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Abstract
We used exact term matching, stemming, and inclusion of synonyms, implemented via the Lucene
information retrieval library, to discover relationships between the Gene Ontology and three other
OBO ontologies: ChEBI, Cell Type, and BRENDA Tissue. Proposed relationships were evaluated
by domain experts. We discovered 91, 385 relationships between the ontologies. Various methods
had a wide range of correctness. Based on these results, we recommend careful evaluation of all
matching strategies before use, including exact string matching. The full set of relationships is
available at compbio.uchsc.edu/dependencies.

1. Introduction
Lexical analysis of an ontology is a powerful tool for suggesting relationships between concepts
within the ontology [25,28,29,30,32] or among multiple ontologies [7,6]. However, there are
many possible text types to match between (e.g. term names, synonyms, and definitions) and
variations on matching techniques (e.g. stemming, case normalization, etc.), and there is no
reason to expect similar, and equally valid, results for all of them. Most importantly, the mere
existence of a match does not prove a valid relationship between concepts. In this paper, we
systematically evaluate three text matching techniques in two text types, and use domain
experts to evaluate the correctness of the resulting matches.

Recently, [7] demonstrated the utility of an external, publicly-available resource for finding
within-ontology relationships. They hypothesized that two GO terms that share a relationship
to a single ChEBI term are related to each other. They detected 771, 302 within-GO
relationships by finding sets of GO terms and synonyms that lexically matched a ChEBI term
or its synonyms. They noted that 55% of all GO terms contained 26% of all ChEBI terms,
totalling 20, 497 GO-ChEBI relationships. Implicit in their work is the assumption that
relationships found between GO and ChEBI terms are valid and meaningful. More recently
[6], they have proposed extending this technique to detect relationships between all OBO
ontologies.

Various ontology working groups have become interested in integrating external ontologies
into their own, and have pointed out some of the obstacles to doing this [15]. In this paper, we
show that a variety of publicly available resources can be exploited for large-scale, automated
suggestion of between-ontology relationships. We define a relationship as any direct or indirect
association between two ontological concepts.
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In this paper, we evaluate the following hypotheses:

1. Valid relationships exist between concepts from GO and from other OBO ontologies.

2. Gene Ontology definitions are a fruitful resource for discovering relationships
between concepts in ontologies.

3. Language processing techniques for discovering relationships have quantifiable and
variable rates of correctness.

A novel aspect of this paper as compared to [6] and [7] is that we make use of the text of GO
definitions. There is some history for using definitions in language processing applications,
particularly in the word sense disambiguation task [21]. More recently, [23] shows the value
of Gene Ontology definitions for predicting GeneRIFs. We also evaluate simple linguistic
processing techniques for term detection and normalization. The findings may be useful for
semi-automatically linking ontologies, whether to support reasoning tasks or annotation, and
also for detecting terms from ontologies in natural language texts.

1.1. Context and motivation
This research falls into the general category of semantic integration (SI). Semantic integration
is a currently active topic of research in the general computer science, artificial intelligence,
Internet, and data mining communities [26]. It has crucial roles to play in areas as diverse as
interoperability in Semantic Web Services [8], coreference resolution in free text [22], schema
and data matching in databases [12], and communication between intelligent agents and
resources [13]. There is much related work in the ontology community, e.g. [27] and [24]
among many others. Within the biomedical ontology literature, closely related work includes
the description-logic-based GONG project [33], in which GO metabolism terms were linked
to biological-substance terms from MeSH using lexical tools and term synonyms of UMLS.
[2], [19], [5] used various non-lexical techniques to find relations within GO.

Mapping vs. alignment of ontologies—Integration of multiple, independently produced
ontologies is an important task in molecular biology. One well-studied aspect of this task is
mapping, the identification of equivalent concepts in multiple ontologies [15,20,30]. This work
has shown some of the difficulties of textual analysis of biological ontologies. For example,
[30] points out that biological terminologies pose difficulties for standard normalization
procedures, since they often contain alphanumeric modifiers. Other problems include
synonymy and morphological variation [20].

Ontology alignment is the task of making overlapping concepts among multiple ontologies
compatible. Although mapping may be a part of alignment, the alignment task requires finding
meaningful relationships between non-identical concepts. The identification of such
relationships may also be valuable within an ontology, e.g. in order to improve compositionality
[25,32,28,29] or in defining and populating novel relationships. The work reported here is
relevant both to the mapping and to the alignment task.

Natural language processing—The relevance of locating concepts from an ontology in
free text is clear from the inclusion of this task in recent “bake-off” competitions in the NLP
community. The overall low performance on these tasks [4,16,9] demonstrates their difficulty.
The work in this paper can be thought of as a step towards recognizing OBO concepts in free
text: GO terms and definitions are themselves a type of semi-structured natural language, fitting
the sublanguage model but having enough complexity to be a challenge, while not being as
unstructured as the language of scientific abstracts.

JOHNSON et al. Page 2

Pac Symp Biocomput. Author manuscript; available in PMC 2007 March 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. Methods
Materials

We retrieved the current versions of the GO [1,15], ChEBI [11], Cell Type [3], and BRENDA
Tissue [31] ontologies from SourceForge. (In the remainder of this paper, when we say “(other)
OBO ontologies,” we mean the ontologies other than GO.) We chose these three other
ontologies because we expected high degrees of subject-matter overlap between them and GO,
and because they are in relatively advanced stages of development.

Finding relationships
We used Lucene [14] to search for the OBO concepts in GO. Lucene is a Java information
retrieval librarya. We modeled the GO concepts as documents to be retrieved, and the other
OBO concepts as search engine queries. We indexed the GO concepts, placing the terms and
definitions in distinct fields, which allowed us to search them separately. We constructed
Lucene phrasal queries from the other OBO concepts. This meant that for searches on multi-
word OBO concepts, word order could not vary and no words could intrude. Synonym queries
were done by constructing phrasal queries for each synonym, and then grouping the phrasal
queries with Boolean OR. Both indexing and searching require a Lucene class called an
analyzer. We used the WhiteSpace and Porter-Stemmer analyzers. Lucene gave us an efficient
and robust framework for carrying out searches and for manipulating their results.

Evaluation
We drew a random sample from the relationships proposed by each technique for each
ontology, for a total of 2,389 relationships. The sample is unevenly distributed across various
categories of ontologies, linguistic manipulations, and GO terms vs. GO definitions, but covers
all combinations of those categories. These 2,389 relationships were manually examined by
domain experts. One domain expert (DE1) has considerable experience in ontologies, biology,
and structural chemistry. The other domain expert (DE2) is a bioinformatics doctoral candidate
with experience with GO and with protein function and subcellular localization. The experts
were presented with (1) the ID and name of a concept from an OBO ontology, and (2) the ID,
name, and definition of some concept from the GO. In addition, the experts had access to the
definitions of the OBO concept, as well as any other helpful information found in the ontologies
themselves. They were instructed to evaluate the output with the following question in mind:
Is this OBO term the concept that is being referred to in this GO term/definition ? They were
permitted to classify all relationships as either true positive or false positive. We calculated
correctness as the number of true positive relationships divided by the number of proposed
relationships (similar to precision or specificity). All relationships are available for public
inspection at compbio.uchsc.edu/dependencies.

Inter-annotator agreement (IAA)
DE1 evaluated the majority of the output. A sample of 400 proposed relationships was also
evaluated by DE2. Initial IAA between the two was 93.5% (374/400). After dispute resolution,
the consensus IAA was 98.2% (393/400). For the remaining seven cases, DE1 had the deciding
vote.

Linguistic manipulations
We queried by exact match to the OBO concept name. We also queried using synonyms of
OBO concepts. Since all work in this area has observed moderate differences in concept name
realization, such as pluralization, we also implemented the standard linguistic manipulations

aPrevious applications of Lucene to text processing in the biomedical domain are reported in [10] and [18].
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of stemming and stop word removal [17]. We evaluated the correctness of the resulting searches
individually.

What we counted
For each ontology, we give data on the following:

• Relationships found by matches between the OBO ontology and GO terms (T)
• Relationships found by matches between the OBO ontology and GO definitions (D)
• The union of T and D (T ∪ D)b

• The intersection of T and D (T ∩ D)c

• The relative complement of T and D (T-D)d

• The relative complement of D and T (D-T)e

Gain, the magnitude of the increase in the number of relationships detected by examining
definitions, rather than just terms, is the relative complement of D and T divided by the union
of T and D ((D-T)/(T ∪ D)).

In addition, for each ontology, we calculated the analogous set relations for the various
language processing techniques. This allows us to quantify the yield and the correctness of the
various techniques with respect to the three ontologies.

For the Cell Type ontology, we filtered out all matches to the terms cell (CL:0000000, 3215
matches), cell by organism (CL:0000004, 96 matches), and cell by function (CL:0000144, 10
matches), since we realized early on that they were either content-free or incorrect.

3. Results
Finding relationships between ontologies

Our initial hypothesis was that there are relationships between GO and the various OBO
ontologies. Table 2 summarizes the number of matches between GO and the three other
ontologies and the average correctness calculated by manually examining a subset of the
matches. Searching GO terms and definitions for terms from the other ontologies resulted in
a total of 91,385 proposed relationships. The majority of these links (73,002) are between GO
and ChEBI. The average correctness across the three ontologies is 80.62%. This is generally
consistent with the precision reported for the mapping task by [30] (range from .36 for BLAST
to .94 for exact match) and [20] (range from .25 for Chimaera to 1.0 for PROMPT). These data
are consistent with the initial hypothesis, validating the goal expressed in [6], and gives an idea
of the size of the set of potential relationships.

Correctness and Error Analysis
To assess the correctness of the matches, a random set of 2,389 was manually examined by
domain experts. All results are given in Table 3. Note that although correctness is generally
high, some combinations of ontology and linguistic technique had quite low correctness. This
has important consequences for more ambitious efforts to detect relationships across all OBO

bT ∪ D gives the number of relationships that are found in terms or definitions. Some of its relationships are revealed by both. It equals
(T ∩ D) + D-T + T-D.
cT ∩ D is the number of relationships that are found in both terms and definitions.
dT-D is the number of relationships that can be found in terms, but cannot be found by examining definitions. It equals T − (T ∩ D).
eD-T is the number of relationships that can be found in definitions, but cannot be found by examining terms. It equals D − (T ∩ D).
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ontologies, such as proposed by [6]: we cannot use any technique, including exact matching,
without assessing its correctness for a particular pair of data sources.

Exact matching was the most accurate type of search, ranging from 76% to 100% correct. This
is consistent with results reported for the mapping task. One source of false positives for exact
matching was polysemy, or words with multiple meanings. For example, the word group
(CHEBI:24433) also has a General English meaning, and often appeared with that sense in GO
definitions. Similarly, the BRENDA term joint (BTO:0001686), which refers to an anatomical
joint, appears as an adjective meaning combined in GO concepts. We found examples of false
positives related to non-General-English, domain-specific terms as well, e.g. reticulum (BTO:
0000347) incorrectly matching the definition of GO:0006614. Incorporating OBO term
synonymy resulted in slightly lower correctness, ranging from 42% to 94%, with an average
of 67.4% (397/589). Finally, the stemming/stop-word-removal searches show the lowest
correctness, ranging from 7% to 92%.

GO terms versus GO definitions
A novel hypothesis of this paper is that GO definitions are a fruitful resource for discovering
relationships between GO and other ontologies. Table 4 addresses this hypothesis for
BRENDA, and the corresponding data for the other ontologies are given on the website
(compbio.uchsc.edu/dependencies). Searching for relationships in the GO definitions in
addition to the GO terms had a large impact on the quantity of relationships found between
ontologies. The table presents the number of links found in GO terms and in GO definitions,
as well as the union, intersection and relative complements of these sets. The number of links
found only in GO terms is given by the relative complement of terms and definitions (T-D),
listed in the fifth column of the table. The number of links found only in GO definitions is
given by the relative complement of definitions and terms (D-T), the sixth column. The final
column in Table 4 describes the gain from searching in GO definitions for relationships. It is
calculated by dividing the D-T by the union of D and T. For instance, in the first row of Table
4, which displays the number of links found in the GO using an exact BRENDA term search,
a gain of 49.59% means that just under half of these between-ontology links could be found
only by searching the GO definition. Note that for all ontologies and for all search strategies,
the number of relationships is higher when definitions are considered. The gain is never lower
than 24.3% (270 additional matches for exact matching of Cell Type concepts), and it is
generally higher than 50% (43,146 additional matches just for the case of allowing stemming
matches for ChEBI concepts). The correctness (see Table 3) of relationships detected by
matches to definitions is comparable to the correctness of relationships detected by matches
to terms.

3.1. Linguistic techniques in relationship searches
Using synonyms—Results for including the synonyms associated with BRENDA terms in
the search string are given in Table 5; corresponding data for the other ontologies is on the
website. E is exact match, Syn adds synonyms for the OBO concept, and the other columns are
the union, intersection, and relative complements. Adding synonyms increased the yield of
relationships by an average of 36% (23,300/64,987) over using only the exact OBO term query.
The set E should be a proper subset of Syn, and the relative complement of E and Syn is the
empty set. The yield of using OBO synonyms ranged from 9% (85/925) to 40.69%
(8669/21300), and was generally quite similar for GO terms and for GO definitions. Synonyms
allowed us to detect some relationships that could not have been found by any other technique,
e.g. relating adipose (BTO:0000441) to larval fat body development (GO :0007504).
Correctness for synonymy-based matches was sometimes low, ranging from 42 to 94% (see
Table 3)—not surprising in the face of the history of query expansion attempts in information
retrieval.
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Stemming GO concepts and OBO terms—Results for stemming and stop word removal
(labelled Stem) for BRENDA are given in Table 6; data for the other ontologies is on the
website. Stemming garnered the greatest increase of proposed relationships, with an average
gain of 78% (146,777/188,464). However, this increase comes at a price, with a lower average
correctness rate of 51% (257/505). Note that the correctness of matching BRENDA to GO
terms or definitions by stemming is extremely low (7–15%). Again, searching for stemmed
OBO terms also returned the subset of relationships that the exact term searches returned, and
E-Stem is the empty set.

Stemming allowed pluralized forms of the same term to be matched. It also picked up other
morphological variation in terms, e.g. matching neuron (CL:0000540) to neuronal in the
definition of syntrophin (GO:0016013). In a random sample of 97 relationships matched by
stemming across the three ontologies, 57% was due to pluralization, 11% to adjectival
derivation, and 32% to other morphological variation.

4. Discussion and conclusions
Our results are consistent with the hypotheses that there are many valid relationships between
GO and other OBO ontologies, and that in addition to GO terms, GO definitions are an
important source for detecting them.

Implications for ontology mapping
One implication of this study comes from the observation that correctness is almost never
100%: even exact string matches do not guarantee a valid match. Ontologists attempting to
carry out the goal stated in [6] should not ignore these findings. The results on BRENDA are
especially cautionary.

In contrast to work on the mapping task done by the ontology community, the evaluation of
work such as ours and Burgun and Bodenreider's has been hampered by the lack of a curated
gold standard. One important product of the work reported in this paper is a data set of 2,389
GO/other-OBO concept pairs that has been examined by at least one domain expert. This data
set includes 1,926 true positive relationships and 463 known unrelated (i.e., the false positive)
pairs. It is publicly available at compbio.uchsc.edu/dependencies, and will allow future
researchers in this area to do principled automatic evaluations.

Furthermore, the set of known unrelated pairs can be used in future efforts to filter out terms
that are known to produce high numbers of irrelevant, incorrect, or simply unrevealing matches.
We suspect that a relatively small set of OBO terms contributed many of the errors, and that
correctness can be improved by filtering them. This analysis continues.

Implications for ontology enrichment
One limitation for the application of these relationships to ontology enrichment (the addition
of relationships among existing terms) is the fact that most of the relationships that we detect
are indirect. For example, our techniques relate T cell (CL:0000084) to both T cell
proliferation (GO:0042098) and regulation of T cell proliferation (GO:0042129), but an
ontologist would likely prefer to find only the direct relationship from T cell to T cell
proliferation. Another limitation for ontology enrichment is that our methods do not
automatically differentiate between relation types (see e.g. [28]). Future work should attempt
to differentiate between direct and indirect relationships, and to characterize the nature of the
relations between concepts.
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Implications for language processing
This study provides cautionary data on the limits of various techniques, even exact string
matches. The data provides a list of terms that are likely to produce false-positive matches
under conditions of exact match and specific linguistic manipulations; these lists can be used
to filter results from any language processing system that seeks to recognize concepts from the
ChEBI, Cell Type, and BRENDA ontologies. It also points us towards techniques that might
allow us to predict which terms are likely to produce high rates of false positive matches, such
as ones at high positions in an ontology (e.g. cell (CL:0000000)) and ones that are isomorphic
with General English words (e.g. groups (CHEBI:24433)). Additionally, it highlights the
importance of building biomedical-domain-specific preprocessing tools, such as stemmers.
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Table 1
Materials: ontologies, data files, and revisions.

Ontology terms synonyms avg. syn./term data file revision_date

Gene Ontology 19,508 8,202 .42 gene_ontology.obo 09:06:2005 17:10
ChEBI 11,549 19,295 1.67 chebi.obo 25:05:2005 10:54
Cell Type 748 215 .29 cell.obo 24:05:2005 17:10
BRENDA 2,222 1,208 .54 BrendaTissue.txt 10:5:2005 13:49:02
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Table 2
Counts and correctness of proposed relationships between ontologies. Numbers in parentheses are the correct
and total manually evaluated pairs.

Ontology Relationships to GO Avg. Correctness

ChEBI 73002 84.2% (977/1161)
Cell Type 1961 92.99% (584/628)
BRENDA 16469 60.83% (365/600)
TOTAL 91385 80.62% (1926/2389)
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Table 3
Correctness Rates (correct/evaluated)

Ontology Exact Synonyms Stemming

ChEBI
GO Term 99.5% (199/200) 42.0% (42/100) 73.0% (73/100)
GO Def 97.8% (451/461) 69.0% (138/200) 74.0% (74/100)

Cell Type
GO Term 100% (200/200) 94% (44/47) 76% (41/54)
GO Def 98.7% (231/234) 50% (21/42) 92% (47/51)

BRENDA
GO Term 76.0% (76/100) 83.0% (83/100) 7.0% (7/100)
GO Def 93.0% (93/100) 69.0% (69/100) 15.0% (15/100)
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Table 4
Relationships in GO terms vs. GO defs for BRENDA

Ontology T D T∪D T∩D T-D D-T Gain

Exact 1465 2447 2906 1006 459 1441 49.59%
Exact + synonyms 1875 3093 3686 1282 593 1811 49.13%
Stemmed 3892 15409 15722 3579 313 11830 75.24%
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Table 5
Using BRENDA synonyms

GO E Syn EuSyn EnSyn I 5-Syn Syn-E Gain

T 1465 1875 1875 1465 0 410 21.9%
D 2447 3093 3093 2447 0 646 20.9%
T∪D 2906 3686 3686 2906 0 780 21.2%
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Table 6
Stemming and stop word removal: BRENDA

GO E Stem E∪Stem E∩Stem E-Stem Stem-E Gain

T 1465 3892 3892 1465 0 2427 62.36%
D 2447 15409 15409 2447 0 12962 84.12%
T⋓D 2906 15722 15722 2906 0 12816 81.52%
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