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In a turbulent boundary layer over a smooth flat plate with zero
pressure gradient, the intermediate structure between the viscous
sublayer and the free stream consists of two layers: one adjacent
to the viscous sublayer and one adjacent to the free stream. When
the level of turbulence in the free stream is low, the boundary
between the two layers is sharp, and both have a self-similar
structure described by Reynolds-number-dependent scaling (pow-
er) laws. This structure introduces two length scales: one—the
wall-region thickness—determined by the sharp boundary be-
tween the two intermediate layers and the second determined by
the condition that the velocity distribution in the first intermediate
layer be the one common to all wall-bounded flows and in
particular coincide with the scaling law previously determined for
pipe flows. Using recent experimental data, we determine both
these length scales and show that they are close. Our results
disagree with the classical model of the ‘‘wake region.’’

Turbulent boundary layer flow over a smooth flat plate
outside a close vicinity of the plate tip contains two unam-

biguous elements: the viscous sublayer adjacent to the plate,
where the velocity gradient is large and the viscous stress is
comparable with the Reynolds stress, and the statistically uni-
form free stream.

According to classical theory (1), the region intermediate
between these two consists of two layers with different proper-
ties. The first, adjacent to the viscous sublayer, is a universal,
Reynolds-number-independent logarithmic layer. In the second,
the ‘‘wake region,’’ there is a smooth transition from the
universal logarithmic layer to the free stream.

Our analysis of all available experiments (224) contradicts
this classical theory. Indeed, in the clear-cut case of a smooth
plate and low free stream turbulence, the intermediate structure
does consist of two layers. However, the boundary between them
is sharp. Most important, both layers are self-similar, substan-
tially Reynolds-number-dependent, and described by different
scaling laws. It is interesting to note (see the details below) that
the same configuration of two self-similar layers with a sharp
interface between them can be seen in all runs used in ref. 1 for
the illustration of the wake region model.

We found it possible (224) to introduce a characteristic length
scale L such that the average velocity distribution in the first
intermediate layer coincides with Reynolds-number-dependent
scaling law obtained previously for pipe flows, when the Reyn-
olds number is chosen as ULyn, where U is the free stream
velocity and n is the fluid’s kinematic viscosity. The sharp
boundary between the self-similar intermediate layers also de-
fines a length scale l. We show, by analysis of experimental data,
that these two length scales l and L are close.

Background. In a previous paper (2), we noted that when the
turbulence level in the free stream is small, the intermediate
structure between the viscous sublayer and the free stream
consists of two self-similar layers: one adjacent to the viscous

sublayer where the average velocity profile is described by the
scaling law

f 5 Aha [1]

and one adjacent to the free stream where

f 5 Bhb . [2]

Here,

f 5
u

u*
, u* 5 Ît

r
, h 5

u*y

n
, [3]

u is the average velocity; t is the shear stress at the wall; r and
n are the fluid density and kinematic viscosity; and A, B, a, and
b are Reynolds-number-dependent constants.

Fig. 1. Examples of Österlund’s mean velocity data presented on the internet
in bilogarithmic coordinates.
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Our processing of all experimental data available in the
literature (3, 4) confirmed these observations and showed that
it is always possible to find a length scale L such that, setting Re 5
ULyn, we can represent the scaling law of Eq. 1 in the form

f 5 S 1
Î3

lnRe 1
5
2Dh

3
2lnRe

[4]

obtained by us earlier for pipe flows (see, e.g., ref. 5). This result
suggests that the structure of wall regions in all wall-bounded
shear flows at large Reynolds numbers is identical, if the length

scale and velocity scale are selected properly. The natural
question is, however, what is the physical meaning of this length
scale L in boundary layer flow? This question is of substantial
importance and should be clarified for proper understanding of
the identity of scaling laws for different wall-bounded shear
flows.

We note that the intermediate structure has another char-
acteristic length scale l—the wall-region thickness—
determined by the sharp intersection h 5 h* of the two velocity
distribution laws f 5 Aha and f 5 Bhb valid in the different
layers. We have

Ah*
a 5 Bh*

b , [5]

such that

h* 5 SA
BD

1
b2a

,
[6]

and the wall-region thickness l is determined by the relation

l 5 SA
BD

1
b2a n

u*
. [7]

Table 1. Processing of the Österlund data

Reu a A b B ln(Re1) ln(Re2) ln(Re) d, % U u* h*

10,161 0.142 8.43 0.196 5.82 10.27 10.54 10.41 2.5 53.71 1.91 1.0 E13
10,313 0.140 8.51 0.202 5.53 10.41 10.74 10.58 3.0 37.44 1.33 1.1 E13
10,386 0.139 8.58 0.204 5.45 10.53 10.81 10.67 2.6 21.21 0.75 1.1 E13
10,502 0.141 8.38 0.204 5.44 10.18 10.62 10.40 4.2 27.00 0.96 9.9 E12
11,733 0.139 8.56 0.199 5.57 10.50 10.77 10.63 2.5 42.75 1.50 1.2 E13
12,150 0.140 8.48 0.199 5.56 10.36 10.69 10.53 3.1 21.42 0.75 1.2 E13
12,239 0.139 8.55 0.200 5.50 10.47 10.79 10.63 3.0 32.40 1.14 1.3 E13
12,308 0.137 8.67 0.202 5.46 10.69 10.98 10.83 2.6 21.23 0.74 1.2 E13
12,633 0.137 8.61 0.209 5.16 10.59 10.96 10.77 3.4 21.42 0.75 1.3 E13
12,866 0.134 8.88 0.193 5.81 11.05 11.22 11.13 1.5 47.93 1.67 1.3 E13
12,886 0.137 8.65 0.200 5.52 10.65 10.95 10.80 2.7 26.91 0.94 1.3 E13
13,878 0.137 8.69 0.196 5.63 10.73 10.99 10.86 2.4 37.74 1.31 1.4 E13
14,207 0.132 9.01 0.191 5.87 11.28 11.39 11.33 1.0 26.54 0.92 1.4 E13
14,289 0.132 9.02 0.188 5.98 11.29 11.39 11.34 0.9 53.16 1.84 1.5 E13
14,972 0.134 8.81 0.198 5.51 10.92 11.16 11.04 2.2 32.37 1.11 1.6 E13
15,164 0.134 8.80 0.199 5.45 10.91 11.19 11.05 2.6 26.90 0.92 1.5 E13
15,182 0.130 9.03 0.199 5.45 11.32 11.53 11.42 1.9 26.75 0.92 1.5 E13
15,512 0.129 9.14 0.189 5.91 11.50 11.61 11.56 1.0 43.02 1.48 1.7 E13
16,422 0.131 9.08 0.185 6.05 11.39 11.43 11.41 0.3 31.67 1.08 1.8 E13
17,102 0.134 8.87 0.188 5.91 11.04 11.23 11.13 1.7 37.81 1.29 1.8 E13
17,279 0.129 9.15 0.187 5.95 11.52 11.62 11.57 0.8 48.37 1.64 1.9 E13
17,813 0.129 9.11 0.191 5.73 11.45 11.63 11.54 1.6 32.41 1.10 1.9 E13
17,901 0.135 8.75 0.196 5.51 10.82 11.12 10.97 2.7 32.21 1.09 1.8 E13
18,479 0.127 9.38 0.178 6.35 11.91 11.85 11.88 0.5 36.74 1.24 2.0 E13
18,720 0.126 9.34 0.183 6.08 11.85 11.87 11.86 0.2 53.63 1.81 2.0 E13
19,235 0.126 9.33 0.187 5.89 11.83 11.89 11.86 0.5 43.26 1.46 1.9 E13
20,258 0.127 9.25 0.188 5.81 11.69 11.80 11.75 0.9 37.40 1.25 2.0 E13
20,562 0.130 9.08 0.186 5.93 11.40 11.57 11.48 1.5 37.88 1.27 2.0 E13
20,958 0.125 9.44 0.180 6.16 12.02 12.03 12.02 0.1 48.68 1.63 2.3 E13
21,099 0.125 9.42 0.180 6.17 11.98 12.00 11.99 0.1 40.00 1.34 2.1 E13
22,579 0.123 9.54 0.179 6.19 12.19 12.16 12.18 0.3 52.61 1.75 2.4 E13
22,845 0.126 9.34 0.184 5.95 11.86 11.94 11.90 0.7 42.51 1.41 2.3 E13
23,119 0.123 9.52 0.177 6.28 12.16 12.15 12.15 0.1 45.35 1.50 2.3 E13
23,309 0.129 9.11 0.184 5.93 11.44 11.64 11.54 1.7 43.57 1.44 2.3 E13
23,870 0.121 9.70 0.177 6.30 12.46 12.42 12.44 0.4 46.45 1.53 2.3 E13
25,767 0.124 9.42 0.181 6.04 11.99 12.08 12.04 0.7 49.11 1.61 2.5 E13
25,779 0.125 9.30 0.187 5.74 11.79 11.96 11.87 1.5 48.29 1.58 2.7 E13
26,612 0.120 9.74 0.177 6.24 12.54 12.48 12.51 0.5 52.18 1.71 2.7 E13
27,320 0.124 9.54 0.173 6.42 12.20 12.13 12.17 0.6 54.04 1.76 3.0 E13

Table 2. Processing of the data used by Coles (1)

No. a A b B ln(Re1) ln(Re2) ln(Re) d, %

1 0.163 7.90 0.70 0.42 9.35 9.18 9.27 2
2 0.176 7.29 0.51 0.82 8.30 8.55 8.43 3
3 0.180 7.17 0.56 0.66 8.09 8.34 8.22 3
4 0.171 7.43 0.57 0.60 8.55 8.75 8.65 3
5 0.185 6.77 0.64 0.30 7.41 8.11 7.76 9
6 0.151 8.20 0.55 0.49 9.87 9.96 9.92 1
7 0.158 7.71 0.50 0.67 9.02 9.52 9.27 6
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On the other hand, the characteristic length scale L is deter-
mined by the relation

L 5 Re
n

U
5 Su*

U
DS n

u*
DRe , [8]

such that the ratio of these two scales is

L

l
5 Su*

U
ReD 1

h*
5 Su*

U
ReDSB

A
D

1
b2a

. [9]

Analysis of Experimental Data. We analyzed the recent data of
J. M. Österlund presented on the internet (www.mesh.kth.sey
;jensyzpgy). The data seem to us to be reliable, however much
we disagree with the processing and interpretation in the paper
by Österlund et al. (ref. 6; see also ref. 4). All 70 runs presented
on the internet give the characteristic broken-line average
velocity distribution in lg h, lg f coordinates (see the examples
in Fig. 1; all of the other cases are similar), such that the
possibility of determining A, a, B, b, and h* accurately from
these experimental data is unquestionable. These results are
presented in Table 1 for all of Österlund’s experiments where
Reu 5 Uuyn . 10,000. Here, u is the momentum thickness; the
runs in the Österlund’s experimental data are labeled by Reu.
The effective Reynolds number Re was obtained (4) by the
formula

lnRe 5
1
2
~lnRe1 1 lnRe2!, [10]

where lnRe1 and lnRe2 are the solutions of the equations

1
Î3

lnRe1 1
5
2

5 A,
3

2lnRe2
5 a, [11]

and the values of A and a were obtained by standard statistical
processing of Österlund’s data. For Reu . 10,000, the difference
d between lnRe1 and lnRe2 does not exceed 3%, such that they
coincide within experimental accuracy.
According to Eqs. 8 and 9,

lg
L

l
5 ~lgRe 2 lgh*! 1 lg

u*
U

. [12]

The data for u* and U are presented by Österlund on the internet
for each run. In Fig. 2, we present the values of lg(Lyl) for all
runs. The mean value of lg(Lyl) is approximately 0.2, such that
the characteristic length scale L is about 1.6 times the thickness
of the wall region.

If we take into account that L is calculated from the value
of Re and that lnRe, not Re itself, has been determined
from experiment, the ratios Lyl as shown in Fig. 2 are close
to 1.5.

We processed in refs. 3 and 4 the data of 90 zero-pressure-
gradient boundary layer experiments at low free stream turbu-
lence performed by different authors during the last 25 years—
all of the experiments of this kind available to us. Without
exception, all runs revealed identical configurations of the
intermediate structure in the boundary layer: two adjacent
self-similar layers separated by a sharp interface.

According to the classical model (1), the intermediate struc-
ture consists of the (universal) logarithmic layer and a non-self-
similar wake region smoothly matching the logarithmic layer. It
was natural to process also the very data used in ref. 1 for the
justification of the wake region model with the general proce-
dure we used on the other data. The data presented in figure 21
of ref. 1 were scanned and replotted in lg h, lg f coordinates as
was done for all experimental data processed in refs. 3 and 4.
Processing revealed the same broken-line structure, i.e., two
adjacent self-similar layers (see Table 2 and Fig. 3, where a
typical example is presented). The difference between lnRe1 and
lnRe2 determined from the wall layer data is small: this result
shows that the procedure is adequate. We conjecture that the

Fig. 2. The logarithm of the ratio of length scales L and l for various Reu

obtained by processing Österlund’s mean velocity data presented on the
internet.

Fig. 3. Example of mean velocity data of Klebanoff and Diehl, presented in
ref. 1, in bilogarithmic coordinates.
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values of b are larger than those in newer experiments because
of a nonzero pressure gradient in all these runs (see ref. 1). The
results of our processing fail to confirm the wake region model
proposed in ref. 1.

Conclusions. We have shown that one can find a length scale L,
such that, if the Reynolds number Re in a zero-pressure-gradient
boundary layer flow is defined by Re 5 ULyn, where U is the free
stream velocity and n is the kinematic viscosity, then the scaling
law for the self-similar region adjacent to the viscous sublayer
coincides with the scaling law for turbulence pipe flow. Using the

recent experimental data of Österlund (www.mesh.kth.sey
;jensyzpgy), we confirmed this fact and reached the important
conclusion that L is about 1.6 times the wall-region thickness.
Our results are in disagreement with the classical model of the
wake region in the boundary layer (1).
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