
On the direct determination of three-dimensional
crystallographic phases at low resolution:
Crambin at 6 Å
Douglas L. Dorset*

Electron Diffraction Department, Hauptman-Woodward Medical Research Institute, 73 High Street, Buffalo, NY 14203-1196

Communicated by Herbert Hauptman, Hauptman-Woodward Medical Research Institute, Buffalo, NY, January 18, 2000 (received for review July 29, 1999)

Using a pseudo-atom approach, the three-dimensional crystallo-
graphic phases for the protein crambin (a 5 40.76, b 5 18.49, c 5
22.33 Å, b 5 90.61°, space group P21) were determined to 6 Å by
direct methods. First, the centrosymmetric h0ø set was assigned
phases by symbolic addition, and the initial solution was then
refined by Fourier methods. Phase values of strong reflections
were then permuted, and the decision to change the phase value
for two of these was made by consulting a cross-correlation of the
experimental density histogram to the theoretical or known his-
togram for the protein. The two-dimensional basis was then
extended by the Sayre equation into three dimensions by assign-
ing a phase to a third allowed hkø origin-defining reflection and an
algebraic value to another axial reflection. The correct solution was
again identified by the histogram correlation, yielding a solution in
which the mean phase error for all 98 reflections was 61.5° or 23.1°
for the 21 most intense reflections. A parallel study with another
protein indicates this method may have general utility.

protein crystallography u direct methods u Sayre equation u density
histograms u x-ray diffraction

S ignificant strides have been made recently in solving the
crystal structures of proteins at atomic resolution by direct

methods for crystallographic phase determination. The concept
of atomic resolution may denote either the true resolution of all
atomic components of the polypeptide backbone (1) or the
resolution of just the heavy atoms used, e.g., to obtain an
anomalous scattering signal (2) because it is merely the Rayleigh
criterion for resolving these scattering entitites that seems to be
important.

There is also considerable interest in attacking the phase
problem for macromolecules at low resolution. One reason for
this is that an accurate phase assignment to relatively high-
resolution data can sometimes lead to an ambiguous definition
of the molecular envelope boundaries (3), particularly if the
low-resolution diffraction maxima are unrecorded or not as-
signed accurate phase values. Although conventional direct
phasing methods seem to retain their validity within the first
scattering intensity envelope (4) (e.g., to a resolution near 6 Å
where the average intensity has a nodal value near zero), the
phase problem in this region remains a challenge. For example,
there are no conservative geometric rules relating density re-
gions in the macromolecule at low resolution of the type that are
similar to the reasonable chemical bonding constraints between
atoms. Thus, one cannot identify readily which attempt at a
solution is ‘‘correct’’ just from its appearance.

Partial success in two-dimensional ab initio phase determina-
tion at low resolution (e.g., with electron crystallographic data)
has resulted from several approaches to the problem, maximum
entropy and likelihood techniques (5, 6). Globular approxima-
tions have also been successful in two ways. In x-ray crystallog-
raphy, random glob generators coupled with a suitable figure of
merit have determined molecular envelopes from three-
dimensional data, after clustered trial solutions have been
averaged (7). A reciprocal space approach has also been ex-

plored. From a pseudo-atomic distribution of density in the
protein, the unit cell was re-scaled so that an atomic scattering
factor could be used to normalize the observed intensity data,
following a suggestion made by Harker (8). This has also been
found to be effective for phasing two-dimensional electron
diffraction data sets from proteins with a large a-helix content
(9–12), where the atomistic assumption has an obvious applica-
tion. In this paper the extension of this methodology to three-
dimensions is explored with x-ray data for the phase determi-
nation of crambin at 6 Å.

Data and Methods
Diffraction Data. Calculated structure factor amplitudes and phases
from the protein crambin (13) (Mr 5 6,287.82) were taken from an
atomic model that accurately simulates the hydration, as well as the
protein structure, and hence the density of the crystal is well
modeled (1, 14). The space group is P21 where a 5 40.76, b 5 18.49,
c 5 22.33 Å, b 5 90.61°. There are 98 unique hk, diffraction
maxima within the 6 Å limiting resolution used in this study. In a
parallel study, 6 Å data (104 reflections) from monoclinic rubre-
doxin (15) (P21: a 5 19.97, b 5 41.45, c 5 24.41 Å, b 5 108.398,
Mr 5 7465.23), a model with accurately predicted solvent structure
(14), were similarly treated.

It was assumed that the distribution of density could be simulated
by pseudo-atomic globs and that the Fourier transform of these
globular subunits could be modeled, as shown earlier (9–12), after
a 10-fold reduction of the unit cell dimensions, by an atomic
scattering factor. (For the [010] projection, a pseudo-atom model
with coordinates chosen at identified glob centers was found to fit
the published phases by a mean error of 28.4°; for the [001]
projection the mean error, 15.3° was somewhat better. For rubre-
doxin, corresponding values are: [010]: 18.0°; [001]: 29.1°) In this
case the electron scattering factor for carbon (16) was used as the
model for the glob transform. Normalized structure factors (17)
were generated, therefore, from uEhu2 5 Ihy«Sfc

2. The atomic
scattering factor was also used for (zonal) structure factor calcula-
tions during Fourier refinement.

Phase Determination. The S1- and S2-three-phase structure in-
variants were then generated from the three-dimensional nor-
malized structure factors. For space group P21 (b-axis unique),
symmetry-equivalent ref lections the phase relationships of
equivalent reflections are given in the International Tables for
X-ray Crystallography (18). The minimal information required
for a basis set (19) to assign phase terms to all other reflections
was assessed by a convergence test (20). By symbolic addition
(21), the centrosymmetric (h0,) data were then assigned phase
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values [including setting two permissible origin-defining reflec-
tions (19), accepting some from S1-estimates and assigning some
algebraic values], followed by Fourier refinement. Most intense
reflections in the final phase list were then permuted, and several
figures of merit (see below) evaluated the need for further
changes to this zonal set. After completion, the strongest reflec-
tions were used as a basis for expansion into the three-
dimensional data set via the Sayre equation (22): Fh 5
(uyv)SkFkFh2k. A third origin-defining reflection (19) was then
defined as well as an algebraic phase term to be permuted. For
the Sayre expansions, a correct value was given for F000, but an
estimate that minimized the negative density of ensuing electron
density maps could be used just as well to stabilize the convo-
lution (23).

Figures of Merit. Often, it was necessary to pick an optimal phase
solution from two or more choices. Several figures of merit were
evaluated for this purpose. One that has been often used is the
Luzzati (24) test for electron density map flatness: ^Dr4&, where
Dr 5 r 2 r# . (Ideally, the best phase solution minimizes this figure
of merit.) When F000 5 0.0 for calculating these maps, the
average term r# is also zero. With an atomistic estimate of glob
centers used for a structure factor calculation, a Patterson

correlation coefficient (25), (Smomcy(Smo
2Smc

2)1/2), where
mo 5 uFo

2u 2 ^uFo
2u&, etc., was also evaluated. (The subscripts o and

c denote ‘‘observed’’ and ‘‘calculated’’ values, respectively.)
Finally, it was assumed that the density histogram (26) v(t) could
also be determined a priori for this protein (4, 7, 27). Its expected
appearance at low resolution (7, 26, 27) is shown in Fig. 1a. Given
an observed density histogram v(t) from the electron density
map calculated for any phase solution, then a figure of merit is
immediately suggested because the cross-correlation function
(28) c12(t) 5 *v1(t 1 t)v2(t) dt of an experimental histogram
(trial phase set) with the expected distribution should approxi-
mate the autocorrelation function c(t) 5 *v(t 1 t)v(t) dt (Fig.
1b) as the phase error decreases. Although the autocorrelation
function is maximally peaked at the zero value, the test for a skew
distribution of the cross-correlation function comparing normal-
ized sum of differences at c(t) and c(2t) was more useful. The
minimum value of skewness was sought because the sum of
differences in the mirror-symmetric autocorrelation function is
zero. This criterion is the reverse of the one used to predict the
correctness of an experimental density histogram: i.e., where its
skewness is a desirable property (29). The appearance of the
histograms for maps generated with different amounts of phase
error has been depicted by Lunin (27), where increasing phase
error leads to a more symmetric, Gaussian-like, distribution. The
histogram for crambin based on phased 6 Å x-ray data actually
resembled a theoretical case in which some slight phase error was
present (27).

Results
For the 10 h0, S2-phase invariant sums with the largest values
of A 5 (2y=N)uEhEkE2h2ku, the average value of f 5 wh 1
wk 1 w2h2k is 72° when the value 0° is expected (17). Never-
theless, the origin was defined by setting w(303) 5 0 and
w(20 3#) 5 0. Four S1-estimates were also accepted: namely, a 0°
estimate for (402) and a 180° estimate for reflections: (400),
(20 2#), and (40 2#). Two reflections, (40 3#) and (302), were
assigned algebraic values. This generated four phase sets with 16
terms, from which electron density maps were calculated, mon-
itoring the value of the Luzzati (24) figure of merit, testing
density flatness. Coordinates of globs in maps from the two
solutions with the lowest value of ^Dr4& lay near one another, so

Fig. 1. (a) Density histogram for an ideal protein. (b) Its autocorrelation
function. (c) Density histogram for a three-dimensional electron density map,
based on phase extension where w(020) 5 135° (best solution). (d) Cross-
correlation of c with a. (e) Density histogram for incorrect structure generated
when w(020) 5 2135°. ( f ) Cross-correlation of e with a.

Table 1. Phase values for h0ø reflections after symbolic addition
and refinement

h0, ?F? w h0, ?F? w

2601 118.5 180 101 174.5 180*
2501 255.5 180 102 139.2 180*
2502 72.6 0 103 27.0 180
2401 174.6 180 200 278.1 180
2402 93.1 180 201 93.4 0*
2403 216.8 0 202 56.0 0*
2301 52.9 0 203 291.5 180
2302 129.0 180 300 217.6 180
2303 122.6 0 301 166.5 180
2201 149.6 0 302 183.3 180
2202 204.8 180 303 62.5 180*
2203 107.7 0 400 340.4 180
2101 283.2 0 401 282.6 180
2102 2.4 180 402 170.4 0
2103 78.9 0 500 179.8 180
001 307.6 180 501 78.4 180
002 190.3 0* 502 116.1 0*
003 103.8 0 600 32.8 180
100 308.3 0 601 115.6 0*

*Incorrect assignment.
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these were averaged for the structure factor calculation to
estimate the complete h0, phase list. This was followed by three
cycles of Fourier refinement. In this phase set, there were 11 of
the 38 reflections with incorrect phase assignments [including
the shift of the weak w(303) term], most of which are associated

with medium or weak intensity reflections. The phases of the
most intense reflections were then individually permuted, and
the asymmetry of the test c12(t) cross-correlation functions was
evaluated after the histograms were obtained for the ensuing h0,
maps (including the F000 term in the calculation). A separate
symbolic phasing of hk0 data had also been carried out. From an
ambiguous assignment indicated for an intense reflection, the
w(300) phase term was shifted from 0 to 180° to test for the best
solution based on the properties of c12(t). After this test,
resulting in a phase shift, the next reflection most likely to be
shifted in phase was determined in the same way: i.e., the w(401)
value was changed from 0 to 180°. As shown in Table 1, there
were no remaining phase errors for reflections in which uFhu $
200.0. These 12 largest phased structure factors were reserved
for a basis set to be expanded by the Sayre equation. The electron
density maps for this projection are compared in Fig. 2. (For
rubredoxin, symbolic addition finds 13 entirely correct phases for
the h0, data; Fourier refinement yields only 3 errors for all 20
predicted phases, all associated with weak reflections.)

For the three-dimensional phase expansion via the Sayre
equation (22), the value of a third origin-defining phase,
w(312) 5 2158.9°, as permitted by the space group (19), was
included. [This value, taken from the previous x-ray determina-
tion (1), was used only to facilitate comparison to the published
phase values.] In addition, an algebraic term was permuted 645°,
6135° for w(020), which has an actual phase value of 141.1°, to
generate four three-dimensional phase sets. Selection of the best
solution was again based on the optimal value of the cross-
correlation function c12(t), using density histograms constructed
from sections at yyb 5 0.0 and 0.333. The minimum of this
cross-correlation asymmetry S 5 Siuc(ti) 2 c(t2i)uyc(0) again
defined this best solution unequivocally, as shown in Table 2,
where a summary of mean phase values for different classes of
reflections is also given. Examples of the experimental density
histograms and their cross-correlation functions are shown in
Fig. 1. It is clear that the best phase accuracy is found for the
strongest reflections, but mean phase averages over other classes
of reflections are again much better than the random estimate
and in accord with other favorable phase predictions for proteins
at low resolution (3). The electron density maps calculated with
the most intense reflections reveal that much of the polypeptide
backbone is covered correctly with an electron density envelope
(Fig. 3). (For rubredoxin, a similar expansion gives an overall
mean error of 75.6° for all 104 phases, but only 24.8° or 56.3° for
the 14 or 26 most intense reflections, respectively.)

Discussion
The phase determination outlined above was not exactly a
straightforward process. First of all, it is probably unrealistic to
expect the globular model to be accurate for three-dimensional

Fig. 2. Zonal electron density maps for crambin calculated from h0, data. (a)
Ideal phases from x-ray determination. (b) Direct phase determination, all
phases. (c) Direct phase determination, most intense reflections.

Table 2. Mean phase error for crambin three-dimensional
determinations

w(020) 135° 45° 245° 2135°
No. of

reflections

^?Dw?&

?F? $ 200 23.1 38.5 54.0 38.0 21
100 , ?F? , 200 67.2 78.0 93.9 79.2 39
?F? # 100 76.9 90.1 78.9 66.8 38
All reflections 61.5 74.2 79.5 65.6 98
Newly phased

reflections
70.9 85.6 91.7 75.6 85

Figures of merit
S 0.27 0.56 0.49 0.79
F 1.05 0.94 0.96 0.98
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potential distributions. The best fit of a glob model would be
anticipated for individual projections. Nevertheless, when the
zonal S2 phase invariant sums were evaluated with published
phase values, there were 4 values of f 5 wh 1 wk 1 w2h2k

differing by 180° for the 10 ranked according to the largest value
of A. The evaluation of the hk0 reflections was somewhat more
favorable. Although there were two values of f near 180° in the
list of the top ranked triples, these were found for the eighth and
ninth ranked invariants. In the top 10 ranked hk, phase invari-
ants, however, there were 5 with f value near 180°, including the
triple invariant with the largest A value. It was, therefore,
somewhat of a surprise to find that the values of the four most
probable S1 invariants were correctly predicted.

The second problem encountered in this phase determination
is the difficulty with finding a truly robust figure of merit for
identifying the best phase solution among several. This problem
has been echoed by other investigators (4, 30). Although the
Luzzati criterion for density flatness is often qualitatively useful,
it cannot be relied upon for fine distinctions: e.g., when indi-

vidual phases are being permuted. Despite favorable indications
in earlier two-dimensional determinations (9–12), the Patterson
correlation coefficient is also unreliable. In this study, this figure
of merit was not suitable for picking out the best phase solution
when the h0, set was refined by Fourier methods. In fact, the
Luzzati figure of merit was a better criterion.

In this study, the cross-correlation of the observed density
histogram with the expected value has been the most reliable
means of determining the best phase set. Although an experi-
mental histogram for crambin was used in the initial discrimi-
nation of phase solutions via cross-correlation with the trial
histograms, subsequent evaluations of the three-dimensional
phase sets, via the ideal histogram in Fig. 1a or one with a slight
amount of phase error (see ref. 27), did not affect the identifi-
cation of the best solution. However, there was an additional
problem with the evaluation of skewness in the cross-correlation
functions because it was not altogether clear where to locate the
peak origin. Following the definition of correlation coefficients
in signal analysis (31), the origin problem might be resolved when

Fig. 3. Electron density maps for crambin based on most intense hk, reflections (uFhu $ 190). Projection down x: (a) Ideal solution. (b) Direct methods. Projection
down y: (c) Ideal solution. (d) Direct methods. The peptide backbone links Ca carbon positions from the x-ray model.
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the Fourier transform of the cross-correlation function U(f) 5
SiI(fi) is utilized in a figure of merit F 5 UAB(f)yUAA(f), where
I(fi) are the intensity values of the frequency components at fi,
for either the cross-correlation function (AB) or the autocorre-
lation function (AA). As shown in Table 2, its maximum value
of this ratio is also useful for detecting the best phase set. (A
maximum value of F greater than 1.00 indicates some error in the
Fourier transform calculation.)

Seemingly, the best tactic for three-dimensional phase deter-
mination at low resolution is to take great pains first of all to
obtain the best phase set possible for a zonal projection. For
three-dimensional phase determination, the Sayre equation is
preferable to a symbolic addition approach because it averages
over several possible contributors to a given phase, and, despite
the inaccuracy of individual three-phase invariants, it seems to
provide a useful result, especially for the strongest reflections in
the data set. It may also be preferable to retain the structure
factor magnitudes in this convolution rather than their normal-
ized values because the shape of the pheomenological scattering
factor is only approximately valid, leading to inaccurate predic-
tion of uEhu magnitudes. (This problem with the amplitude
transform of the globular model is indicated by relatively high
crystallographic residuals for the h0, and hk0 data sets when the
carbon scattering factor approximate is used—respectively, R 5
0.54 and 0.40.)

It appears, therefore, that ab initio phase determinations for
macromolecules at low resolution may not be an impossible goal.

Tests of other representative structures in other space groups
must be carried out to determine whether there are general
truths to be found rather than episodically favorable outcomes;
the experimental amplitudes from these proteins should also be
evaluated in future work. Appraisal of optimal figures of merit,
seemingly the greatest challenge facing us now for the identifi-
cation of best solutions, is also a prime consideration. The
evaluation of density histograms is certainly worth pursuing
further. For example, a recent study (32) demonstrating that a
three-dimensional low-resolution structure determination of
trigonal rubredoxin might be feasible from observed x-ray
structure factor amplitudes was somewhat surprising because the
low-resolution data were strongly affected by the high ammo-
nium sulfate concentration of the solvent space. If the crystal-
lographic phases from the x-ray model (33) were applied to the
6 Å amplitudes, the map density histogram again followed the
distribution expected for other proteins. This result indicates
that the same endpoint could be exploited as a figure of merit for
phase determination, perhaps explaining why phasing attempts
with these experimental data were so promising.
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