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Summary

 

This study was designed to investigate the relationship between influx of
extracellular Ca

 

2

  

++++

 

, activation of NFkkkk

 

B and synthesis of interleukin-8 (IL-8)
following exposure of human neutrophils to subcytolytic concentrations
(8·37 and 41·75 ng/ml) of the pneumococcal toxin, pneumolysin, as well as the
potential of the omega-3 polyunsaturated fatty acid, docosahexaenoic acid, to
antagonize these events. Activation and translocation of NFkkkk

 

B were measured
using a radiometric electrophoretic mobility shift assay, while influx of extra-
cellular Ca

 

2

  

++++

 

 and synthesis of IL-8 were determined using a radioassay and an
ELISA procedure, respectively. Exposure of neutrophils to pneumolysin was
accompanied by influx of Ca

 

2

  

++++

 

, activation of NFkkkk

 

B, and synthesis of IL-8, all of
which were eliminated by inclusion of the Ca

 

2

  

++++

 

-chelating agent, EGTA
(10 m

 

m

 

), in the cell-suspending medium, as well as by pretreatment of the
cells with docosahexaenoic acid (5 and 10 mmmm

 

g/ml). The antagonistic effects of
docosahexaenoic acid on these pro-inflammatory interactions of pneumol-
ysin with neutrophils were not attributable to inactivation of the toxin, and
required the continuous presence of the fatty acid. These observations dem-
onstrate that activation of NFkkkk

 

B and synthesis of IL-8, following exposure of
neutrophils to pneumolysin are dependent on toxin-mediated influx of Ca

 

2

  

++++

 

and that these potentially harmful activities of the toxin are antagonized by
docosahexaenoic acid.
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Introduction

 

Streptococcus pneumoniae

 

 (pneumococcus) remains one of
the major human pathogens and one of the most common
causes of community-acquired pneumonia, otitis media,
sinusitis and meningitis. Notwithstanding the threat posed
by emerging antibiotic resistance and human immunodefi-
ciency virus, the mortality rate among those patients with
acute pneumococcal disease who receive appropriate antimi-
crobial chemotherapy remains unacceptably high. Better
understanding of the immunopathogenesis of infections
caused by the pneumococcus may lead to additional options
for treatment and prevention.

We have previously reported that exposure of human neu-
trophils to pneumolysin, one of the best-characterized viru-
lence factors produced by the pneumococcus, results in
activation of synthesis of interleukin-8 (IL-8), which is sec-

ondary to toxin-mediated influx of Ca

 

2

 

+

 

 [1,2]. IL-8 in turn,
not only amplifies neutrophil recruitment and activation,
but also confers resistance to the pro-apoptotic actions of
corticosteroids on these cells [3]. However, rather than
contributing to eradication of the infection, pneumolysin-
mediated potentiation of neutrophil influx and activation in
a murine model of experimental pneumococcal infection of
the airways was found to favour persistence and extrapulmo-
nary dissemination of the pneumococcus [4], possibly as a
consequence of inflammation-mediated damage to airway
epithelium [5].

Pneumolysin has been proposed to represent a possible
target for adjunctive therapy to antibiotics in patients with
acute pneumococcal infection [6]. Notwithstanding antimi-
crobial agents which inhibit synthesis of the toxin, potential
strategies include toxin-targeted monoclonal antibodies [7],
or pharmacological agents which antagonize the interactions
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of the toxin with eukaryotic cells and/or suppress the inflam-
matory processes activated by it. One such group of agents is
the omega-3 polyunsaturated fatty acids, which have been
reported to possess beneficial immunomodulatory and anti-
inflammatory properties in acute and chronic inflammatory
disorders of both infective and noninfective origin [8–10],
and to attenuate the pro-inflammatory interactions of

 

Escherichia coli

 

 haemolysin with rabbit macrophages [11].
In agreement with these observations, we have recently
reported that these agents antagonize the pro-oxidative
interactions of pneumolysin with human neutrophils by
interfering with Ca

 

2

 

+

 

 influx [12]. Interestingly, omega-3
polyunsaturated fatty acids have also been reported to
exclude proteins from the lipid rafts of eukaryotic cell mem-
branes [13]. Lipid rafts are putative binding sites for perfrin-
golysin O, the cholesterol-binding, pore-forming toxin of

 

Clostridium perfringens

 

 [14], as well as for the beta toxin of
this microbial pathogen [15]. Pneumolysin is also a choles-
terol-binding toxin and shares a high degree of homology
with perfringolysin O [16].

Nevertheless, the development of pneumolysin-directed
chemotherapeutic strategies clearly requires additional
insights into the mechanisms, which underpin both the
pro-inflammatory activities of the toxin and the anti-
inflammatory actions of omega-3 polyunsaturated fatty
acids. In the current study, we have investigated the involve-
ment of the transcription factor, nuclear factor kappa B
(NF

 

k

 

B) in the Ca

 

2

 

+

 

-dependent activation of synthesis of IL-
8 by pneumolysin-exposed human neutrophils, as well
as the potential of the omega-3 polyunsaturated fatty
acid, docosahexaenoic acid (DHA), to modulate these pro-
inflammatory processes.

 

Materials and methods

 

Chemicals and reagents

 

Unless otherwise indicated, all chemicals and reagents were
obtained from the Sigma Chemical Co. (St Louis, MO, USA).

 

Neutrophils

 

These were prepared from the heparinized venous blood
of healthy adult human volunteers and were separated from
mononuclear leucocytes by centrifugation on Histopaque-
1077 (Sigma Diagnostics) cushions at 400 

 

g

 

 for 25 min at
room temperature as described elsewhere [1]. The neutro-
phils were routinely of high purity (

 

>

 

90%) and viability
(

 

>

 

95%).

 

Recombinant pneumolysin

 

Recombinant pneumolysin was expressed in 

 

Escherichia coli

 

and was purified from cell extracts as described previously
[17]. Protein homogeneity was confirmed by SDS-PAGE.

The stock concentration was 80 

 

m

 

g/ml, which corresponds to
3·2 

 

¥

 

 10

 

5

 

 haemolytic units/ml, and was essentially free of
contaminating bacterial endotoxin (

 

<

 

2 pg/ml). The toxin
was diluted in endotoxin-free RPMI 1640 tissue culture
medium or Hanks’ balanced salt solution (HBSS; pH 7·4;
1·25 m

 

m

 

 CaCl

 

2

 

; indicator-free; Highveld Biological, Johan-
nesburg, South Africa) and was used at fixed, final concen-
trations of 8·37 and 41·75 ng/ml which are well within the
range (0·85–180 ng/ml) of those reported to occur in the
cerebrospinal fluid of patients with pneumococcal meningi-
tis [18]. We have previously found that pneumolysin at these
concentrations causes influx of Ca

 

2

 

+

 

 into neutrophils and
activates synthesis of IL-8 by these cells in the absence of
cytolysis [1,2].

 

Construction of N-terminal green fluorescent protein 
(GFP)-pneumolysin (GFP-Ply) fusion plasmid and 
expression and purification of eGFP-Ply

 

A green fluorescent protein (GFP)/pneumolysin construct
was used to measure the binding of the toxin to neutrophils
as described below.

The coding sequence of pneumolysin was amplified with
the introduction of appropriate restriction sites by PCR
using primers PlyPetFwd (CCG GAT CCG GCA AAT AAA
GCA GTA AAT GAC TTT; 

 

BamH1

 

 site underlined) and Ply-
PetRev (GAC GGA GCT CGA CTA GTC ATT TTC TAC CTT
ATC; 

 

Sac1

 

 site underlined). The PCR product was ligated
into BamHI/SacI digested pET33b (Novagen, Madison, WI,
USA) and transformed into TOP10 

 

E. coli

 

. The presence of a
correctly sized insert in pET33b was confirmed by BamHI/
SacI digestion followed by agarose gel electrophoresis.

The GFP coding sequence was amplified from pNF320 [19]
and appropriate restriction sites introduced by PCR using
primers GFPpET33bFwd (GT CAG GCT AGC ATG AGT
AAA GGA GAA GAA C; 

 

Nhe1

 

 site underlined) and
GFPpET33bRev (CC ACG CAG ATC TTT GTA TAG TTC
ATC C; 

 

BglII

 

 site underlined). The PCR product was cut with
NheI and BglII, ligated into NheI/BamHI digested
pET33bPLY and transformed into TOP10 

 

E. coli

 

. The plasmid
was recovered and mutations F64L and S65T [20] were intro-
duced into GFP by site directed mutagenesis (Quikchange
SDM Kit, Stratagene, La Jolla, CA, USA) using primers GFP-
S65T-F64LmutaFWD (CAC TTG TCA CTA CTC TGA CTT
ATG GTG TTC AAT GC) and GFP-S65T-F64LmutaREV
(GCA TTG AAC ACC ATA AGT CAG AGT AGT GAC AAG
TG). The sequence was confirmed and the plasmid was trans-
formed into BL21 (DE3) 

 

E. coli

 

 (Stratagene, La Jolla, CA, USA).
Recombinant eGFP-Ply was expressed in terrific broth by

IPTG induction. Cells were disrupted using a French Press
and resuspended in PBS. Crude supernatants were purified
by nickel affinity chromatography and eluted on 0–300 m

 

m

 

imidazole concentration gradient. Fractions containing
purified eGFP-Ply were dialysed against a greater than 50-
fold volume of PBS three times at 4

 

∞

 

C.
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With respect to haemolytic activity, the construct and the
free protein have equivalent specific activities on a molar
basis. The construct also competes with the wild type protein
for binding to nucleated cells i.e GFP/fusion binding is
reduced by mixing with unlabelled toxin and molar ratios
suggest binding is similar for both forms of the toxin. We
have not measured complement activation by the construct.

 

NFkkkk

 

B activation

 

For these investigations, neutrophils were suspended in
RPMI 1640 tissue culture medium supplemented with 0·5%
human serum albumin (HSA). Following 10 min of prein-
cubation at 37

 

∞

 

C, pneumolysin (8·37 and 41·75 ng/ml) or an
equal volume of RPMI 1640 (control systems) was added to
the cells which were then incubated for 15 or 30 min at 37

 

∞

 

C.
The final volume in each tube was 1 ml containing 5 

 

¥

 

 10

 

6

 

cells. Following incubation, detection of NF

 

k

 

B nuclear
translocation was determined as described previously [21],
with slight modifications. Briefly, cells were harvested and
resuspended in 0·4 ml buffer (10 m

 

m

 

 HEPES/10 m

 

m

 

 KCl/
2 m

 

m

 

 MgCl

 

2

 

/1 m

 

m

 

 DTT/0·1 m

 

m

 

 EDTA/0·2 m

 

m

 

 NaF/0·2 m

 

m

 

Na

 

3

 

VO

 

4

 

) supplemented with the protease inhibitors 1 mg/l
leupeptin and 0·4 m

 

m

 

 PMSF. After 15 min on ice, 25 

 

m

 

l 10%
Igepal CA-630 was added and the cells vortexed for 15 s and
pelleted by centrifugation. Pellets containing the nuclear
proteins were resuspended in buffer (50 m

 

m

 

 HEPES/50 m

 

m

 

KCl/300 m

 

m

 

 NaCl/0·1 m

 

m

 

 EDTA/1 m

 

m

 

 DTT 10% glycerol/
0·2 m

 

m

 

 NaF/0·2 m

 

m

 

 Na

 

3

 

VO

 

4

 

) supplemented with 0·1 m

 

m

 

PMSF and incubated on ice on a rotating platform for
20 min. After centrifugation for 5 min at 4

 

∞

 

C, supernatants
were collected and protein determinations performed.

For the electrophoretic mobility shift assay (EMSA), 7 

 

m

 

g
of nuclear extract protein was incubated with 

 

32

 

P-radiola-
belled NF

 

k

 

B-specific oligonucleotide (Amersham Bio-
sciences UK Ltd, Amersham, UK) for 20 min at room
temperature. Binding of NF

 

k

 

B nuclear proteins to the oligo-
nucleotide results in a retardation (‘shift’) of the electromo-
bility on a 5% nondenaturating polyacrylamide gel. These
shifts were visualized by phosphor-imaging using the Per-
sonal Molecular Imager® FX and software from BIO-RAD
Laboratories, Inc. Specificity of NF

 

k

 

B DNA binding was
ascertained by competition with excess unlabelled olignucle-
otides, resulting in disappearance of NF

 

k

 

B complexes, and
results are shown as either the mean percentage counts/mm

 

2

 

of the pneumolysin-free control system, or as the complete
phosphor-images for representative experiments.

Additional experiments were performed to investigate the
effects of the following on pneumolysin-mediated activation
of NF

 

k

 

B in neutrophils: (i) inclusion of the extracellular Ca

 

2+

 

-
chelating agent EGTA (10 m

 

m

 

, final) in the cell-suspending
medium; (ii) the effects of pretreatment of the cells for 5 min
with docosahexaenoic acid (DHA, 5 and 10 

 

m

 

g/ml, final), or
with diphenyleneiodonium chloride (10 

 

m

 

m

 

, final), an inhib-
itor of the activity of the phagocyte NADPH oxidase [22].

 

Interleukin-8

 

Neutrophils were preincubated for 10 min at 37

 

∞

 

C with and
without DHA (5 and 10 

 

m

 

g/ml) in HSA (0·5%) supple-
mented RPMI 1640, followed by the addition of a fixed con-
centration of 8·37 ng/ml, pneumolysin or an equal volume of
RPMI 1640 to control systems. This is the concentration of
pneumolysin which we have previously found to cause max-
imal synthesis of IL-8 by neutrophils [2]. The tubes, contain-
ing 2 

 

¥

 

 10

 

6

 

 cells in a final volume of 1 ml, were then
incubated for 6 h at 37

 

∞

 

C. Following removal of cells by cen-
trifugation, total IL-8 was assayed in the supernatants by an
antibody-capture ELISA procedure (Roche Diagnostics
GmbH, Mannheim, Germany).

 

Calcium influx

 

Neutrophils which had been preincubated for 10–15 min at
37

 

∞

 

C in Ca

 

2

 

+

 

-replete HBSS, to achieve filling of intracellular
stores, were washed and transferred to HBSS containing
100 

 

m

 

m

 

 CaCl

 

2

 

. After 9 min of incubation at 37

 

∞

 

C, 2 

 

m

 

Ci of

 

45

 

Ca

 

2

 

+

 

 (calcium-45 chloride, specific activity 13·27 mCi/mg;
Perkin Elmer Life Sciences, Boston, USA) was added to the
cells, followed by pneumolysin at a fixed, final concentration
of 8·37 ng/ml. The tubes which contained 10

 

7 neutrophils in
a total volume of 5 ml HBSS were incubated for a further
5 min at 37∞C, after which the reactions were stopped and
the cells washed twice with ice-cold PBS. The cell pellets
were then lysed and the radioactivity in the lysates deter-
mined by liquid scintillation spectrometry. The effects of
pretreatment of the cells with DHA (5 mg/ml) or EGTA
(10 mm) on pneumolysin-mediated Ca2+ influx were also
determined.

In an additional series of experiments designed to inves-
tigate possible direct, inactivating effects of DHA on pneu-
molysin, the toxin (4·137 mg/ml) was mixed with DHA
(50 mg/ml) for 5 min at 37∞C in a final volume of 100 ml
HBSS. This was followed by dilution (1 : 500) and assess-
ment of the influx of Ca2+ following treatment of neutrophils
with DHA-treated or -untreated toxin. The final concentra-
tion of pneumolysin was 8·37 ng/ml, while that of DHA was
0·1 mg/ml, which was without effect in the assay system.

To assess the requirement for continuous exposure of neu-
trophils to DHA to achieve antagonism of Ca2+ influx, neu-
trophils (2 ¥ 106/ml) in HBSS were incubated with the fatty
acid (5 mg/ml) for 10 min at 37∞C followed by addition of
bovine serum albumin (BSA, 5 mg/ml final) or an equal vol-
ume of HBSS to control cells followed by washing of the cells
(twice). The cells were resuspended in HBSS (2 ¥ 106/ml)
containing 100 mm CaCl2 and influx of 45Ca2+ measured
5 min after the addition of pneumolysin (8·37 ng/ml). The
responses of cells which had been treated with DHA followed
by washing with and without BSA were compared with those
of similarly processed cells to which DHA was added follow-
ing washing.
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Pneumolysin-binding assay

Neutrophils were preincubated with DHA (5 and 10 mg/ml)
for 10 min at 37∞C in HBSS followed by addition of the
eGFP-Ply construct (500 ng/ml) and a further incubation for
5 min at 37∞C. The final volume in each tube was 3 ml,
containing 2 ¥ 106 neutrophils/ml. Following incubation,
pneumolysin binding to neutrophils was determined flow
cytometrically using an Altra cell sorter equipped with a
water-cooled Coherent Enterprise laser (Beckman Coulter,
Miami, FL, USA). In an additional series of experiments,
neutrophils were pretreated with DHA (10 mg/ml) for 5 min
followed by washing of the cells, addition of pneumolysin
and measurement of binding of the toxin by the cells.

Haemolytic activity of pneumolysin

Human erythrocytes were used to investigate the effects of
DHA (5 mg/ml) on the haemolytic activity of pneumolysin
(4·19 and 8·37 ng/ml). The erythrocytes, at a final concen-
tration of 0·5% in HBSS, were preincubated with DHA for
10 min at 37∞C followed by addition of pneumolysin and a
further incubation period of 35 min at room temperature.
Thereafter, the residual erythrocytes were pelleted by cen-
trifugation and haemolysis determined spectrophotometri-
cally at a wavelength of 450 nm according to the extent of
release of haemoglobin. Relative to neutrophils, erythrocytes
are more sensitive to the cytolytic actions of pneumolysin
[1].

Statistical analysis

Levels of statistical significance were calculated using the
paired Student’s t-test or by analysis of variance with a sub-
sequent Tukey-Kramer multiple comparisons test for multi-
ple groups. The level of statistical significance was P < 0·05.
The results of each series of experiments are expressed as the
mean values ± s.e.m.

Results

Activation of NFkkkkB in pneumolysin-treated neutrophils

Exposure of neutrophils to pneumolysin caused a time- and
dose-related activation of NFkB which was attenuated by
inclusion of EGTA in the cell-suspending medium or by pre-
treatment of the cells with DHA. As can be seen in Fig. 1, the
effects of pneumolysin at 41·75 ng/ml, were evident at
15 min (maximal) and 30 min, while those of 8·37 ng/ml
pneumolysin were statistically significant only at 30 min.
The effects of EGTA are also shown in Fig. 1 and demon-
strate complete attenuation of activation of NFkB following
exposure of neutrophils to pneumolysin at both 8·37 and
41·75 ng/ml.

The effects of DHA on activation of NFkB by pneumol-
ysin were measured only at 30 min after addition of the toxin
to neutrophils and are shown in Fig. 2. Activation of NFkB

Fig. 1. Effects of exposure of neutrophils to pneumolysin (Ply, 8·37 and 

41·75 ng/ml) for 15 min and 30 min in the absence and presence of 

EGTA (10 mm) on nuclear translocation of NFkB. The results are pre-

sented as the mean percentages ± s.e.m. of the corresponding pneumol-

ysin-free control systems (data from 12 experiments). *P < 0·05 for 

comparison with the pneumolysin-free control system.
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Fig. 2. Effects of pretreatment of neutrophils with docosahexaenoic acid 

(5 and 10 mg/ml) on pneumolysin (Ply, 8·37 and 41·75 ng/ml)-mediated 

nuclear translocation of NFkB following 30 min exposure to the toxin. 

The results are presented as the mean percentages ± s.e.m. of the pneu-

molysin-free control system (data from 6 experiments). *P < 0·05 for 

comparison with the pneumolysin-free control system. DP < 0·05 for 

comparison with the corresponding pneumolysin-treated, DHA-free 

system.
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by pneumolysin was effectively antagonized by DHA at
10 mg/ml, and to a lesser extent at 5 mg/ml.

Representative phosphor-images from experiments
designed to investigate the effects of EGTA and DHA on
pneumolysin-mediated activation of NFkB in neutrophils
are shown in Fig. 3.

Pneumolysin-mediated activation of NFkB was unaf-
fected by DPI (not shown).

Effects of pneumolysin on interleukin-8 by neutrophils

As reported previously [2], exposure of neutrophils to pneu-
molysin was accompanied by an increase in the synthesis of
IL-8, which was attenuated by treatment of the cells with
DHA. In the absence of pneumolysin, the amounts of
IL-8 produced by neutrophils only, or neutrophils treated
with 5 or 10 mg/ml DHA were 324 ± 27·8, 361 ± 39·9 and
371 ± 60·2 pg/ml, respectively. The corresponding values for
cells treated with the toxin (8·37 ng/ml) were 578 ± 66·4,
363 ± 28·9 (P < 0·05), and 365 ± 33·1 (P < 0·05) pg/ml (data
from 3 experiments with 5 replicates in each). EGTA was not
included in these experiments because we have previously

reported that this agent completely abolished pneumolysin-
induced synthesis of IL-8 by neutrophils [2].

Pneumolysin effects on calcium influx

The effects of DHA (5 mg/ml) and EGTA (10 mm) on the
influx of Ca2+ into neutrophils following exposure to pneu-
molysin (8·37 ng/ml) are shown in Tables 1 and 2,
respectively. Treatment of neutrophils with pneumolysin was
accompanied by influx of Ca2+, which is in agreement with
previous studies using spectrofluorimetric procedures
[1,12]. Pneumolysin-mediated influx of Ca2+ was completely
eliminated by inclusion of EGTA in the cell-suspending
medium and substantially decreased by pretreatment of the
cells with DHA.

Exposure of pneumolysin (4·137 mg/ml) to DHA (50 mg/
ml) for 5 min at 37∞C followed by dilution (1 : 500) and
measurement of toxin (8·37 ng/ml)-mediated influx of 45Ca2+

into neutrophils was not accompanied by detectable loss of
the pore-forming actions of the toxin (data not shown).

Treatment of neutrophils with DHA (5 mg/ml) followed
by washing only (twice), or especially pretreatment with

Fig. 3. Phosphor-images showing the effects of 

pneumolysin (Ply 8·37 and 41·75 ng/ml) on 

nuclear translocation of NFkB in human neutro-

phils in the absence and presence of (a) 10 mm 

EGTA or (b) 5 and 10 mg/ml docosahexaenoic 

acid (DHA). Neutrophils were treated with 

pneumolysin for 15 min at 37∞C in the absence 

and presence of EGTA or DHA and the nuclear 

extracts then analysed by electrophoretic mobil-

ity shift assay.
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Table 1. Effects of docosahexaenoic acid (DHA) treatment of neutro-

phils on pneumolysin-mediated influx of Ca2+

System

Amount of cell-associated 45Ca2+  

(pmoles/107 cells/5 min)

Neutrophils only 180 ± 10

Neutrophils + 5 mg/ml DHA 224 ± 19

Neutrophils + 8·37 ng/ml

pneumolysin

2406 ± 50*

Neutrophils + DHA +
pneumolysin

332 ± 23

The results are expressed as the mean values ± s.e.m. of a single

representative experiment (3 in the series) with 6 replicates for each

system. *P < 0·05 for comparison with each of the other systems.

Table 2. Effects of addition of EGTA to the neutrophil-suspending 

medium on pneumolysin-mediated influx of Ca2+

System

Amount of cell-associated 45Ca2+  

(pmoles/107 cells/5 min)

Neutrophils only 179 ± 6
Neutrophils + 10 mm EGTA 132 ± 5
Neutrophils + 8·37 ng/ml

pneumolysin

2031 ± 91*

Neutrophils + EGTA +
pneumolysin

160 ± 10

The results are expressed as the mean values ± s.e.m. of a single

representative experiment (2 in the series) with 5 replicates for each

system. *P < 0·05 for comparison with each of the other systems.
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BSA (5 mg/ml) followed by washing, attenuated the inhibi-
tory effects of DHA on influx of 45Ca2+ on subsequent
exposure of the cells to pneumolysin (8·37 ng/ml). Wash-
ing only, or BSA treatment + washing in particular, signifi-
cantly (P < 0·05) reduced the protective effects of DHA
on toxin-mediated influx, the values being 1718 ± 68,
189 ± 36, 1195 ± 59 and 1449 ± 55 pmoles 45Ca2+/107 cells/
5min for the pneumolysin control system and for systems
with DHA present throughout, DHA + washing only, and
DHA + BSA + washing, respectively (data from 5 measure-
ments with values for spontaneous uptake of 45Ca2+

subtracted).

Pneumolysin binding to neutrophils

The effects of DHA (5 and 10 mg/ml) on the binding of
pneumolysin to neutrophils are shown in Fig. 4. DHA antag-
onized the binding of the toxin to the cells. In a larger series
of experiments, the mean percentages inhibition (reduction
in fluorescence intensity) of uptake of pneumolysin by cells
treated with 5 and 10 mg/ml DHA were 18 ± 5 and 45 ± 7
(P < 0·05), respectively (data from 3 separate experiments
with 4 replicates in each). Pretreatment of neutrophils with
DHA (10 mg/ml), followed by washing of the cells also
resulted in decreased binding of pneumolysin to the cells,
compatible with a cell-directed mechanism of action of
DHA, as opposed to direct inactivation of the toxin (results
not shown).

Pneumolysin-mediated haemolysis

The mean percentages haemolysis observed following treat-
ment of human erythrocytes with pneumolysin at 8·37 ng/
ml alone or in the presence of 5 mg/ml DHA were 56·3 ± 2
and 44 ± 1·4, respectively (data from 2 experiments with 8
replicates for each system in each experiment; P < 0·05). The
corresponding values for treatment of erythrocytes with
4·19 ng/ml pneumolysin in the presence and absence of 5 mg/
ml DHA were 33·3 ± 1·7% and 22·7 ± 1·3 (P < 0·05).

Discussion

In the current study, we have demonstrated that NFkB is
activated following exposure of neutrophils to pneumolysin,
which is accompanied by synthesis of IL-8. Compatible with
these findings, IL-8 gene expression in neutrophils and other
types of inflammatory cells has been reported to involve
coordination of several mechanisms, including transcrip-
tional activation by the NFkB and JUN-N terminal protein
kinase pathways [23]. Activation of NFkB by pneumolysin
has previously been described in murine macrophages [24],
but not, to our knowledge, in human neutrophils. However,
the mechanism of pneumolysin-mediated activation of the
transcription factor in murine macrophages is clearly differ-
ent from that described in the current study for human neu-
trophils, since it is dependent on recognition by Toll-like
receptor 4 and requires considerably greater concentrations
of the toxin [24].

Increased cytosolic Ca2+ has been reported to result in acti-
vation of transcription factors in immune and inflammatory
cells, with activation of NFkB requiring a relatively large
increase in the concentration of the cation [25]. Such a
mechanism appears to be operative in the case of pneumol-
ysin-activated neutrophils. This contention is based on our
previous findings that pneumolysin, but not a mutant ver-
sion of the toxin inactivated with respect to pore-forming
activity, causes influx of Ca2+ into neutrophils [1,12], while
activation of NFkB by the toxin, as reported here, as well as
synthesis of IL-8, as reported previously [2], are attenuated
by the Ca2+-chelating agent, EGTA. The absence of effects of
DPI appears to exclude involvement of NADPH oxidase and
intracellular oxidative stress in the pneumolysin-mediated
activation of NFkB in neutrophils.

The proposed relationship between pneumolysin-medi-
ated influx of Ca2+, activation of NFkB and synthesis of IL-8
by neutrophils is strengthened by the finding that all of these
events were effectively antagonized by pretreatment of the
cells with DHA at concentrations which have been reported
to be cytoprotective for various eukaryotic cell types [26–
28]. Interestingly, data derived from mixing experiments
revealed that DHA does not cause direct inactivation of
pneumolysin, while extensive washing of DHA-treated cells,
and albumin pretreatment plus washing in particular, signif-
icantly reduced the inhibitory effects of the fatty acid

Fig. 4. Effects of docosahexaenoic acid (DHA, 5 and 10 mg/ml) on the 

binding of the eGFP-Ply construct (500 ng/ml) to neutrophils. The cells 

were treated with DHA for 5 min at 37∞C followed by addition of the 

construct and flow cytometric analysis of cell-associated toxin. The 

results shown are those of a single representative experiment with three 

in the series.
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on pneumolysin-mediated Ca2+ influx, demonstrating a
requirement for the continuous presence of DHA. These
findings, together with observations that pretreatment of
erythrocytes and neutrophils with DHA was accompanied
by decreased haemolysis and binding of pneumolysin,
respectively, appear to be compatible with a mechanism
whereby the polyunsaturated fatty acid interferes with the
binding of pneumolysin to target cells.

Nevertheless, we believe that other, as yet unidentified
mechanisms, are also likely to be operative. This contention
is based on the moderate levels of protection afforded by
DHA against pneumolysin (8·37 ng/ml)-mediated haemoly-
sis and binding of the toxin to neutrophils (21·8% and 18%,
respectively, at 5 mg/ml DHA) in comparison with the mag-
nitude of reduction of influx of Ca2+ (86%) into neutrophils.
In this respect it is noteworthy that polyunsaturated fatty
acids have been reported to stimulate the plasma membrane
Ca2+-ATPase (Ca2+ efflux) of eukaryotic cells [29], and to
antagonize influx of Ca2+ via interference with various types
of Ca2+ channels, including receptor-operated-, l-type volt-
age-gated-, and store-operated Ca2+ channels, as well as the
Na+/Ca2+ exchanger, preventing Ca2+ overload [26–28,30–
35]. DHA has also been reported to cause a modest transient
increase in cytosolic Ca2+ into neutrophils [36], which could
conceivably sensitize cellular Ca2+ exclusion mechanisms.
The absence of an exact correlation between the magnitudes
of inhibition of pneumolysin-mediated activation of NFkB
and influx of Ca2+ mediated by 5 mg/ml DHA (50% and 86%,
respectively) may reflect the higher concentration of neutro-
phils used in the NFkB assay relative to the Ca2+ influx system
(5 ¥ 106/ml and 2 ¥ 106/ml).

Although we have focused on interference with NFkB in
neutrophils, we believe that the antagonistic effects of DHA
on transcription factor activation are likely to be more
broadly operative, extending to other inflammatory cell
types, as well as to other microbial toxins, including, but not
limited to pore-forming toxins. This view is supported by
observations that DHA inhibits TLR-4 dependent activation
of NFkB in lipopolysaccharide-activated macrophages,
probably by antioxidative mechanisms distinct from those
described in the current study [37–39]. The broad spectrum
anti-inflammatory potential of DHA in controlling infec-
tion-associated, over-exuberant inflammatory responses, is
supported by observations that tissue levels of DHA are
decreased in patients with cystic fibrosis, as well as in cystic
fibrosis-knockout mice [40,41]. Interestingly, administra-
tion of DHA to cystic fibrosis-knockout mice was found to
counter neutrophil pro-inflammatory activity associated
with pseudomonas lipopolysaccharide-induced pneumonia
[41].

Although the findings of the current study underscore the
pro-inflammatory interactions of pneumolysin with neutro-
phils, the toxin has also been reported to interfere with the
functions of these cells [42], which may also contribute to
microbial persistence. Clearly the involvement, if any, of

pneumolysin-mediated augmentation of the pro-inflamma-
tory activities of airway neutrophils and monocytes/mac-
rophages [43,44], in causing damage to epithelial barriers,
thereby facilitating extra-pulmonary dissemination of the
pneumococcus, remains to be conclusively established
[45,46]. Nevertheless, our observations that the toxin, at
pathophysiologically relevant concentrations, causes Ca2+-
dependent activation of NFkB and synthesis of IL-8 by neu-
trophils, which are antagonized by DHA, appear to warrant
further evaluation of the therapeutic potential not only of
omega-3 polyunsaturated fatty acids, but possibly other
types of fatty acids, in models of experimental pneumococcal
disease.
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