first with an unconjugated anti-
body followed by the secondary FITC or APC-labelled antibody.
After washing they were stained with a directly PE-labelled anti-
body. The third antibody was biotinylated and was counterstained
with strep-APC or strep-FITC. Flow cytometry followed routine
procedures using a FACSCalibur (Becton Dickinson, Heidelberg,
Germany). Contaminating keratinocytes in SkIL preparation and
cell debris were excluded by gating. Analysis was performed by
the CellQuest program.

 

Lymphocyte proliferation

 

Unseparated LNC, CD4

 

+

 

 CD25

 

-

 

 and CD4

 

+

 

 CD25

 

+

 

 LNC subpop-
ulations (1 

 

¥

 

 10

 

5

 

-

 

1·25 

 

¥

 

 10

 

4

 

) were seeded in triplicate in U-shaped
96-well microtitre plates and were cultured in the presence of
7·5 

 

m

 

g/ml concanavalin A (ConA) or were seeded in flat-bot-
tomed 96-well microtitre plates which had been coated with anti-
CD3 (10 

 

m

 

g/ml). Where indicated, unseparated LNC and
CD4

 

+

 

 CD25

 

-

 

 LNC were co-cultured with CD4

 

+

 

 CD25

 

+

 

 LNC at a
ratio of 2 : 1. Cells were cultured for 48 h in a humidified atmo-
sphere at 37

 

∞

 

C, 5% CO

 

2

 

 in air, adding 1 

 

m

 

Ci [

 

3

 

H]-thymidine dur-
ing the last 16 h of culture. Plates were harvested and [

 

3

 

H]-
thymidine incorporation was evaluated using a 

 

b

 

-counter.

 

Statistical evaluation

 

Significance of differences was evaluated using the two-tailed Stu-
dent’s 

 

t

 

-test.

 

RESULTS

 

Leukocyte distribution in the skin of SADBE-treated AA mice

 

As described previously [10], SADBE treatment of AA mice is
curative inasmuch as hair starts to regrow and after 8–12 weeks of
treatment, mice present with a fully recovered pelage within the
treated left side of skin (Fig. 1). Both DTH reactions and AA
have been described as accompanied by dermal infiltrates consist-
ing of monocytes, leucocytes, CD4

 

+

 

 and CD8

 

+

 

 T cells [9,46–53].
Lymphocytes predominate in AA [9,46,47,53]. DTH reactions are
characterized by a shift from a monocyte-dominated infiltrate in
the initial phase to a mixed monocyte-lymphocyte infiltrate in the
acute phase and during the resolution [48–51]. Thus, the cure of
AA by induction of a chronic DTH reaction is surprising.

To unravel the underlying mechanism, we evaluated the com-
position of SkIL in AA and SADBE-treated AA mice (Fig. 2a).
SkIL of untreated and SADBE-treated AA mice contained an
increased percentage of CD8

 

+

 

 T cells and of monocytes. In SkIL

of SADBE-treated AA mice the percentage of monocytes was
increased significantly, even in comparison to AA mice. It should
be mentioned that a relatively low number of cells could be eluted
by trypsin treatment, although previous immunohistology
revealed strong infiltrates in the skin of SADBE-treated AA mice
[10]. The low recovery of SkIL was in striking contrast to the
recovery of cells from draining LNC. While 21·2 

 

±

 

 2·58 

 

¥

 

 10

 

6

 

 cells
were recovered from healthy mice, there were 31·6 

 

±

 

 3·4 

 

¥

 

 10

 

6

 

(

 

P =

 

 0·009) in AA mice and 46·1 

 

±

 

 4·58 

 

¥

 

 10

 

6

 

 (

 

P 

 

< 0·0001) in
SADBE-treated AA mice. However, the distribution between
CD4

 

+

 

, CD8

 

+

 

, sIgM

 

+

 

 and CD11b

 

+

 

 cells was unchanged (data not
shown). Instead, significant differences were seen when analysing
the activation state of draining LNC. In untreated and SADBE-
treated AA mice, the percentage of CD25

 

+

 

, CD154

 

+

 

 (CD40L) and
CD152

 

+

 

 (CTLA4) cells was increased and expression of the co-
stimulatory molecules CD40 and CD86 was also strongly up-
regulated (Fig. 2b). With the exception of CD25, which was
expressed only by a few SkIL of AA mice, a corresponding profile
of accessory molecules and their ligands was seen in SkIL of AA
mice; that is, a higher percentage of cells than in control mice
expressed CD40, CD80, CD86, CD154 and CD152. This was in
striking contrast to SkIL of SADBE-treated AA mice, where
none of these markers were expressed at an increased level and
expression of CD40L was reduced strongly. In addition, the
reduction in CD25

 

+

 

 cells was not as strong as in AA mice (Fig. 2c).
Thus, in comparison to AA mice, there was a striking reduc-

tion in the expression of SkIL activation markers from SADBE-
treated AA mice. Furthermore, although CD25

 

+

 

 cells were
reduced compared to healthy mice, the reduction was less
pronounced than in SkIL of AA mice. Because we had noted
previously that AA SkIL are largely devoid of CD4

 

+

 

 CD25

 

+

 

 T
cells [26,52,54], we wondered whether the curative effect of
SADBE treatment may have been due to a (partial) restoration in
T-reg.

 

SADBE treatment has no impact on regulatory T cells, cytokines 
and activation induced cell death

 

T-reg are a small population of CD4

 

+

 

 CD25

 

+

 

 T cells that can be
differentiated from freshly activated T cells by the intracellular
expression of CD152 [55]. To define this subpopulation, CD4

 

+

 

CD25

 

+

 

 LNC were stained with anti-CD152 and, for comparison,
with anti-CD154 (Table 1) or SkIL and draining LNC were triple-

 

Fig. 1.

 

 SADBE treatment induces hair regrowth in AA affected mice:
C3HeJ mice, that spontaneously developed AA were treated weekly with
0·5–1% SADBE in ethanol for 8–12 weeks only on the left side of the
ventral and dorsal skin. As can be seen, these mice responded with hair
regrowth such that a complete pelage developed in the area of skin under
treatment, whereas the untreated right side remained devoid of hair.
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stained with anti-CD4, anti-CD25 and anti-CD152 or anti-CD154
(Fig. 3). SkIL from untreated and SADBE-treated AA mice con-
tained few CD4

 

+

 

 CD25

 

+

 

 T cells and even most of these few
CD4

 

+

 

 CD25

 

+

 

 cells did not express CD152 (Table 1). Triple fluo-
rescence staining confirmed that SkIL of untreated and SADBE-
treated AA mice contained very few CD4

 

+

 

 CD25

 

+

 

 cells which
expressed predominantly CD154 (Fig. 3a). LNC of healthy mice
expressed almost no CD152. However, the few CD152

 

+

 

 cells
belonged mainly to the CD4

 

+

 

 CD25

 

+

 

 T-reg population. SADBE-
treated AA mice displayed an increased number of CD4

 

+

 

 CD25

 

+

 

draining LNC. However, the majority of these cells were acti-
vated freshly, i.e. they co-expressed CD154. LNC from untreated
AA mice were partially CD154

 

+

 

 (Fig. 3b). Taken together, there
was no evidence for restoration of T-reg within the skin of
SADBE-treated AA mice. In the lymph nodes, the percentage of
CD4

 

+

 

 CD25

 

+

 

 cells was increased, but they did not display the T-
reg phenotype.

To confirm that induction of T-reg by SADBE treatment can-
not be considered as the therapeutic principle behind SADBE

treatment, CD4

 

+

 

 CD25

 

+

 

 draining LNC of healthy, AA and
SADBE-treated AA mice were stimulated with the mitogen
ConA or by cross-linking of CD3. This investigation was con-
ducted to evaluate the cells’ proliferative capacity and also to see
whether they were able to inhibit the proliferative activity of
unseparated LNC or of CD4

 

+

 

 CD25

 

-

 

 LNC. CD4

 

+

 

 CD25

 

+

 

 LNC of
healthy mice exhibited low proliferative activity themselves and
suppressed proliferative activity of unseparated and of
CD4

 

+

 

 CD25

 

-

 

 LNC. In SADBE-treated AA mice, CD4

 

+

 

 CD25

 

+

 

LNC showed high proliferative activity. They suppressed prolif-
eration of unseparated cells weakly and did not suppress prolif-
eration of CD4+ CD25- cells. CD4+ CD25+ LNC of AA mice also
exhibited reduced inhibitory activity (Table 2).

High-level expression of regulatory cytokines, particularly of
TGF-b or IL-10, could be another mechanism whereby SADBE
treatment interferes with autoimmune reactions in AA. There-
fore, expression of TGF-b, IL-10 and for comparison, IL-12 and
IFN-g, was evaluated in draining LNC and SkIL (Fig. 4). As
described previously [14,56,57], the percentage of IL-10 and

Fig. 2. Leukocyte subpopulations in the skin and draining lymph nodes in SADBE-treated AA mice: (a) SkIL of healthy, AA and SADBE-
treated AA mice were stained with anti-CD4, anti-CD8, anti-CD11b and an antibody that recognizes NK cells; (b) draining LNC and (c)
SkIL of healthy, AA and SADBE-treated AA mice were stained with anti-CD40, anti-CD80, anti-CD86, anti-CD25, anti-CD28, anti-CD152
and anti-CD154. The percentage of stained cells (mean ± s.d. of four independently performed experiments) is shown. Significant differences
(P < 0·01) are indicated by an asterisk.
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TGF-b, but also of IL-12 and IFN-g expressing draining LNC and
SkIL, was increased in AA mice. In draining LNC of SADBE-
treated AA mice, IL-10, and in SkIL IL-10 and TGF-b expression,
was high compared to healthy mice, but remained below those of
untreated AA mice. The same was true for IL-12 expression.
Comparable levels of IFN-g expression were seen in untreated
and SADBE-treated AA mice. Hence, the cytokine expression
profile did not provide an explanation for the therapeutic effect of
SADBE.

Resistance towards AICD is also believed to sustain autoim-
mune reactions [23–25]. This aspect was studied by annexin V
staining and examination of CD95L expression after culturing
cells for 24 h on plates coated with subthreshold levels of anti-
CD3. There was no evidence for a distortion of AICD in AA mice
or SADBE-treated AA mice. CD95L expression was slightly up-
regulated in draining LNC of untreated and SADBE-treated AA
mice. A high number of SkIL expressed CD95L and the percent-
age of CD95L-expressing cells was increased further in AA mice.
Compared to the latter, CD95L was reduced in SADBE-treated
AA mice. Also, draining LNC of untreated and treated AA mice

displayed increased levels of annexin V-stained cells, which cor-
responded well with the higher percentage of activated T cells
found in draining LNC of these mice. There was a slight decrease
in the percentage of annexin V-stained SkIL in AA mice, but a
striking decrease in SADBE-treated AA mice. The former could
be indicative of a slight increase in apoptosis resistance in AA
mice. The strong decrease of apoptotic SkIL in SADBE-treated
AA mice was unexpected. It should, however, be remembered
that: (1) SkIL of SADBE-treated AA mice contained a low per-
centage of activated T cells, i.e. AICD should not be pronounced
and (2) SkIL of SADBE-treated AA mice contained a high per-
centage of monocytes. Thus, the strong reduction in annexin V-
stained SkIL may be due partly to the lower percentage of T cells
(Fig. 5).

Taken together, in SADBE-treated AA mice there was a
strong increase in the percentage of monocytes in SkIL. LNC
were enlarged and contained a high percentage of activated T
cells. In AA mice, but not in SADBE-treated AA mice, activated
T cells were also recovered in SkIL. The failure to detect activated
(possibly autoreactive) T cells in SkIL of SADBE-treated AA

Table 1. The majority of CD4+ CD25+ cells in the draining lymph nodes of SADBE-treated AA mice are freshly activated

Donor Organ
% of totala

CD4+/CD25+

% of CD4+ CD25+ cells (P-value)

CD4+ CD25+/CD152+ CD4+/CD25+/CD154+

Healthy LNC 5·9 66·1 11·9
AA DrLNC 8·1 (0·062) 18·5 (0·002) 23·5 (0·087)
SADBE-treated AAb DrLNC 9·8 (0·015) 6·1 (<0·001) 54·1 (0·013)
Healthy SkIL 5·9 32·2 5·1
AA SkIL 4·1 12·2 19·5
SADBE-treated AAb SkIL 3·3 7·0 33·3

aCD4+ CD25+ cells were isolated by sorting with antibody-coated magnetic beads (see Material and methods). LNC were pooled from two to three
mice; mean values ± s.d. from three experiments are shown. SkIL were pooled from five mice (one experiment); bmice were treated weekly with 0·5–1%
SADBE in acetone for 8–12 weeks.

Table 2. CD4+ CD25+ LNC of SADBE-treated AA mice display weak inhibitory potential

LNC  Subpopulation Stimulus

cpm/1 ¥ 105 or 1·5 ¥ 105 cellsa (% inhibition)b 

Healthy AA SADBE-treated AAc

Unseparated ConA 14·244 9·706 14·009
CD4+ CD25- ConA 10·713 8·180 11·012
CD4+ CD25+ ConA 7·215 7·244 12·410
Unseparated + CD4+ CD25+ ConA 7·593 (57·5) 7·972 (40·2) 16·189 (20·0)
CD4+ CD25- + CD4+ CD25+ ConA 7·309 (49·0) 9·288 (21·3) 16·389 (4·8)
Unseparated anti-CD3 35·282 nt 22·680
CD4+ CD25- anti-CD3 31·220 nt 27·955
CD+ CD25+ anti-CD3 4·868 nt 22·717
Unseparated + CD4+ CD25+ anti-CD3 10·392 (72·4) nt 29·398 (13·6)
CD4+ CD25- + CD4+ CD25+ anti-CD3 6·408 (81·0) nt 34·904 (11·2)

aCounts per minute (cpm) are derived from 1 ¥ 105 unseparated, CD4+ CD25- and CD4+ CD25+ lymphocytes and from 1 ¥ 105 unseparated plus 0·5 ¥
105 CD4+ CD25+ and 1 ¥ 105 CD4+ CD25- plus 0·5 ¥ 105 CD4+ CD25+ lymphocytes, respectively; s.d. of triplicates were in the range of 2–5% and are not
shown for clarity of presentation. b% Inhibition has been calculated from the sum of cpm obtained with the individual populations. cMice were treated
weekly with 0·5–1% SADBE in acetone for 8–12 weeks.
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mice was not due to high numbers of T-reg, increased levels of
regulatory cytokines or sustained AICD. This leaves us with the
option that SADBE treatment may interfere with the recruitment
of autoreactive T cells towards their target.

Impaired leucocyte recruitment in the skin of SADBE-treated 
AA mice
CD44 is known to be important for leucocyte traffic [58–60], and
particularly CD44v10 and CD44v3 in particular have been
described as up-regulated in SkIL of AA affected mice as well as
during DTH reactions [27,40]. PanCD44 expression was high in
SkIL of untreated and SADBE-treated AA mice. However, in
SADBE-treated AA SkIL expression of CD44v3 and CD44v10
was reduced compared to healthy mice, whereas it was up-

regulated in untreated AA SkIL (Fig. 6a). The expression profile
of CD44v3 and CD44v10 in draining LNC differed significantly
from that of SkIL. The percentage of CD44v3+ and CD44v10+

cells was increased significantly in draining LNC of SADBE-
treated AA mice and cells expressed CD44v3 and CD44v10 at an
elevated level (Fig. 6b). The majority of CD44v10+ and CD44v3+

draining LNC and most of the few CD44v10+ and CD44v3+ SkIL
of SADBE-treated AA mice were CD4+. In contrast, in SkIL of
AA and healthy mice only 60–70% of CD44v3+ and CD44v10+

cells expressed CD4 (Fig. 6c). Thus, there was a significant
decrease of CD44v3+ and CD44v10+ leucocytes in SkIL, but a
strong enrichment of CD44v3+ and CD44v10+ T cells in the drain-
ing lymph nodes of SADBE-treated AA mice. Taking into
account the high-level expression of activation markers/accessory

Fig. 4. Cytokine expression in SkIL and draining LNC: SkIL and draining LNC of healthy, AA and SADBE-treated AA mice were fixed
and permeabilized and stained with anti-IL-10, anti-IL-12, anti-IFN-g and anti-TGF-b. The percentage of stained cells (mean ± s.d. of four
independently performed experiments) is shown. Significant differences (P < 0·01) are indicated by an asterisk.
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Fig. 5. CD95L expression and AICD in SkIL and draining LNC of SADBE-treated AA mice: SkIL and draining LNC of healthy, AA and
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stained with annexin V-FITC or with anti-CD95L. The percentage of stained cells (mean ± s.d. of three independently performed
experiments) is shown. Significant differences (P < 0·01) are indicated by an asterisk.
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molecules on LNC of SADBE-treated AA mice (Fig. 2b) and the
low level of activated lymphocytes in the skin (Fig. 2c), we inter-
pret the findings in the sense that SADBE treatment may be ther-
apeutic for AA by preventing the recruitment of activated
(autoreactive) lymphocytes.

DISCUSSION

AA is treated commonly with corticosteroids [12,13], but treat-
ment with contact sensitizers, particularly SADBE, is regarded as
the most effective therapeutic approach for extensive scalp hair
loss, with relatively few side-effects [8,25,47–51]. Trying to eluci-
date the underlying mechanism revealed that the curative effect
of SADBE relies most probably on altered leucocyte traffic as a
consequence of repeated DTH reactions.

A first hint towards our interpretation was derived from the
extraction and analysis of SkIL in SADBE-treated AA mice. In
comparison to normal-haired mice, increased numbers of SkIL
were recovered from AA mice, but the recovery was relatively
limited in SADBE-treated mice despite the fact that immunohis-
tology revealed high numbers of infiltrating cells in the upper der-
mis of SADBE-treated AA mice [10,14,44]. As might have been
expected in a contact eczema [50,51,61,62], the percentage of
monocytes was increased strongly in SkIL of SADBE-treated AA
mice. Furthermore, compared to normal-haired mice, the per-
centage of activated T cells was increased in the draining lymph
nodes and the skin of AA mice, but in SADBE-treated AA mice
activated T cells were recovered only from the draining lymph
nodes, and not from the skin. Thus, in contrast to the skin of AA
mice, there was no evidence for a locally ongoing autoimmune
reaction, the finding being in line with the therapeutic effect of
SADBE in AA mice, i.e. hair regrowth.

However, SADBE is a contact sensitizer and one would have
expected a dermal infiltrate of the TH1 type [63,64]. In fact, skin-
draining lymph nodes were enlarged massively and displayed fea-
tures of freshly activated T cells with high level expression of
CD25, CD28 and CD40L. Hence, the question arose as to what
may hamper the expected strong inflammatory reaction of the
skin.

Because we had noted a relative paucity in CD4+ CD25+ cells
in mice developing AA after the transfer of AA-affected skin [26],
we speculated that induction of a contact eczema may be accom-
panied/followed by an overshooting balancing reaction with
expansion of T-reg. By stimulating TH2 and IL-10 secretion
[65,66] such T-reg might support not only the resolution of the
DTH, but also reduction of the AA reaction. This was not the
case. There were very few CD4+ CD25+ T cells in the skin of
SADBE-treated mice and these were not stained by CD152. In
the lymph nodes, the number of CD4+ CD25+ T cells was
increased strongly but, again, these were not CD4+ CD25+

CD152+ T-reg. Thus, the absence of an inflammatory reaction in
the skin was not a consequence of an excess of regulatory
elements.

Taking into account the massive enlargement of draining
lymph nodes, it was possible that the resolution of the SADBE-
induced eczema might be accompanied by local tissue alter-
ations which could prevent lymphocyte homing into the skin.
SkIL express mainly CD44v3 [37,40,41] and CD44v10 has been
described as strongly up-regulated in DTH reactions [27,29].
Furthermore, CD44v3 was also reported to be expressed by
vessel endothelium of the skin and to be of major importance

for leucocyte extravasation [37,40]. However, SADBE-treated
skin contained very few CD44v3+ cells and the number of
CD44v10+ cells was reduced compared to healthy mice. As both
CD44v3 and CD44v10 were up-regulated in the draining lymph
nodes, it could be excluded that SADBE interfered with the up-
regulation of these skin-homing receptors on activated leuco-
cytes. This leaves us with the possible explanation that lympho-
cyte extravasation into the lower dermis and subcutaneous fat
was hampered severely in SADBE-treated AA mice. The acti-
vation state of vessel endothelium, i.e. up-regulated expression
of proteoglycans acting as chemokine catchers [67–69] and
harbouring of chemokines are known to facilitate T cell and
monocyte recruitment towards the skin [70–75]. In particular,
osteopontin is known to exert chemotactic and haptotactic
activity [34–36]. Osteopontin also is known to bind to CD44
variant isoforms [31–33] and binding of osteopontin to CD44 is
known to support inflammatory TH1 reactions [32,33] and to
stimulate the cell survival pathway via activation of PI3 kinase
and Akt [76]. Hence, we hypothesize that tissue repair in
chronic eczema [77,78] may account for a hindrance in lympho-
cyte extravasation and migration into the lower dermis.
Although the epidermis appeared unaltered in the skin of
SADBE-treated AA mice, the lower dermis was thickened con-
siderably and contained reduced numbers of lymphocytes (data
not shown).

Taken together, we interpret our findings in the sense that AA
can be cured by the repeated induction of a contact eczema, the
resolution of which may by accompanied by tissue repair that
hampers the recruitment of autoreactive T cells. If SADBE-
induced hair regrowth is in fact based on hampered T cell recruit-
ment, less encumbering therapeutic modalities such as the local
application of chemokine neutralizing antibodies should be ther-
apeutically efficient.
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