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ABSTRACT We introduce ‘‘ultrafilter limits’’ into the
classical Turing model of computation and develop a para-
digm for interpreting the problem of distinguishing the class
P from NP as a logical problem of decidability. We use P(NP)
to denote decision problems which can be solved on a (non-
deterministic) Turing machine in polynomial time. The con-
cept is that in an appropriate limit it may be possible to prove
that problems in P are still decidable, so a problem whose limit
is undecidable would be established as lying outside of P.

The Turing machine T represents an abstraction of the prin-
ciples of mechanical computation. The machine consists of a
head and a tape. The head is capable of being in one of a finite
number of ‘‘internal states’’ {qi} and can read and overwrite a
symbol [ {Sj} from a finite set of symbols and then shift one
block left or right along the tape. It contains a finite internal
program which directs its operations. At any time the complete
state of T is the record on the tape together with the internal
state. Consider a problem Q, with a yes/no answer, for which
infinitely many instances exist, for example, the satisfiability of
Boolean formulae. The decision problem Q is said to lie in class
P if there is an internal program which will correctly answer all
instances I of Q ‘‘yes’’ (‘‘no’’) by halting on symbol (0) after a
number of operations which is some fixed polynomial function
in the number of bits of the input. One says Q lies in NP
(nondeterministic polynomial time) if there is an ‘‘existential’’
program operating on I plus a number of ‘‘guess bits’’ which
correctly answers all instances I in polynomial time. The
existential program is deemed to answer ‘‘yes’’ if for some
setting of the guess bits the machine halts on 1.

Since the P/NP problem has at its core the distinction
between polynomial and exponential growth, it is natural to
look for perspective to other models within mathematics where
this dichotomy is manifest. In complex analysis an exponential
function, e.g., 2z, has an essential singularity at infinity, in
contrast to the continuous branched structure at infinity
exhibited by a polynomial. This dichotomy is mirrored in
cardinal arithmetic (1) where the function 2x is discontinuous
at every limit cardinal a, for which no smaller cardinal b has
a power set P(b) equinumerous with P(a), that is,
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This last fact, for a 5 :0, influenced Sipser (2) in his thinking
that the distinction between analytic (projections of Borel) sets
and coanalytic sets (the complement of an analytic set) in
analysis might provide a tool for distinguishing NP sets (sets
accepted by NP-time Turing machines) from co-NP sets (the
complement of NP sets).

The theory of group presentations may be taken as an analog
of computation. Milnor (3) and Schwarzc (4) introduced the
notion of the growth of a finitely generated group G. The

group G has polynomial growth (exponential growth), if it has
a presentation in which the number of distinct elements of G
which can be written as words of length 5 , in the generators
and their inverses is #P(,) for some polynomial P ($b, for
some base b . 1). It is easy to show that both these properties
are in fact independent of the presentation and depend only on
the group G.

Within this theory we will explain how taking the appropri-
ate limit transforms a distinction in growth rates into a
dimensional dichotomy. A celebrated theorem of Gromov’s (5)
states that G has polynomial growth iff it contains a nilpotent
subgroup of finite index. The proof considers a sequence of
base-pointed metric spaces {(G«, id)}, « 3 0, where G« has
metric dist(g1, g2) 5 « (minimum word length (g1g2

21)). This
sequence has a convergent subsequence, in the Gromov-
Hausdorff sense, if and only if G has polynomial growth, in
which case the limiting metric space (Y, y0) is finite-
dimensional.* The proof proceeds by representing G into
isometries (Y), which is a Lie group by the Montgomery-
Zippen theorem. Ultimately, the limit Y is seen to be a
nilpotent Lie group endowed with a Carno-metric. For exam-
ple, if G 5 integers Z, then Y is the real line R. If G 5 Zn, then
Y 5 Rn. If G is the discrete Heisenberg group
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then Y is the continuous Heisenberg group with x, y, and z real.
If G has faster than polynomial growth, {G«, id} will not

approach a limit in the Gromov-Hausdorff sense, but an
ultrafilter limit can be forcibly extracted. Let (Xi, pi) be any
sequence of pointed metric spaces i 5 1, 2, 3, . . . . Consider
admissible sequences {xi [ Xu, there exists a constant c so that
dist(pi, xi) , ic. Let v be any non-principle ultrafilter in Ž1,
i.e., v belongs to the growth Ž1\Z1 in the Stone-Cěch com-
pactification Ž1 of Z1. Using the universal property
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Gromov (6) defines a unique real number

d~$xi%, $x9i%! 5
dist~xi, x9i!

i
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which induces a pseudo-metric on the admissible sequences.
Dividing by the equivalence relation—points with distance 5
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*Convergent can be taken to mean that there is a pointed metric space
(Y, y0), so that for every radius r there exists an « . 0, so that the ball
of radius r about id in G«, (Br(id , G«), id) imbeds into (Y, y0) (1 1
1yr)-quasi-isometrically (i.e., with metric distortion between factors
of (1 1 1yr) and (1 2 1yr)), and that every point of Y is in the closure
of the images of these balls.
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0 are equivalent—yields a metric space X, which we call the
v-limit of (Xi). It has been conjectured that the homeomor-
phism type of the v-limit is independent of the choice of
non-principle ultrafilter v.

If the sequence ((Xi,
1
i
disti), pi) is convergent in the Gromov-

Hausdorff sense, then this limit is also the v-limit; however,
the v-limit exists in complete generality. For example, when
applied to the constant sequence {G, id}, G a word-hyperbolic
group (the generic case for groups of nonpolynomial growth;
ref. 6), then the v-limit is an R-tree (a space in which there is
a unique imbedded interval joining every two points). Al-
though of covering dimension one, this R-tree is enormously
large, in the sense that there is no countable basis for its
topology and its Hausdorff dimension is infinite.

The paradigm: ‘‘polynomial growth implies a well-behaved
limit,’’ if applied to the P/NP problem, would take the sche-
matic following form:

A polynomial time algorithm T solving a finite-decision
problem Q should ‘‘converge’’ to some ‘‘continuous
procedure’’ for solving an infinitary version of Q,
whereas an exponential-time algorithm should not be
expected to have any sensible limit.

Applications of Paradigm

There is a toy model of computation, the search of a database,
in which this paradigm applies. Consider the databases con-
sisting of the positive orthant of Zn and W, where Zn is the
integer lattice in Euclidean n-space and W is the universal
unrooted 3-valent tree with edges of length 5 1. (W could also
be taken to be a co-compact lattice in any hyperbolic space Hn,
n $ 2, and all the following assertions would remain true but
be slightly more technical to check.) Writing each integer r [
Z in base 2, the kth component fk(r) of a map f : Z1 ø 03 Zn

is defined by reading only the digits congruent to k mod n. Now
fix any non-principle ultrafilter v [ Ž1. Regarding Z1 ø 0 as
a sequence of spaces where the jth copy has its standard metric
multiplied by (j)2(n21), and regarding Zn as the constant
sequence of spaces, a Hölder-1/n continuous v-limit f# : R1 ø
0 3 Rn is obtained from applying the limit construction to
domain and range simultaneously. The map f may be inter-
preted as a particularly efficient† search of the positive orthant
of Zn; the rescaling of Z amounts to a speed-up of the search,
so that the ball of radius j in the jth Zn is searched in time
proportional to j. Finally, f# is the limiting solution to the
infinitary version of the search problem in which all points in
the positive orthant of Rn must be visited. The map f# is the
Peano-Hilbert curve.

Turn now to v-limit (W, w0) where some vertex of W has been
chosen as basepoint. There are 2:0 edge paths leaving w0 and
heading toward infinity. These define an uncountable set of
sequences {wi,j}, i [ Z1, j [ 2:0, whose mutual v-distances
d({wi, j}, j, {wi, j9}) 5 2 are all two. This implies that the v-limit W 5
W# has no countable basis for its topology. Consequently, W# is not
equal to the image under any continuous map of any second
countable space, e.g., R1 ø 0. Thus no discrete search of W can
be constructed so that a rescaled limit leads to a continuous
search (i.e., epimorphism) of W# . In these models we see ‘‘poly-
nomial time’’ converging to continuous and ‘‘exponential time,’’
failing to define an appropriate limit, echoing the observations in
complex analysis and cardinal arithmetic.

Let Nk be the set of Boolean formulae which are conjuctions
of k-fold disjuncts of a finite alphabet of literals; k-sat denotes
the satisfaction problem for fomuli in Nk. It is well known (7)

that 2-sat lies in P, whereas 3-sat is NP-complete. In ‘‘k-sat on
Groups and Undecidability’’ (unpublished work), an infinitary
version of k-sat is introduced which depends on a fixed infinite
group. Truth assignments for group elements are sought
subject to a family of disjunctive clauses closed under right
multiplication by a finite index subgroup H , G. It is shown
that for this extension of the satisfaction problem for G > Z
Q Z, 2-sat remains decidable while 3-sat becomes undecidable
in ZFC. While supporting the paradigm, the proof does not
argue on the basis of the inclusion 2-sat , P and therefore does
not immediately generalize. In view of the first two examples,
w-limits seem to be a promising general approach to construct-
ing decidable‡ limits of problems in P.

What follows are two speculations on how the introduction
of v-limits could have a role in distinguishing P from NP. The
sketched arguments should be read as design criteria for limits
that we do not know how to construct. The first is based on the
preservation of connectivity under a continuous map. The
second searches for a bridge to Gödel’s incompleteness the-
orem. Fix a non-principal ultrafilter v [ Ž1 and let F be the
set of finite Boolean formulae on an infinite alphabet orga-
nized into a pointed metric space, or perhaps some weaker
structure, in some manner which we do not yet know how to
specify. Let #F be an v-limit or some similar limit of F. For the
argument-plan we propose, the definition of the structure and
the details of the limit taken must be such that #F is connected.
However, it is necessary that if we restrict to F9 , F, a class of
formulae which can be checked for satisfiability in poly-time,
the limit yields a disconnected space #F9. We suppose that the
v-satisfiability (1) or unsatisfiability (0) of f# 5 {fi} [ #F can be
defined by applying v to the satisfiability of each fi in a
sequence defining f#. One can imagine that a polynomial time
algorithm T could be rewritten ‘‘efficiently’’—as in our choice
of scanning function f into the positive orthant of Zn—so that
it would converge to a ‘‘continuous decision procedure’’ T : #F
3 {0, 1}, contradicting the connectivity of #F. The picture is
that T would evolve f# [ #F through a succession (variable t) of
complete state sequences (variable i) {Si, t} defining a path
with parameter t [ [0, 1] in S, the v-limit of the discrete space
of sequences of complete states {Si}. Thus T would define a
homotopy T# : #F 3 I 3 S whose end T# (F 3 1) must be
disconnected according to yes/no on v-satisfiability. This
would contradict the topological connectivity of #F.

The first-order theory A of arithmetic is known to contain
weak fragments A2 for which there exists a decision procedure
(carried out within first-order arithmetic, say by a Turing
machine) for the provability in A of statements in A2. The best
known example (and a high tide mark of Hilbert’s program to
axiomatize mathematics) is Presberger Arithmetic PrA (8),
which is essentially Peano arithmetic§ absent multiplication.
Without multiplication, indexing of formulae cannot be
achieved, so Presberger Arithmetic escapes Gödel’s incom-
pleteness theorem. It seems plausible that a suitable ultrafilter
limit could resurrect multiplication, since multiplication by any
fixed integer is explicitly expressible as a repeated addition.
Thus one might have a schematic formula on the level of
v-limits:

v 2 PrA ; v 2 A.

In A, the Gödel sentence ‘‘there exists an integer x0 which
codes for a proof of 0 5 1’’ requires only a single unbounded
existential quantifier. Suppose that we can construct a frag-
ment of arithmetic A2 in which (i) the problem Q, of deciding

†The function f# is efficient in the sense that from any initial point f(i0),
the sequence f(i0), . . . , f(i0 1 cnr n) will completely explore the ball
of radius r in Zn about f(i0) for some constant cn depending only on
the dimension n.

‡Perhaps ‘‘decidable’’ should be replaced here with some notion
‘‘continuously decidable’’ as discrete proofs limit to continuous
objects.

§This denotes the standard axiomatization of arithmetic which features
the rules for addition, multiplication, and mathematical induction.
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(in A) the validity of sentences of A2 with only one unbound
existential quantifier, lies in NP and (ii) v 2 A2 [ v 2 A. With
regard to (i) we note that ref. 9 proves that PA is a bit too strong
a fragment; a nondeterministic Turing machine must run at
least $2,c

, for some c . 0, to decide such sentences of length 5
,. One may have to look to systems as weak as A2 5 quantified
Boolean formulae to achieve this condition. Note that a
Boolean formula can be written to specify the ith bit of
multiplication so some aspect of arithmetic is retained even at
this level. The paradigm that things polynomial have well
behaved limits would then suggest that a polynomial-time
algorithm for Q would yield a decision procedure (suitably
interpreted) for ‘‘v-sentences’’ in v 2 A2 with a single
unbounded quantifier. By (ii) such v-sentences would include
Gödel-like v-sentences and hence be undecidable. Such a
contradiction would show P to be strictly smaller than NP. The
philosophy is that within an appropriate limit, quick should
become decidable, whereas slow may become undecidable.
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