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SUMMARY

 

The molecular basis of common variable immunodeficiency (CVID) is undefined, and diagnosis
requires exclusion of other diseases including X-linked lymphoproliferative disease (XLP). This rare
disorder of immunedysregulation presents typically after Epstein–Barr virus infection and results from
defects in the 

 

SAP

 

 (SLAM associated protein) gene. 

 

SAP

 

 mutations have been found in a few patients
diagnosed previously as CVID, suggesting that XLP may mimic CVID, but no large-scale analysis of
CVID patients has been undertaken. We therefore analysed 60 male CVID and hypogammaglobuli-
naemic patients for abnormalities in SAP protein expression and for mutations in the 

 

SAP

 

 gene. In this
study only one individual, who was found later to have an X-linked family history, was found to have a
genomic mutation leading to abnormal 

 

SAP

 

 cDNA and protein expression. These results demonstrate
that 

 

SAP

 

 defects are rarely observed in CVID patients. We suggest that routine screening of 

 

SAP

 

 may
only be necessary in patients with other suggestive clinical features.
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INTRODUCTION

 

Common variable immunodeficiency (CVID) is the most fre-
quently diagnosed primary immunodeficiency and is character-
ized by varying degrees of T and B cell abnormalities [1,2]. Due to
the heterogeneity of both immunological and clinical phenotypes
within this disorder, the agreed guidelines for diagnosis require
(1) a significant decrease in either two of the three major immu-
noglobulin isotypes, (2) abnormal specific humoral antibody
responses to vaccines and (3) the exclusion of molecularly defined
causes of hypogammaglobulinaemia [3]. This third criterion may
pose practical difficulties as many known causes of primary anti-
body deficiency now exist, including X-linked and autosomal
recessive agammaglobulinaemias [4–8], X-linked and autosomal
recessive hyper-IgM syndromes [9–11] and X-linked lymphopro-
liferative syndrome [12–14]. Thus before a diagnosis of CVID can
be confirmed, a significant number of specialized genetic or

protein based diagnostic tests need to be performed, many of
which are not readily available. It is therefore necessary to ascer-
tain the true prevalence of the well-defined hypogammaglobuli-
naemia syndromes within the CVID population.

X-linked lymphoproliferatine disease (XLP) is a rare primary
immunodeficiency disorder where severe immunodysregulatory
phenomena occur typically after exposure to Epstein–Barr virus
(EBV) [15]. The gene defective in XLP is 

 

SAP

 

 (SLAM-associated
protein where SLAM is signalling lymphocyte activation mole-
cule) [12–14], a small SH2 domain containing protein involved in
signal transduction events downstream of the SLAM family of
receptors, which has been shown to regulate T and NK cell func-
tion [16,17]. A number of studies have now demonstrated 

 

SAP

 

gene mutations and abnormalities of SAP protein expression in a
large proportion of patients with XLP. Thus reliable molecular
diagnostic tools for XLP exist.

The three major phenotypes seen in XLP are fulminant infec-
tious mononucleosis (FIM), development of B cell lymphoma and
dysgammaglobulinaemia [15]. This last presentation has clinical
and immunological similarities with CVID, hence the need to
exclude XLP as a possible diagnosis in male CVID patients. We
and others have previously identified a small number of ‘CVID’
patients with 

 

SAP

 

 gene mutations [18–20] suggesting that an
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unknown percentage of CVID males may in fact have XLP. How-
ever, to date no formal large-scale analysis has been undertaken
to establish the true prevalence of SAP defects in males with
CVID.

 

METHODS

 

Patient selection

 

Following ethical approval from LRECs and informed consent
from patients, we obtained 5 ml of peripheral blood from 60 males
with a clinical and immunological profile of CVID. Patients were
selected only on the basis that they met the ESID/PAGID criteria
for CVID and no other selection criteria were used. Serum immu-
noglobulin levels and vaccine responses, where available for each
patient, were obtained. Control blood samples, taken contempo-
raneously in each centre, were used to establish the extent of pro-
tein degradation. Patients were then classified as ‘probable’ or
‘possible’ CVID according to the ESID/PAGID CVID diagnostic
criteria  [3].  Where  vaccine  responses  were  unavailable  as  a
result  of  immunoglobulin  replacement,  these  patients  could
not be strictly classified as CVID and were therefore termed
hypogammaglobulinaemia.

 

SAP immunoblot analysis

 

Peripheral blood mononuclear cells (PBMCs) were isolated and
lysed in NP40 lysis buffer. Immunoblotting was performed
according to previously described protocols [21,22]. Anti-SAP
antibody and the secondary HRP conjugated antirabbit antibody
(Sigma, UK) were added at final concentrations of 1 : 1000 in
milk-phosphate buffered saline (PBS)-T. To determine the
amount of protein degradation, each membrane was subse-
quently incubated with an anti-

 

b

 

-actin antibody (Sigma) and
detected using a horseradish peroxidase antimouse antibody
(Dako, UK).

 

Genomic DNA sequencing

 

Following polymerase chain reaction (PCR) amplification [21],
PCR products were purified using either Microspin columns or
Exo-SAP-IT (Amersham Biosciences, Bucks, UK) and then
sequenced using Big Dye Chemistry and ABI automated
sequencers (Applied Biosystems, Brackley, UK). Primers used for
forward and reverse sequencing were the same as those used for
generating the PCR product. Sequences from patient samples
were compared with wild type 

 

SAP

 

 sequence.

 

CDNA analysis

 

PBMCs were lysed in Trizol (Invitrogen, Paisley, UK) and RNA
isolated. First strand cDNA was made using oligo-dT (Sigma,
UK). This product was then amplified using 

 

SAP

 

-specific primers
and conditions as described [12]. cDNA was separated on a 1%
Nu-Sieve gel (Cambrex, East Rutherford, NJ, USA). Sequencing
of 

 

SAP

 

 cDNA was performed as for genomic DNA sequencing
using the primers for generating the cDNA PCR product.

 

RESULTS AND DISCUSSION

 

Sixty male patient blood samples were obtained and patients
were categorized according to the existing ESID/PAGID CVID
criteria. Those patients with two or more reduced immunoglobu-
lin (Ig) isotype serum measurements together with abnormal vac-
cine responses were classified as probable CVID (

 

n

 

 

 

=

 

 35) and

those with one reduced Ig measurement were termed possible
CVID (

 

n

 

 

 

=

 

 3). Three patients underwent immunoglobulin
replacement therapy before IgG levels could be ascertained. In 22
patients, immunoglobulin replacement therapy precluded the
assessment of vaccine responses. Thus, in order to adhere strictly
to the classification criteria, these patients have been labelled as
hypogammaglobulinaemia. Patient characteristics, immunoglob-
ulin and vaccine response profiles, significant family history and
history of EBV-related disease are shown in Table 1.

 

SAP protein expression

 

SAP protein expression has been established previously as a reli-
able diagnostic tool for XLP by consistent detection of SAP
expression in PBMCs from healthy controls [21]. To exclude XLP
as a diagnosis within our cohort, we initially screened PBMCs
from each patient for SAP expression using immunoblot analysis.
Within the total of 60 patients tested for SAP expression, all three
‘possible’, 35 ‘probable’ CVID and 22 ‘hypogammaglobuli-
naemia’ patients were shown to express SAP protein (examples
shown in Fig. 1a).

The protein expression assay alone does not necessarily
exclude a diagnosis of XLP, as a small proportion of patients with

 

SAP

 

 mutations may express a stable SAP protein. Furthermore,
in six patients (including UPN56) the level of SAP protein
expressed was markedly decreased compared with the control
sample (data not shown). The initial immunoblot analysis was not
performed in a quantitative manner, and thus the significance of
low protein expression was unclear. For these reasons further,
more detailed investigation by sequencing of the 

 

SAP

 

 gene for
genetic defects was performed on 32 patients (15 of ‘probable’
CVID, one of ‘possible’ CVID and 16 of hypogammaglobuli-
aemia patients), including those with a relevant family history or
history of EBV disease and all those with decreased SAP protein
expression.

 

SAP gene analysis

 

Direct genomic DNA sequencing of all four exons including
intron/exon boundaries was performed on 32 patients (53%) in
our cohort. No abnormalities were found in 31 patients. In one
patient (UPN56) who had been shown previously to have low lev-
els of SAP protein expression, sequencing of exon 1 revealed a
c.117 c(r)t change which would be predicted to affect exon splic-
ing. Analysis of 

 

SAP

 

 cDNA from control individuals shows a
629 base pair band and a smaller second band of 574 bp, which
arises as a result of an infrequently used splicing acceptor site
within exon 3. However, analysis of 

 

SAP

 

 cDNA from UPN56
revealed a predominant 

 

SAP

 

 PCR product which was signifi-
cantly smaller than the 629 bp predominant control 

 

SAP

 

 band
(Fig. 1b). Direct sequencing of the predominant 

 

SAP

 

 cDNA band
from this patient confirmed a deletion mutation of 21 base pairs
(c.116–137), which arises as a direct consequence of the splice site
abnormality detected at the intron/exon boundary of exon 1.
These findings confirm a diagnosis of XLP in UPN56.

In view of these cDNA abnormalities SAP protein expres-
sion from UPN56 was re-analysed in a quantitative manner

 

.

 

This showed a marked decrease in the amount of SAP protein
(which was normal in size) expressed in comparison to the con-
trol, while 

 

b

 

-actin expression was equivalent, suggesting that
equal amounts of total protein were loaded in patient and con-
trol samples (Fig. 1c). These data suggest that UPN56 is capa-
ble of generating both a normal-sized transcript (which was not
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Table 1.

 

Patient characteristics including serum immunoglobulin levels, response to vaccination and SAP screening findings and relevant history

UPN Age

Immunoglobulin levels (g/l) Vaccine response
n/a, L, UD, N

H–T–P

CVID diagnosis 
Probable, possible

hypogamma

SAP
protein

 

+

 

/– Mutation

Family history
y-CVID,

y-XLP, no
EBV

diseaseIgG IgA IgM

1 2 N L L H- UD prob

 

+

 

* ND no yes
2 57 L UD L H-L prob

 

+

 

ND no no
3 12 L N H T-N, P-L pos

 

+

 

ns no no
4 64 L L L H-L prob

 

+

 

ND no no
5 48 L L L T-L prob

 

+

 

ND no yes
6 19 L L L T-N, H-N, P-L prob

 

+

 

ND no yes
7 14 L UD L T-L, P-UD prob

 

+

 

ns no no
8 15 L L L n/a hypo

 

+

 

ns no no
9 6 N L L H, T, P-UD prob

 

+

 

ns no no
10 5 L L H H-N, T-L prob

 

+

 

ns no no
11 25 L L L n/a hypo

 

+

 

ND no no
12 16 L L N P-L prob

 

+

 

ND y-CVID no
13 11 L L N P-L prob

 

+

 

ND y-CVID no
14 6 L L L T–N, H-N, P-L prob

 

+

 

ns no no
15 7 L N L T–UD, P-L prob

 

+

 

ns no no
16 52 L L L n/a hypo

 

+

 

ND no no
17 13 L L L T-N, H-UD, P-L prob

 

+

 

ns no no
18 21 R L L n/a hypo

 

+

 

ns no no
19 19 N L L P-L prob

 

+

 

ND y-CVID yes
20 2 N L L H-UD prob

 

+

 

ns no no
21 7 L L L T-L, H-UD, P-UD prob

 

+

 

ns no no
22 9 L L L T-L, H-UD, P-UD prob

 

+

 

ns no no
23 3 L L L n/a hypo

 

+

 

ns no no
24 6 N L L T-N, P–L prob

 

+

 

ND no yes
25 8 H L L T-L prob

 

+

 

ns no no
26 12 N L L T-N, H-UD, P-N prob

 

+

 

ns no no
27 47 L L L n/a hypo

 

+

 

ND no no
28 8 L N L T–N, P-L prob

 

+

 

ns no no
29 46 L L L n/a hypo

 

+

 

ND no no
30 8 L L L T-N, P-L prob

 

+

 

ns no no
31 25 N L L n/a hypo

 

+

 

ns no no
32 13 L N L T–N, P-L prob

 

+

 

ns no no
33 24 L L H n/a hypo

 

+

 

* ND no no
34 7 L L L T, H, P-UD prob

 

+

 

ND no no
35 21 N L L n/a hypo

 

+

 

ns no no
36 46 R L H n/a hypo

 

+

 

ND no no
37 10 L L L H–L, T-L prob

 

+

 

ns no no
38 2 L L L T-L prob

 

+

 

ns no no
39 16 L UD N P-L prob

 

+

 

ND no no
40 51 L L L n/a hypo

 

+

 

ND no no
41 54 L L L n/a hypo

 

+

 

ND no no
42 13 L L N n/a hypo

 

+

 

ns no no
43 12 L L L n/a hypo

 

+

 

* ND y-CVID no
44 78 L L L H, T, P-UD prob

 

+

 

ND y-CVID no
45 11 N L L n/a hypo

 

+

 

ND no no
46 41 L L L H-UD prob

 

+

 

ns no no
47 9 N L L n/a hypo

 

+

 

ns no no
48 39 L UD L n/a hypo

 

+

 

ND no no
49 20 R L L n/a hypo

 

+

 

ns no no
50 7 L H L H, T, P-UD prob

 

+

 

ns no no
51 10 L L L T-L prob

 

+

 

ns no no
52 13 L L L T-UD prob

 

+

 

* ND no no
53 12 N N L H-UD, T-L pos

 

+

 

ND y-CVID no
54 4 L L N n/a hypo

 

+

 

ND y-CVID no
55 4 L L N H-L, T-N prob

 

+

 

ND y-CVID no
56 33 L L N n/a hypo

 

+

 

* YES y-XLP yes
57 4 N N L H-L, T-L, P-N pos

 

+

 

ND y-CVID no
58 5 N L N n/a hypo

 

+

 

ND no no
59 9 L L L H-L prob

 

+

 

* ND no no
60 19 L N L T-L prob

 

+

 

ND no yes

UD: undetectable; L: low; n/a: not available; N: normal; H: 

 

Haemophilus influenzae

 

 (Hib); H: high; T:  tetanus; R: replacement; P:  pneumococcal.

 

+

 

*: low SAP protein expression. ND: no mutation detected on genomic sequencing of SAP gene; ns: not sequenced; y-CVID: family history of CVID; y-
XLP: family history of individuals with XLP-like symptoms; no: no history of note. EBV disease: defined as patients with EBV-related complications such
as severe infectious mononucleosis, EBV infection prior to onset of hypogammaglobulinaemia or EBV-related lymphoma.
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visible on cDNA analysis, Fig. 1b) and a normal-sized protein,
albeit at very low levels. The protein species arising from the
mutated mRNA was not visible, probably as a result of unsta-
ble protein degradation.

The diagnosis of CVID remains problematic and requires
exclusion of other known genetic abnormalities [3]. This includes
XLP which can present with dys- or hypogammaglobulinaemia
and thus mimic CVID. In this study we analysed prospectively
patients who fulfilled the existing diagnostic criteria of CVID for
defects in SAP using both protein- and genetic-based analysis.
Our findings show that the prevalence of XLP within an unse-
lected but well-defined male CVID and hypogammaglobuli-
naemic population is low.

In this study, only 1/60 patients was found to have a defect, but
we note that not all patients were sequenced and so a figure of 1/
32 may be more accurate. It is possible that of the 28 unsequenced

patients with normal protein expression and no suggestive history,
some may harbour mutations in the SAP gene, but we believe this
to be unlikely.

Previous reports of SAP defects in CVID patients prompted
the present study. However, careful analysis of these reports dem-
onstrates that in the majority of these cases [19,20], there was a
history of affected males in the family or the onset of symptoms
after EBV infection. Only in the report of Nistala 

 

et al

 

. [18] were

 

SAP

 

 mutations found in two sporadic cases without evidence of
EBV infection. In the one individual (UPN56) identified in our
study as having XLP, it was learned subsequently that a brother
had died in early childhood from probable fulminant infectious
mononucleosis. Thus the majority of cases of CVID or hypogam-
maglobulinaemic patients with SAP defects appear to have a pos-
itive family history or evidence of EBV infection prior to the
onset of symptoms. This is supported by evidence from Sumegi

 

et al

 

. [23], where it was shown that even in patients presenting
with typical XLP, mutations were only found in those with an X-
linked pedigree and no mutations were found in sporadic cases
and atypical cases.

We would therefore suggest that, given the low prevalence of
XLP within the CVID population, routine SAP protein and gene
screening of all male CVID patients is not indicated unless there
are other clinical features such as a positive family history and/or
a history of EBV related onset of symptoms.
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