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We present a method for deriving energy functions for protein
folding by maximizing the thermodynamic average of the overlap
with the native state. The method has been tested by using the
pairwise contact approximation of the energy function and gen-
erating alternative structures by threading sequences over a da-
tabase of 1,169 structures. With the derived energy function, most
native structures: (i) have minimal energy and (ii) are thermody-
namically rather stable, and (iii) the corresponding energy land-
scapes are smooth. Precisely, 92% of the 1,013 x-ray structures are
stabilized. Most failures can be attributed to the neglect of inter-
actions between chains forming polychain proteins and of inter-
actions with cofactors. When these are considered, only nine cases
remain unexplained. In contrast, 38% of NMR structures are not
assigned properly.

The starting point for folding proteins on a computer is to
assume, according to Anfinsen’s experiments (1), that the

native state of the protein is in thermodynamic equilibrium and
corresponds to the minimum free energy. The most straightfor-
ward approach considers a detailed atomistic model and follows
its time evolution either by molecular dynamics (2, 3) or by
Monte Carlo simulations (4, 5). To date, only for special regular
structures (4, 5) and for small polypeptides (3), the experimen-
tally known native structures have been reproduced in computer
experiments. These simulations are still far from being routine
methods of structure prediction. The reason is that a protein in
solution is only marginally stable, and its behavior depends
crucially on subtle details of the interaction. Thus, in most
models even minor changes in the energy function can destabi-
lize the native state (6, 7).

An alternative approach consists in adopting a coarse-grained
(mesoscopic) description of the protein structure and using an
energy function not derived from physical principles but ob-
tained from the information contained in the Protein Data Bank
(PDB) of native structures. To carry out this task, several authors
assume that the structural motifs in the set of native protein
structures follow a Boltzmann distribution, whose energy func-
tion is calculated from the observed frequencies (8–12). Here we
follow a different approach and determine the energy parame-
ters by an optimization scheme.

Two optimization schemes have been proposed so far. Their
common goal is to obtain an energy function such that the
ground state of the model corresponds to the observed native
structure and is thermodynamically stable. A first optimization
scheme, introduced by Maiorov and Crippen (13), requires that
the native states of a target set of proteins have energies lower
than for a set of alternative structures. This is obtained by solving
a system of inequalities. Recently, this method has been im-
proved by Domany and coworkers (14–16) and Maritan and
coworkers (17, 18). In the new formulation, it is possible to
answer rigorously the question whether the system of inequalities
is solvable. If a solution exists, it is not unique, and it is possible
to improve the method by choosing the solution of maximal
stability, defined as the solution in which the stability gap of the
least stable protein is maximized (16, 18).

A second class of methods (19–23) aims at providing the
largest possible thermodynamic stability to the target proteins.
These methods optimize quantities related to the Z score (24),
measuring the difference between the energy of the native state
and the average energy of the alternative states in units of the
standard deviation of the energy. Goldstein et al. (19, 20),
inspired by a spin-glass analysis, derived efficient parameters for
fold recognition. More recently, the method was extended to
protein structure prediction via simulated annealing (21). Hao
and Scheraga applied a similar method to the more difficult
problem of deriving an energy function for folding simulations
of a single protein (22). Mirny and Shakhnovich proposed
optimizing the Z score to obtain an energy function conferring
large stability to most native states of a target set of proteins (23).
These methods, however, do not guarantee that the native
structure has the lowest energy among all alternative structures.

We present a third method, which combines the main advan-
tages of the two previous ones. Here, the energy function is
determined by maximizing the average native overlap Q. When
Q is very close to 1, it is guaranteed that the native state and the
ground state coincide. Moreover, a large value of Q also
indicates that the native state is thermodynamically stable and
suggests that the energy landscape is well correlated.

As a first application of the method, we determine optimal
parameters for the pairwise contact approximation of the energy
function. We consider a database of 1,169 protein chains (25, 26)
and generate alternative structures by threading (9, 10, 13). Our
energy function stabilizes 92% of the 1,013 x-ray structures even
without considering interactions between different chains and
with cofactors. These can explain the remaining cases with very
few exceptions. On the other hand, only 62% of NMR structures
are stable. This can be at least partially explained by the way in
which these structures are represented in the PDB files.

In the next section, we define the theoretical framework of
optimization methods. Then we describe our method and apply
it to the determination of pairwise contact interactions. Finally,
we discuss our results.

Optimizing Energy Parameters
We consider a chain of N amino acids and an effective energy
function E(C, S) depending on the mesoscopic configuration
CeyVN and on the sequence S 5{S1, . . . SN}eS. We choose as
mesoscopic representation the contact map matrix C 5 f(G),
where G is the microscopic state and

Cij 5 H1

0

if residues i and j are in contact,

otherwise.
[1]

Abbreviation: PDB, Protein Data Bank.
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We consider two residues in contact if they are separated by
more than two residues along the sequence and if any two heavy
atoms belonging to them are closer than a threshold distance of
4.5 Å (16).

The ensemble of configurations VN is the ensemble of all
contact maps realized by a given set of structures with N residues.
We shall consider three possibilities:

(i) The threading set (9, 10, 13): backbone structures are
obtained by cutting in all possible ways structures with length
N9 . N contained in a subset of the PDB.

(ii) The lattice set: structures are self avoiding random walks
(28) on a suitable lattice.

(iii) The off-lattice set: structures are obtained from Monte
Carlo or molecular dynamics simulations that fulfill the physical
constraints of excluded volume and of definite values for bond
angles and lengths.

The present study will be limited to the simpler cases of lattice
and threading sets. The more difficult case of an off-lattice set,
relevant for folding simulations, will be studied in a forthcoming
paper.

A central role in our method is played by the overlap q(C,C9),
which measures the similarity between two contact maps.

q~C, C9! 5
OijCijC9ij

max S OijCij, OijC9ijD . [2]

It holds q(C,C9)« (0, 1) and q(C,C9) 5 1 if and only if the two
contact maps are equal.

We can compute formally the free energy FT(C, S)5 ET(C,
S) 2 TS(C) of the mesoscopic state C assuming that the
protein-solvent system is in thermodynamic equilibrium at tem-
perature T and that all microscopic configurations G and their
energies %(G) are known:

ET~C, S! 5 2kBTlog S* dGx~C, G!e2«~G!/kBT

* dGx~C, G!
D , [3]

S~C! 5 kB log~*dGx~C, G!,

where we introduced the characteristic function of the contact
map C, x(C,G) 5 d(1 2 q( f(G),C)). The entropy S(C) increases
as the compactness of C decreases (29). The above computation
is only formal, however. We assume in the following that the
effective energy function can be represented as the sum of
contact interactions,

E~C, S, U! 5 O
ij

CijU~Si, Sj!. [4]

This expression depends on a set of 210 interaction energies U 5
{U(a,b)}, where a, b e [1, 20] are 2 of the 20 types of amino acids,
and the U(a,b) are temperature dependent. This is the functional
form of the energy most studied in the literature. It has been proved
by Domany and coworkers (14, 15) that this energy function is not
accurate enough to allow off-lattice folding simulations. Following
refs. 14 and 15, we consider Eq. 4 as a first step in a phenomeno-
logical approximation scheme and determine the best parameters
at this level of description. The method that we develop can be
applied to include additional energy terms. Another possibility
would be to consider a more refined mesoscopic description where,
for example, dihedral angles are also taken into account. However,
for the simple case of the threading set, it turns out that the contact
energy is a rather good approximation.

The Overlap Method. Folding simulations are mainly aimed at
finding low-energy structures of a protein model that are as
similar as possible to the true native structure Cn(S). A measure

of such similarity is the overlap q0 5 q(C0(S),Cn(S)), where C0(S)
is the lowest energy contact map for sequence S. If q0 5 1, we
are guaranteed that the native state contact map has the lowest
energy. In the spirit of our statistical mechanics approach, we
optimize the similarity between the native structure and the
whole Boltzmann ensemble obtained from a simulation or by
threading. We define the average native overlap

Q~S, U! 5 ^qn~C!&U, [5]

where qn(C) 5 q(C,Cn(S)), Cn(S) being the native state. The
brackets denote a Boltzmann average in the ensemble V,
^A(C)& 5 1yz(C A(C) exp(2F(C, S)) and z 5 (C exp(2F(C, S)),
and the interaction parameters U are measured in units such that
kBT 5 1. For threading, the entropy of contact maps is zero, and
we have F(C, S) 5 E(C, S, U). There are three advantages in
optimizing Q(S, U) instead of q0: (i) Q(S, U) yields information
about the thermodynamic stability of Cn(S). A value of Q close
to 1 does not only mean that C0(S) and Cn(S) coincide, but also
that Cn(S) has a large Boltzmann weight. (ii) If the temperature
is not too low and the set of alternative conformations contains
structures similar enough to the native one, this condition
implies also that the low energy states are those similar to Cn(S).
This is a way to obtain a smooth energy landscape, where the
energy decreases on the average as Cn(S) is approached. For
most reasonable dynamical rules, the correlation between E and
q is expected to favor fast folding, in agreement with the funnel
scenario proposed by Bryngelson and Wolynes (30) and with
lattice models (31–36). (iii) Q(S, U) takes into account also the
entropy of the native contact map.

The structural similarity with the native state has also been
used in the optimization procedure in the framework of the
inequality method (13, 18). However, such method, at variance
with the one presented here, does not use an optimization
criterion based on statistical averages, as in Eq. 5, but imposes
inequalities for each alternative structure. The difference might
be relevant in the cases where some proteins whose native state
is not very stable are included in the target set, as can happen in
real applications.

In analogy to ref. 22, we obtain the gradient of Q(S, U) with
respect to U and use it in the optimization.

Q~S, U!

Ui
5 ^qn~C!&U^ni~C!&U 2 ^qn~C!ni~C!&U, [6]

where Ui is the ith energy parameter and ni(C) counts how many
contacts of type i are present in the configuration C. The
optimization works iteratively. At each step, we compute the
gradient and update the interaction parameters with a gradient
descent algorithm. The new interaction matrix is then multiplied
with a scalar 1yt so that 82 5 (a,bU2(a,b) is kept constant. This
multiplication is equivalent to rescaling the temperature by t
without changing the interactions. In absence of it, 8 would grow
during the optimization, so that the effective temperature of the
system decreases and the ground state becomes more stable. In
other words, Q(S, U) possesses trivial local maxima for 83 `.
In general, the system can reach local maxima lower than the
desired one Q ' 1 when the structure of lowest energy is the most
similar to Cn(S) among the thermodynamically relevant struc-
tures. In this situation, every change that makes this structure
more stable produces an increase of Q. However, in analogy with
ref. 22, we can drive the system toward the true maximum Q '
1 by decreasing the energy of the native structure as well. To this
end, we use the following optimization equation:

U~t11! 5
1
t
FU~t! 1 d¹Q 2 gS1 2 q0

q0
D¹EG , [7]

3978 u www.pnas.org Bastolla et al.



where q0 5 q(C0,Cn(S)) is the overlap between the ground state
and the target structure. When q0 ' 1, only the optimization of
Q takes place.

In this study, we consider NS different sequences, and we
optimize their average overlap Q(U) 5 1yNS(S«SQ(S, U).

Results
Lattice Model. We first tested the method on a lattice model with
36 residues (37). We considered a target structure C* and an
appropriate sequence S*. After few iterations, we obtained an
energy function such that C* was the ground state of S*, and it
was thermodynamically very stable. Moreover, the energy land-
scape was very correlated (data not shown).

Protein Structures. We considered three sets of proteins: 456
chains extracted from the WHATIF database (24) (database A),
713 chains contained in the latest release of the PDB select set
(25) and which have less than 90% sequence homology with the
chains in database A (database B), and the union of them,
containing 1,169 chains (database C).

We show in Fig. 1 the number of intrachain contacts Nc vs. the
number of residues N. For single-chain proteins, a good fit to the
data is the line NcyN ' a 2 bN21/3, as expected from surface
effects (38). The best fit values are a 5 3.9 6 0.1, and b 5 5.8 6
0.2 ' 3y2a. Thus, by using a threshold of 4.5 Å for contacts,
residues in the interior of the globule have on the average nearly
8 contacts (to compute Nc, we divide the sum of these numbers
by 2) plus 4 contacts with neighbors along the chain, not
contributing to Nc, which makes roughly two contacts per
Cartesian direction. However, this number depends strongly on
the residue type. Proteins formed by several chains have on the
average less intrachain contacts. Interchain interactions can be
very important for the stability of the native structure, but they
cannot be considered with threading. Also interactions with
cofactors cannot be considered. Thus polychain proteins some-
times have a ground state different from the native one (gray
symbols in Fig. 1). Structures determined by NMR have a
distribution of contacts broader and with smaller average than
that of x-ray structures.

Energy Parameters. We used as target set a subset of database A
with 47 single-chain proteins, generating decoys from a set of 120
chains. For the resulting set of parameters U(1) only in 29 cases
of 456, the ground state C0(S) differs from the native structure
Cn(S), and all these are either chains belonging to polychain
proteins or small proteins with cofactors, for which some of the

native interactions are neglected. The protein chains for which
ground state and native structure coincide have Q 5 0.93, and
thus most of them are rather stable. Using smaller target sets, we
found almost the same parameters, and we did not obtain
significantly better results even by using all database A as a
target. Hence, the energy function remains stable by enlarging
the target set. It is interesting that 27 proteins had q0 , 1 with
all of the energy functions that we derived. We tested the energy
parameters U(1) also on database B. It is convenient to divide
these chains in three classes. For the 202 single chains, the
ground state differs only in six cases from the native structure.
All of these proteins but one contain cofactors. The fraction of
proteins with Q . 0.6 is 95%. For 80% of the 377 chains
belonging to polychain proteins, we found q0 5 1, and Q . 0.6
in 75% of the cases, whereas only 50% of the 136 protein
structures determined by NMR have q0 5 1, and many of them
are not very stable. These results show that predictions of NMR
structures are more difficult than those of x-ray structures. The
necessity of distinguishing between NMR and x-ray structures
when one derives an energy function has already been pointed
out by Godzik et al (39).

We performed another optimization run by using as a target
all 1,079 chains with length N # 455. The number of alternative
structures, generated from the whole database C, varies from
38,000 for N 5 455 to 209,000 for the shortest chain with N 5
30. Because some chains are closely related in structure and in
sequence, we should expect the recognition to become more
difficult. We give below the results for the new energy function
U(2).

(i) For 401 of the 406 single-chain proteins, q0 5 1 and Q(S) .
0.7. Exceptions are five proteins with cofactors.

(ii) 83% of the 515 chains in polychain proteins have q0 5 1 and
Q(S) . 0.7.

(iii) 68% of the 153 NMR structures have the correct ground
state, and only 60% have Q(S) . 0.7.

Energy Landscape and Stability. Studies on lattice models suggest
that energy correlations are a key ingredient for obtaining fast
folding models (31–36). As discussed briefly above, for lattice
models our method provides very well correlated energy land-
scapes. The same correlations are found with threading, al-
though only few structures with large q are available. In Fig. 2,
we plot in the plane (q, E) the lowest energy structures of six
sequences selected so that alternative structures with q(C, Cn) .
0.6 exist, and the native structure has lowest energy. Under these
conditions, structures with large overlap also have low energy.

Fig. 1. Fraction of intrachain contacts as a function of the number of residues
to the power 21y3. Filled symbols are protein chains whose ground state does
not coincide with the native structure.

Fig. 2. Normalized energy gap vs. the overlap q for six protein chains.
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For each sequence, we define a dimensionless parameter a(S)
such that

E~C, S! 2 E~Cn~S!, S!

uE~Cn~S!, S!u $ a~S!~1 2 q~C, Cn~S!!!, [8]

and a(S) 5 0 in case the energy of the native structure is not
lowest. This parameter can be used to characterize stability and
fast folding. The smoother the energy landscape of chain S, the
larger a(S). Related information is given by the Z score (27) and
by the energy gap used by Shakhnovich and coworkers as a
signature of fast folding (40), but the parameter a(S) is also
sensitive to the presence of low energies structures unrelated to
the native one. The value of a(S) depends on chain length N and
it is seen to increase roughly as =N. It also decreases slightly
when the number of alternative conformations used increases.
Fig. 3 shows the distribution of a(S)y=N for chains for which
native state and ground state coincide, distinguishing three
classes of proteins. Single chains are most stable, followed by
polychains and NMR structures.

Many of the native structures whose energies are not minimal
are only moderately unstable. We tried to see whether the
interchain contacts and the cofactors, not taken into account
with threading, are able to stabilize the native states. We
computed the interaction energies between different chains and
estimated the interactions with cofactors, assuming that one
contact with a cofactor contributes an energy equal to the
average energy of a native contact. This, however, may under-
estimate the interactions if the cofactors are charged or co-
valently bound. For 72 of 87 problematic x-ray structures, the
coordinates of all chains and cofactors are available, and we saw
that the corrected native energy is lower than the ground state
energy of the single chain in all cases but nine. The PDB codes
of the nine exceptions are: 3cyr (cytochrome c3 has a heme
covalently bound), 1ail (small fragment), 1cbn (crambin), 1ajj
(fragment of a receptor protein with charged cofactors), 1aws A
(isomerase bound to HIV capside protein, q0 5 0.94), 1rfb A
(interferon g), 1isu A (iron–sulfur cluster), 1tgs I and 1fle I
(inhibitors bound to an enzyme).

Structure Prediction. The usefulness of the parameter set U(2) for
structure prediction is illustrated in Fig. 4. We imagine consid-
ering sequences S, whose native structure Cn(S) is unknown, and
we search for the lowest energy contact map different from the
native one, C1(S, U). A histogram of q1 5 q(Cn(S),C1(S, U)) is
shown in Fig. 4. We note that the goodness of the prediction, q1,
depends on the maximal similarity qmax between the native

structure and the other structures in the threading set, whose
histogram is also shown in Fig. 4. For only a few chains are there
alternative structures with q . 0.6. In Fig. 4 Inset, we show the
average ratio between the best prediction q1 and the best possible
one, qmax, as a function of qmax. The correlation between q1 and
qmax is nearly absent for qmax , 0.6 and rather strong for qmax .
0.6, in particular for single chains. For qmax . 0.8, the best
prediction coincides in most cases with the best possible one.
Thus, provided that structures with q . 0.8 respect to the
structure of an unknown protein exist in the database, our
energy function singles them out with large probability. This
result suggests that the limitation to the prediction ability is
posed by the limitations of threading more than by the accuracy
of the energy function. Better strategies to generate alternative
structures would be very useful. We must however remark that
structures with q . 0.8 are derived from proteins related also in
sequence to the target protein, so that the easier strategy of
homology modeling would exhibit a comparable performance.

Conclusions
We have presented a method for deriving energy parameters
based on the maximization of the average overlap with the
native structure for a target set of proteins. We tested the
method on a database of 1,169 structures by using a contact
approximation for the energy. For 92% of the 1,013 x-ray
structures, the native state and the ground state coincide.
Exceptions are mainly because we neglected interchain con-
tacts and interactions with cofactors. When these are taken
into account, only nine cases remain unexplained. Thus,
surprisingly, it seems possible that the contact interaction
energy, although unsuitable for off-lattice simulations (17, 18),
is sufficient to account for the stability of x-ray structures if
competing structures are generated by threading, and all
relevant interactions are considered properly. The last condi-
tion was absent in ref. 16, hence the difference in the present
results.

For NMR structures, the situation is different. In about
one-third of the cases, we found alternative structures with an
energy lower than the native structure. Interchain and cofactor
interactions explain only nine cases. We also used the 136 NMR
structures alone in the target set, but the number of misfolded
chains decreased only from 49 to 43, still considerably worse than
for x-ray structures. A simple difference between the two is the
way in which they are represented in the PDB. For NMR
structures, instead of an average structure, a list of conformers,

Fig. 3. Distribution of the normalized stability parameter a(S)yÏN, where N
is the number of residues and only chains with qo 5 1 are included.

Fig. 4. Histograms of the overlap q1 between the best prediction and the
native structure and of the maximal overlap qmax for single chains. (Inset)
Average value of q1yqmax as a function of qmax.
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typically 20, is provided. The contact maps used in this work were
obtained from the first conformer of the list. The contact map
can vary considerably from one conformer to the other, and the
same happens with the contact energy. Moreover, NMR struc-
tures are generally more disordered than x-ray structures, and
they often belong to small proteins, which are difficult to
crystallize. Thus, the best strategy is probably to select only x-ray
structures for the target set. However, this is not necessary. Our
algorithm is able to identify the difficult cases in the target set
even without external information. If incorrect matches of
structure and sequence are present in the target set, we do not
get an energy function performing worse for all of the chains, but
we get a large value of Q for some chains and a low value for
others. The results are robust with respect to changes of the
target set.

The optimization procedure is rather efficient. One iteration
for the target set with 1,000 proteins takes 3 h on a SGI Unix
workstation with a R4000 central processing unit and less than
10 min for the target set with 47 chains. Less than 10 iterations
are sufficient for convergence.

Following ref. 41, we compared our interaction matrix to
hydrophobicity and to other known potentials. The correlation
is good with respect to the hydrophobicity measured by Fauchere
and Pliska (42), if we exclude the cysteine–cysteine interaction,

which is much stronger than expected on the basis of hydropho-
bicity. The correlation coefficient between the hydrophobicity
h(a) and the self-interaction term U(a,a) is r 5 0.72, and between
h(a) and the average interaction 1y20(bU(a,b), it is r 5 0.77. Also
the correlation with respect to other knowledge-based potentials
is good if we exclude the cysteine–cysteine interaction, which is
much stronger in our potential. The correlation coefficient is r 5
0.74 with the Miyazawa–Jernigan potential (8), r 5 0.83 with the
Skolnick et al. potential (11), and r 5 0.70 with the Thomas and
Dill potential (12). This comparison also reveals two interesting
points. First, the ranking of single-chain proteins, polychain
proteins, and NMR structures is confirmed with all of the
above potentials. Second, all of the proteins that have q0 , 1
with our potential also have q0 , 1 with at least two of the three
other potentials.

The real challenge is to apply this method to real space
simulations of protein folding. This will be the subject of
forthcoming work.
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