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Summary

 

Capsular polysaccharide from 

 

Actinobacillus actinomycetemcomitans

 

 Y4 (Y4
CP) induces bone resorption in a mouse organ culture system and osteoclast
formation in mouse bone marrow cultures, as reported in previous studies.
We also found that Y4 CP inhibits the release of interleukin (IL)-6 and IL-8
from human gingival fibroblast (HGF). Thus Y4 CP induces various responses
in localized tissue and leads to the secretion of several cytokines. However, the
effects of Y4 CP on human monocytes/macrophages are still unclear. In this
study, THP-1 cells, which are a human monocytic cell line, were stimulated
with Y4 CP, and we measured gene expression in inflammatory cytokine and
signal transduction pathways. IL-1

 

b

 

 and tumour necrosis factor (TNF)-

 

a

 

mRNA were induced from Y4 CP-treated THP-1 cells. IL-1

 

b

 

 mRNA expres-
sion was increased according to the dose of Y4 CP, and in a time-dependent
manner. IL-1

 

b

 

 mRNA expression induced by Y4 CP (100 

 

m

 

g/ml) was approx-
imately 7- to 10-fold greater than that in the control by real-time PCR anal-
ysis. Furthermore, neither PD98059, a specific inhibitor of extracellular
signal-regulated kinase nor SB203580, a specific inhibitor of p38 kinase pre-
vented the IL-1

 

b

 

 expression induced by Y4 CP. However, JNK Inhibitor II, a
specific inhibitor of c-Jun N-terminal kinase (JNK) prevented the IL-1

 

b

 

mRNA expression induced by Y4 CP in a concentration-dependent manner.
These results indicate that Y4 CP-mediated JNK pathways play an important
role in the regulation of IL-1

 

b

 

 mRNA. Therefore, Y4 CP-transduced signals
for IL-1

 

b

 

 induction in the antibacterial action of macrophages may provide a
therapeutic strategy for periodontitis.
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Introduction

 

Periodontitis is a chronic inflammatory disease character-
ized by gingival inflammation and alveolar bone resorption.
Periodontitis is often caused by infections with Gram-nega-
tive bacteria including 

 

Actinobacillus actinomycetemcomitans

 

[1,2] and 

 

Porphyromonas gingivalis

 

 [3,4]

 

.
A. actinomycetemcomitans

 

 is a gram-negative, capno-
philic, fermentative coccobacillus that has been implicated in
the aetiology and pathogenesis of several forms of periodon-
tal disease [1]. Clinical, microbiological, and immunological
studies have explored the correlation between 

 

A. actinomyce-
temcomitans

 

 and several types of periodontitis [5,6]. 

 

A.
actinomycetemcomitans

 

 produces several tissue-damaging
products such as leukotoxin [7,8], lipopolysaccharide (LPS),

capsular polysaccharide [9–11], alkaline and acid phos-
phatases, an epitheliotoxin, a fibroblast inhibitory factor, and
a bone resorption-inducing toxin [5].

Amano 

 

et al

 

. [12] extracted a serotype-specific capsular
polysaccharide-like antigen from whole cells of 

 

A.
actinomycetemcomitans

 

 Y4 (serotype b) by autoclaving,
purified it by ion-exchange chromatography and gel
filtration, and showed that it is a polymer that consists of a
repeating disaccharide unit 

 

-

 

3)–d-fucopyranosyl-(1,2)-l-
rhamnopyranosyl-(1–. Previous studies have shown that 

 

A.
actinomycetemcomitans

 

 Y4 capsular polysaccharide (Y4 CP)
induces IL-1 from a mouse macrophage cell line [13], bone
resorption in a mouse organ culture system and osteoclast
formation in mouse bone marrow cultures [14,15]

 

,

 

 and
inhibits the release of IL-6 and IL-8 from human gingival
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fibroblasts [16]. On the other hand, the fact that LPS is a
bacterial component of gram-negative bacteria was revealed
in studies on the details of innate immune responses
through gene expression and signal transduction pathways
[17,18]. LPS induces mitogen-activated protein kinases
(MAPKs), including extracellular signal-regulated kinase
(ERK), c-jun NH2-terminal protein kinase (JNK), and p38
mitogen-activated  protein  kinase  (p38).  These  play  key
roles  in  LPS-mediated signal transduction between
extracellular membrane stimulation and the cytoplasmic
response and nuclear activity in the activation of the gene
[19,20].

However, there has still been no report on the effect of Y4
CP on human immunocytes. In this study, we found that Y4
CP affected the gene expression of inflammatory cytokine in
macrophages, which play an important role in host defense
and inflammation, and examined which signal transduction
pathways are used in this gene expression.

 

Materials and methods

 

Cell culture protocol

 

THP-1 cells were differentiated to macrophage as follows.
THP-1 cells (Dainippon Pharmaceutical Co., Ltd. Japan)
were grown in RPMI 1640 supplemented with 10% FCS,
2 mM 

 

l

 

-glutamine and 2 

 

¥

 

 10

 

-

 

5

 

 M 2-ME in 5% CO

 

2

 

-air
humidified atmosphere at 37

 

∞

 

C. THP-1 cells were treated
with 50 nM 1,25-dihydroxy-vitamin D

 

3

 

 (Calcitriol, Wako,
Japan) for 72 h, washed three times with PBS and allowed to
rest overnight in RPMI 1640 with 5% FCS [21].

 

Microorganisms

 

A. actinomycetemcomitans

 

 Y4 (serotype b) were grown in
Todd-Hewitt broth (Difco Laboratories, Detroit, MI, USA)
supplemented with 1% (wt/vol) yeast extract at 37

 

∞

 

C for 3
days in an atmosphere of 5% CO

 

2

 

 [22]. The organisms were
harvested by centrifugation, washed three times with dis-
tilled water, and lyophilized.

 

Extraction of Y4 CP

 

The lyophilized cell suspension (300 mg/ml) in saline was
autoclaved at 121

 

∞

 

C for 15 min [23]. After being autoclaved,
the suspension was cooled and centrifuged at 10 000 

 

¥

 

 

 

g

 

 for
20 min, and the supernatant was collected. Extraction was
repeated on residual whole cells. The supernatants were
combined, dialysed extensively with distilled water, and
lyophilized.

 

Purification of Y4 CP

 

Serotype antigens were purified according to the method of
Amano 

 

et al

 

. [12]. The autoclaved extracts of

 

A. actinomycetemcomitans

 

 Y4 were solubilized with 0·01 M
Tris hydrochloride, pH 8·2, to give a final concentration of
100 mg (dry weight) of bacterial extract per ml and dialysed
against the buffer at 4

 

∞

 

C for 2 days. A 5 ml portion of the
antigen suspension was applied to a column of DEAE-
Sephadex A-25 (2 

 

¥

 

 30 cm; Pharmacia Fine Chemicals, Pis-
cataway, NJ, USA) that had been equilibrated with the buffer
and eluted with 200 ml of the buffer followed by a linear gra-
dient of 0 to 1 M NaCl in the buffer at 4

 

∞

 

C. Fractions (10 ml
each) were monitored for total sugar, protein, and phospho-
rus. Fractions that showed a positive reaction with anti-

 

A.
actinomycetemcomitans

 

 Y4 serum by immunodiffusion were
combined and concentrated in a rotary evaporator. These
preparations were dialysed with distilled water at 4

 

∞

 

C for 3
days, applied to a column of Sephacryl S-300 (1·5 

 

¥

 

 100 cm;
Pharmacia), and eluted with distilled water. Fractions that
contained the CP with serotype-specific antigens were
pooled and lyophilized.

 

RT-PCR assay and real-time PCR analysis

 

For RT-PCR, total cellular RNA was prepared using TRIzol
reagent. cDNA was synthesized from total RNA by the exten-
sion of random primers with 200 U of Superscript II. PCR of
the cDNA was performed using AccuPower PCR PreMix
(BIONEER, Daejeon, Korea), which contains specific prim-
ers at 20 pmol. The following primers were showed at
Table 1. The synthesized PCR products were separated by
electrophoresis on 1·5% agarose gel and visualized by ethid-
ium bromide staining. To quantify IL-1

 

b

 

 mRNA, real-time
PCR was performed using an ABI Prism 7000 (Applied Bio-
systems, Foster City, CA, USA) with TaqMan Universal PCR
master mixture (Applied Biosystems). For PCR, 5 

 

m

 

l of sam-
ple was directly added to 45 

 

m

 

l of a RT-PCR mixture pre-
pared from 2

 

¥

 

 RT-PCR TaqMan Universal PCR master
mixture containing each primer at a concentration of 1 

 

m

 

M,
2 mM MgCl, and 100 

 

m

 

M probe. The cycle parameters were
as follows: 3 min at 95

 

∞

 

C and 40 cycles of 1 min at 95

 

∞

 

C,
1 min at 52

 

∞

 

C, and 1 min 30 s at 72

 

∞

 

C. Cycling was preceded
by incubation for 10 min at 95

 

∞

 

C to activate AmpliTaq Gold.
For reverse transcription, all of these steps were preceded by
30 min of incubation at 48

 

∞

 

C. Amplification mixtures were
analysed using the ABI Prism detection system. Changes in
gene expression were assessed using the comparative Ct
method. (http://docs.appliedbiosystems.com/pebiodocs/
04303859.pdf)

 

Inhibitors

 

PD98059, a specific inhibitor of extracellular signal-
regulated kinase (ERK), SB203580, a specific inhibitor of p38
kinase, and JNK inhibitor II, a specific inhibitor of c-Jun N-
terminal kinase (JNK), were purchased from Calbiochem-
Novabiochem (La Jolla, CA, USA).

http://docs.appliedbiosystems.com/pebiodocs/
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Statistical analysis

 

Data were analysed using the SPSS II software package (SPSS
Japan Inc., Tokyo, Japan). The experimental groups were
compared by one-way 

 

anova

 

 with the Tukey HSD-test.

 

Results

 

Y4 CP-induced IL-1

 

b

 

 mRNA expression in 
undifferentiated and differentiated THP-1 cells

 

The reactivity of Y4 CP in undifferentiated and differentiated
THP-1 cells was evaluated by the induction of IL-1

 

b

 

 mRNA
which is secreted from monocyte/macrophage. Both cell
groups were treated with or without Y4 CP (100 

 

m

 

g/ml) for
4 h. After treatment, total RNA was harvested, and IL-1

 

b

 

mRNA expression was analysed by RT-PCR. The densities of
PCR products were expressed numerically using NIH image
(N.I.H. USA). The densities of undifferentiated and differ-
entiated THP-1 cells were standardized by GAPDH of each
group. The ratio of undifferentiated or differentiated 

 

versus

 

control was calculated by the density of each. The ratios of
undifferentiated and differentiated THP-1 cells were 1·68
and 3·11, respectively (Fig. 1a). Furthermore, quantitative
analysis was performed by real-time PCR. While IL-1

 

b

 

mRNA expression of undifferentiated THP-1 cells was
approximately 3-fold that in the control, IL-1

 

b

 

 mRNA
expression in differentiated THP-1 cells was approximately
6-fold that in the control upon Y4 CP stimulation (Fig. 1b).

 

Inflammatory cytokine mRNA expression compared to 
that of IL-1

 

b

 

Monocyte and macrophage are well known to secrete not
only IL-1

 

b

 

 but also other inflammatory cytokines. There-
fore, mRNA expression of TNF-

 

a

 

, IL-6, IL-12 and IL-18
from differentiated THP-1 cells that had been stimulated

 

Table 1.

 

Primer sequences used for RT-PCR.

Human gene Sequence Product size

IL-1

 

b

 

sense AAA CAG ATG AAG TGC TCC TTC AGG

 

390 

 

bp

antisense TGG AGA ACA CCA CTT GTT GCT CCA

IL-6 sense GTG TTG CCT GCT GCC TTC CCT G 320 bp

antisense CTC TAG GTA TAC CTC AAA CTC CAA

TNF-

 

a

 

sense CAG AGG GAA GAG TTC CCC AG

 

324 

 

bp

antisense TGG AGA ACA CCA CTT GTT GCT CCA

IL-12p35 sense CAC TCC AGA CCC AGG AAT GT 293 bp

antisense TAC TAA GGC ACA GGG CCATC

IL-12p40 sense AAG GAG GCG AGG TTC TAA GC 414 bp

anitsense TGA TGA AGA AGC TGC TGG TG

IL-18 sense GCT TGA ATC TAA ATT ATTATC AGT C 334 bp

antisense CAA ATT GCA TCT TAT TAT CAT G

GAPDH sense GTC TTC ACC ACC ATG GAG AAG GCT 393 bp

antisense CAT GCC AGT GAG CTT CCC GTT CA

 

Fig. 1.

 

Y4 CP–induced IL-1

 

b

 

 mRNA expression in undifferentiated and 

differentiated THP-1 cells. To confirm the reactivity of Y4 CP, undiffer-

entiated and differentiated THP-1 cells were examined with regard to 

IL-1

 

b

 

 mRNA expression. Both cell groups were cultured with Y4 CP 

(100 

 

m

 

g/ml) or medium alone (control) for 4 h. After treatment, total 

RNA was prepared. IL-1

 

b

 

 mRNA expression was analysed by RT-PCR. 

The densities of PCR products were expressed numerically using NIH 

image (N.I.H., USA). The densities of undifferentiated and differentiated 

THP-1 cells were standardized by GAPDH of each group. (a) The ratio 

of undifferentiated or differentiated 

 

versus

 

 control was calculated by the 

density of each. (b) IL-1

 

b

 

 mRNA expression was analysed by real-time 

PCR.
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with Y4 CP was examined by RT-PCR. As shown in Fig. 2,
the densities of PCR products were calculated using the same
formula as in Fig. 1: the ratios of IL-1

 

b

 

, TNF-

 

a

 

, IL-6, IL-12
p35, IL-12 p40 and IL-18 were 2·09, 1·89, 1·03, 1·10, 1·09,
and 1·11, respectively. IL-1

 

b

 

 and TNF-

 

a

 

 mRNA are both
strongly expressed by Y4 CP.

 

Quantitative analysis of IL-1

 

b

 

 mRNA expression in 
differentiated THP-1 cells after Y4 CP stimulation

 

The optimal dose and duration of culture are very important
for measuring mRNA expression. We treated differentiated
THP-1 cells with various concentrations (0, 10, 25, 50,
100 

 

m

 

g/ml) of Y4 CP for various durations (0, 1, 2, 4 h). After
stimulation, the expression of IL-1

 

b

 

 mRNA in differentiated
THP-1 cells was evaluated by real-time PCR. Treatment of
differentiated THP-1 cells with Y4 CP caused an increase in
the expression of IL-1

 

b

 

 mRNA in a dose and time-dependent
manner (Fig. 3a). When differentiated THP-1 cells were
stimulated with 100 

 

mg/ml Y4 CP for 4 h, Y4 CP induced
approximately 7- to 10-fold greater IL-1b mRNA expression
than that in the control.

Signal pathways in IL-1b mRNA expression

Various members of the MAPK family may modulate the
expression of IL-1b in stimulated monocytes/macrophages.
To investigate which MAPK pathway is involved in the
expression of IL-1b mRNA when differentiated THP-1 cells
are stimulated with Y4 CP, we used inhibitors of several
MAPKs (Fig. 4). Differentiated THP-1 cells were treated with
PD98059 (1–10 mM), SB203580 (1–10 mM), JNK Inhibitor II

Fig. 2. Expression of cytokine mRNAs in differentiated THP-1 cells 

stimulated with Y4 CP. Differentiated THP-1 cells were treated with Y4 

CP (100 mg/ml) or medium alone (control) for 4 h. After treatment, 

total RNA was prepared and inflammatory cytokine mRNA expression 

was examined by RT-PCR. The densities of PCR products were calcu-

lated using the same formula as in Fig. 1.
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Fig. 3. (a) Effect of Y4 CP on IL-1b mRNA expression in differentiated THP-1 cells. Differentiated THP-1 cells were cultured in the presence of 

different concentrations of Y4 CP (10–100 mg/ml) or without Y4 CP as a control. (b) Effect of the duration of culture (1–4 h) with Y4 CP (100 mg/

ml) on IL-1b mRNA expression in differentiated THP-1 cells. IL-1b mRNA levels were determined by real-time PCR. The results are expressed as 

ratios of the levels in the Control. Values shown are means+-standard deviations of triplicate assays. *P < 0·01 versus control.
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(1–10 mM), or vehicle (DMSO) for 30 min, respectively, and
then stimulated with Y4 CP (100 mg/ml) for 4 h.

Pretreatment of THP-1 with SB203580 led to a slight
decrease in the expression of IL-1b mRNA. However, signif-
icant differences were not observed upon pretreatment with
SB203580 or PD98059. On the other hand, JNK Inhibitor II
prevented the up-regulation of IL-1b mRNA expression in
Y4 CP-stimulated THP-1; indeed, the expression of IL-1b
mRNA was inhibited by 76% with 10 mM JNK Inhibitor II.

These findings suggest that the JNK pathway is probably
involved in mediating the response to Y4 CP (Fig. 5).

Discussion

Periodontitis is initiated by oral microbacteria such as
P. gingivalis or A. actinomycetemcomitans that induce an
inflammatory cascade, which stimulates host-mediated
tissue destruction. Recent advances in the understanding of

Fig. 4. Proposed model for signal transduction pathways of MAP kinase in the regulation of IL-1b expression.
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Fig. 5. Effects of protein kinase inhibitors, i.e. inhibitors of ERK (PD98059)(a), p38 (SB203580)(b) and JNK (SP600125)(c), on Y4 CP-induced IL-1b 

mRNA expression. Differentiated THP-1 cells were pretreated with PD98059, SB203580, or JNK Inhibitor II (1, 5, 1 0 mM) for 30min. Cells were then 

cultured with Y4 CP (100 mg/ml) for an additional 4 h. Values shown are means ± standard deviations of triplicate assays. *P < 0·01 versus Y4 CP 

stimulation without inhibitor.
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inflammation have provided insight into the mechanisms
involved in periodontal tissue destruction. Several mediators
appear to be involved, including a variety of cytokines pro-
duced by several different cell types. The primary mediators,
such as IL-1 and TNF, have been shown to contribute to sev-
eral events that are essential for the initiation of an inflam-
matory response and, ultimately, tissue destruction [24–26].
They can induce the up-regulation of adhesion molecules on
leucocytes and endothelial cells and stimulate the produc-
tion of chemokines, which are needed to recruit circulating
leucocytes. IL-1 also induces the expression of other media-
tors that amplify or sustain the inflammatory response, such
as prostaglandins, and the production of lytic enzymes, such
as matrix metalloproteinases; they also can enhance bacterial
killing and phagocytic activity [27]. Furthermore, IL-1 is
synergistic in its capacity to enhance bone resorption [28].
Although the periodontium has a high capacity for repair
following injury, in some situations cytokines may limit
repair by inducing apoptosis of matrix-producing cells [29].
Moreover, many studies have reported that gingival crevicu-
lar fluid (GCF) IL-1 levels are significantly elevated in all
forms of periodontitis,  compared to health or gingivitis
[30–39]. Ishihara et al. [30] reported that the degree of peri-
odontitis, classified according to alveolar bone resorption,
was correlated with the total amounts of IL-1a and IL-1b in
GCF and the level of an IL-1 activity index. Thus, IL-1 is a
significant and integral component of the host response to
periodontal infection.

A. actinomycetemcomitans is a major pathogenic bacte-
rium that is responsible for aggressive periodontitis (local-
ized juvenile periodontitis). A. actinomycetemcomitans LPS
has been shown to play a role in cellular and humoral immu-
nity and inflammatory bone resorption in vitro. For exam-
ple, LPS from A. actinomycetemcomitans induced IL-1 and
prostaglandin E2 production from calvarial organ cultures,
and IL-1 is responsible for the induction of bone resorption
[40] and osteoclast formation in mouse bone marrow
cultures [41]. LPS from A. actinomycetemcomitans also
induces IL-6, which is related to the proliferation and mat-
uration of plasma cells, and is produced by monocytes [42]
and human gingival fibroblasts [43]. However, the biological
activities of A. actinomycetemcomitans CP are completely dif-
ferent from those of A. actinomycetemcomitans LPS. For
instance, while A. actinomycetemcomitans LPS induces IL-6
production, its CP reduces the production of IL-6 by gingival
fibroblasts. Therefore, it seems there are different signalling
pathways among A. actinomycetemcomitans LPS and CP in
immunocytes.

Y4 CP induced IL-1b mRNA expression in both un-
differentiated and differentiated THP-1 cells. Differentiated
THP-1 cells showed significantly increased IL-1b mRNA ex-
pression compared to undifferentiated THP-1 cells (Fig. 1).
The cell markers CD14 and CD11a, which are involved in
cell signalling in response to a range of bacterial pathogen-
associated molecular patterns, are both increased upon

treatment of these cells with vitamin D3 [44]. In our exper-
iments, increased IL-1b expression might help explain the
enhanced sensitivity of cells to Y4 CP. We previously re-
ported that Y4 CP could increase osteoclast formation in
mouse bone marrow culture systems, and concluded that IL-
1 secreted by bone marrow cells after Y4 CP stimulation
might induce osteoclast formation. This previous study sup-
ports the notion that Y4 CP affects immunocytes such as
monocyte/macrophage in bone marrow cells. However, IL-
1b production was not able to detected though mRNA ex-
pression was observed in this experiment. We speculate that
Y4 CP might induce the IL-1b mRNA expression only and
other Y4 component such as leukotoxin will activate the
caspase-1 activity, and it will help to produce the mature IL-
1 production [45].

A recent study has shown that the induction of the IL-1b
gene in mouse calvarial bone cells stimulated with P. gingi-
valis fimbria is regulated by transcriptional factor activation
protein-1 [46]. In contrast, in A. actinomycetemcomitans, IL-
1b expression was only measured upon LPS stimulation
[47,48], and not with other A. actinomycetemcomitans com-
ponents. Our previous studies have only considered cytokine
production in vitro. Therefore, there is no evidence concern-
ing signalling molecules. The MAPK pathway is one of the
major modulators of cytokine mRNA expression; conse-
quently MAPK pathways were examined under our experi-
mental conditions. JNK inhibitor II, a specific inhibitor of
JNK, significantly and additively suppressed IL-1b mRNA
expression along with Y4 CP. On the other hand, PD98059
and SB203580, specific inhibitors of ERK1/2 and p38 kinase,
had no effect on IL-1b expression by Y4 CP. These results sug-
gest that at least a JNK pathway is essential for IL-1b expres-
sion after the stimulation of THP-1 cells with Y4 CP.

Many reports deal with IL-1b expression induced by LPS
in monocyte/macrophage and related signalling pathways.
LPS induces MAPKs, including ERK, JNK and p38. These
molecules play key roles in LPS-mediated signal transduc-
tion between extracellular membrane stimulation and the
cytoplasmic response and nuclear activity in the activation of
the gene [19,20]. Specifically, ERK activation involves cyto-
kine induction and regulation during responses to bacterial
products [49–51]. In addition to responding to numerous
physiological and stress stimuli [52–55], JNK is considered
to play roles in regulating the expression of various stress-
induced proteins and inflammatory cytokines [55,56]. p38 is
activated in response to stress signals such as LPS, osmotic
stress, and pro-inflammatory cytokines [51,57–59]. Previous
studies have shown that the p38 pathway plays a critical role
in LPS-stimulated cytokine release [49,59], including IL-1
and TNF induction in monocytes [20]. In this study, the JNK
pathway was shown to be important not only for LPS- but
also for Y4 CP-stimulated IL-1b expression. Many of the
downstream targets of the JNK pathway are transcription
factors, including c-Jun, ATF-2, and Elk-1 [60]. These
transcription factors regulate various genes that encode
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inflammatory mediators. In addition, a JNK pathway inhib-
itor also blocked gene transcription and reduced protein
production. For example, the immunosuppressant dexam-
ethasone reduced the LPS-induced translation of TNF-a
mRNA by selectively inhibiting the JNK pathway [61]. The
JNK-to-c-jun pathway is important for cell apoptosis and the
cell cycle, and Y4 CP also induced osteoblast apoptosis [62].
Therefore, further studies are warranted to examine Y4 CP-
induced apoptosis in macrophage through a JNK pathway.
Recently, it is find that TLRs are important for the recogni-
tion of various bacterial components. Previous our group
indicated that Y4 CP induces to make osteoclast formation in
C3H/HeJ mouse bone marrow cells [15]. It is thought that
the recognition of Y4 CP does not need TLR4. However, the
rest of TLRs necessity for Y4 CP recognition of THP-1cells is
still unknown. Therefore, TLRs and Y4 CP relationship will
discover for future project.

In conclusion, the present results showed that A. actino-
mycetemcomitans Y4 CP induces IL-1b gene expression in
macrophage. Our results also suggest that the bioactivity of
Y4 CP is at least mediated by the activation of JNK. The cur-
rent data provide new insight into the induction of immune
responses by Y4 CP, and we believe that these findings may
be useful for further research into infectious diseases such as
periodontitis.
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