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Abstract

PURPOSE: PD173074, a small molecule inhibitor of

VEGF-RII and FGF-RI, targets neoangiogenesis and

mitogenesis. This study aimed to analyze a single-

compound-driven inhibition of FGF and VEGF recep-

tors in pancreatic cancer. EXPERIMENTAL DESIGN:

RT-PCR and Western blots were performed to quantify

protein expression and phosphorylation. Anchorage

dependent and independent growth assays were used

to study cell growth. With flow cytometry, cell cycle

analysis and apoptosis were studied. In vivo HPAF-II

and MIA PaCa-2 cells were xenografted. Animals were

treated daily for 10 weeks. Immunohistochemistry was

used to quantify microvessel density and apoptosis.

RESULTS: Highest levels of FGF-RI were detectable

in MIA PaCa-2 cells, lowest in HPAF-II cells. PD173074

inhibited cell growth most prominently in cells ex-

pressing high levels of FGF-RI. Cell cycle progression

was inhibited by blocking transition in the G0/G1 phase,

and consequently, apoptosis was increased. In vivo

significant inhibition of orthotopic tumor growth was

achieved by a combination effect of inhibition of mito-

genesis, induction of apoptosis, and reduction of

angiogenesis in PD173074-treated animals. CONCLU-

SIONS: These data highlight VEGF-RII and FGF-RI as

therapeutic targets and suggest a potential role for the

combined use of tyrosine kinase inhibitors in the

management of inoperable pancreatic cancer patients.
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Introduction

Angiogenesis is an essential physiological process during

organ development but is also involved in many patho-

logical circumstances such as diabetic retinopathy, athero-

sclerosis, cancer growth, and metastasis [1,2]. Pancreatic

cancer is the fourth or fifth leading cause of cancer death in

western countries, with nearly 32,000 people diagnosed an-

nually and with almost the same number of patients dying

from this disease in the United States [3]. Overall, the

incidence of pancreatic cancer remains stable in men but,

for unknown reasons, is rising in women [3–5]. Apart from a

few patients suffering from certain types of hereditary pancre-

atitis, little is known about risk factors for this disease [6].

The highly aggressive nature of pancreatic cancer remains

to be elucidated but could be due to differential expression of

growth factors, resulting in high constitutive intrinsic tyrosine

kinase activity, which simultaneously stimulates cell prolifera-

tion and tumor angiogenesis [7–9]. An increasing awareness of

the role of tumor neoangiogenesis in the growth of solid tumors

has led to a consensual opinion that abrogated neoangio-

genesis may cause tumor growth arrest [10].

Numerous studies have indicated that angiogenesis in-

volves different cytokines, such as vascular endothelial growth

factor (VEGF), basic fibroblast growth factor (bFGF), or angio-

poietin 1 [11,12]. As of now, it appears that members of the

FGF—in particular the VEGF—family are the most potent pro-

teins involved in tumor neoangiogenesis and, in the case of

pancreatic cancer, possess an additional mitogenic effect [13].

VEGF and bFGF are overexpressed in pancreatic cancer and

accelerate tumor growth [14,15]. The cellular effects of these

peptides are mediated by specific cell surface receptors with

intrinsic tyrosine kinase activity [16–21]. Disruption of VEGF

signaling with neutralizing antibodies or by dominant-negative

Flk-1 receptor mutants slows tumor growth. In contrast, sup-

pression of VEGF signaling alone had no effect on tumor

growth, suggesting that other angiogenic factors may substi-

tute for VEGF or bFGF [22,23]. This switch might be of par-

ticular interest because FGF-RI activation causes activation

of mitogen-activated protein kinases, which in turn regulate

VEGF gene expression [24–26].

In the present study, we analyzed the preclinical therapeutic

potential of a novel small molecule inhibitor, designated

PD173074, in vitro and in vivo using a clinically relevant ortho-

topic model for pancreatic cancer [27,28]. This small molecule

inhibitor has been shown to be a highly selective tyrosine kinase

inhibitor for both FGF-RI in lower doses (f 25nM) andVEGF-RII

signaling in higher doses (f 100 nM) [27,28] in fibroblasts.
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Because of its antiangiogenic potential in angiogenic tumor

model systems, we used this compound in higher doses to

simultaneously inhibit FGF-RI and VEGF-RII signaling and to

tailor therapy to pancreatic cancer because cancer cells

require higher drug doses for growth suppression. We hy-

pothesized that simultaneous blockade of these receptors

may not only abrogate angiogenic pathways but also bifunc-

tionally downregulate tumor cell proliferation.

Materials and Methods

Cell Culture

Five human pancreatic cancer cell lines (AsPC-1, Capan-1,

HPAF-II, MIA PaCa-2, and PANC-1) were used in vitro,

and MIA PaCa-2 and HPAF-II were also studied in vivo

[29–33]. All cancer cell lines were purchased from the

American Type Culture Collection (Rockville, MD) and cul-

tured in Dulbecco’s modified Eagle’s medium or RPMI 1640

medium supplemented with 10% heat-inactivated fetal bo-

vine serum, penicillin G (100U/ml), and streptomycin (100 mg/
ml). Human umbilical vein endothelial cells (HUVECs) were

cultured in an endothelial cell growth medium containing

an endothelial cell growth supplement (PromoCell GmbH,

Heidelberg, Germany). Normal human dermal fibroblasts

(NHDFs) were purchased from PromoCell GmbH and cul-

tured in fibroblast growth medium supplemented with insu-

lin (5 mg/ml) and bFGF at a final concentration of 1 ng/ml. All

cell culture chemicals were purchased from Life Technology

(Rockville, MD). All other chemicals were obtained from

Sigma Chemicals (St. Louis, MO), unless otherwise indi-

cated. PD173074 was kindly provided by Parke-Davis (Ann

Arbor, MI). The doses of PD173074 tested were 0, 1, 10, and

50 mM, or an equal volume of solvent, which was used as the

solvent of PD173074. The doses used in this study were

chosen because lower doses used for endothelial growth

suppression did not inhibit pancreatic cancer cell growth.

All in vitro growth studies were performed in 35-mm dishes

as a monolayer culture with logarithmically growing cultures.

Cell Number, Viability, and Growth

To determine the cell number, cells were trypsinized and

pelleted by centrifugation for 5 minutes at 1500 rpm, resus-

pended in 10 ml of phosphate-buffered saline (PBS), and

counted with an improved Neugebauer hemocytometer. Cell

viability was assayed by MTT [3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide] colorimetric assay [34]

using a commercially available kit (Boehringer Mannheim,

Mannheim, Germany) according to the manufacturer’s in-

structions. Absorbency readings were performed on a

540-nm multiwell spectrophotometer ELISA Reader (Biotek

Instruments, Burlington, VT).

Cell Proliferation Assay

For [3H]thymidine incorporation, 1 � 104 to 3 � 104 cells

were grown for 2 days in complete cell medium and serum-

starved for 24 hours. After serum deprivation, cells were

grown in normal cell type–specific medium, and DNA syn-

thesis was measured by adding 5 mCi of [3H]thymidine (APB,

Uppsala, Sweden) for 6 hours. Cultures were washed with

PBS, fixed with 5% trichloracetic acid (TCA), and lysed in

500 ml of lysis base containing 0.1 N NaOH + 1% sodium

dodecyl sulfate (SDS). Afterward, [3H]thymidine incorpora-

tion was measured by liquid scintillation counting (Beckman,

Fullerton, CA). The assays were performed in triplicate and

repeated at least twice.

Cell Cycle Analysis with Flow Cytometry

Samples were analyzed on a FACScan flow cytometer

(Becton Dickinson Immunocytometry Systems, San Jose,

CA) equipped with a 488-nm argon ion laser. Green fluores-

cein isothiocyanate (FITC) fluorescence was collected with

a 530/30–nm bandpass filter. Orange emission from propi-

dium iodide (PI) was filtered through a 585/42–nm bandpass

filter. Emission of 7-amino-actinomycin D (7-AAD) was col-

lected through a 650-nm longpass filter. Photomultiplier

tube voltage and spectral compensation were initially set

using cells single-stained with either FITC-labeledmonoclonal

antibody, PI, or 7-AAD alone. FITC and 7-AAD fluorescence

data were shown on four-decade log scales. PI fluorescence

was collected using linear amplification, in addition to FL-2

(orange fluorescence) height. FL-2 areas (A) and width (W )

were measured to permit doublet discrimination. A low flow

rate setting (12 ml/min) was used for sample acquisition to

improve the coefficient of variation (%CV) onDNAhistograms.

A minimum of 7500 events was collected on each sample.

Analysis of multivariate data was performed with CELLQuest

software (Becton Dickinson Immunocytometry Systems).

Cell cycle analysis of DNA histograms was performed with

ModFit LTsoftware (Verity Software House, Topsham, ME).

Apoptosis Assays

The amount of apoptotic cells was analyzed with an-

nexin V binding using an Annexin V FLOUS Staining Kit

(BoehringerMannheim). Briefly, cells were washed twice with

PBS and then resuspended in 100 ml of annexin V staining

solution, which consisted of 20 ml of FITC-conjugated an-

nexin V reagent (20 mg/ml), 20 ml of isotonic PI (50 mg/ml), and

1000 ml of 1 M HEPES buffer (all supplied by the manu-

facturer). Cells were incubated in staining solution for 10min-

utes at 25jC. Following this incubation, 500 ml of binding
buffer (supplied by the manufacturer) was added, and cells

were analyzed by flow cytometry. Samples were analyzed

on a FACScan flow cytometer (Becton Dickinson Immuno-

cytometry Systems) equipped with a 15-nW air-cooled

488-nm argon ion laser. Because positive annexin V staining

is seen for apoptotic and necrotic cells, PI was used to differ-

entiate between these two subgroups. Annexin V–positive

and PI-positive cells were considered necrotic cells, where-

as annexin V–positive and PI-negative cells were counted

as apoptotic cells.

Soft Agar Colony-Forming Assay

For anchorage-independent growth assays, a bottom

layer of 1 ml of cell type–specific medium containing 0.7%

agar (DIFCO, Detroit, MI) and 10% fetal bovine serum was
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poured. Then 1 � 104 cells were added in 1 ml of complete

culture medium, 0.35% agar, and various concentrations of

PD173074. Cells were incubated in cell type–specific culture

conditions; after 10 days, MTT reagent, which is exclusively

metabolized by living cells, was added at a final concentration

of 0.5 mg/ml for vital staining. Colonies with > 20 cells were

counted manually.

Immunoprecipitation and Western Blot Analysis

Cells were lysed in radioimmunoprecipitation assay buffer

(1� PBS, 1% Nonidet P-40, 0.5% sodium deoxycholate, and

0.1% SDS) with a protein inhibitor (10 ml/ml radioimmuno-

precipitation assay buffer of 10 mg/ml phenylmethylsulfonyl

fluoride in isopropanol, 30 ml/ml radioimmunoprecipitation

assay buffer of aprotinin, and 10 ml/ml radioimmuno-

precipitation assay buffer of 100 mmol of sodium orthovana-

date). Samples were incubated on ice for 30 minutes and

centrifuged at 10,000g for 15 minutes. Protein concentra-

tions were determined, and FGF-RI was detected by a

specific antibody recognizing the COOH terminus of each

of these FGF-RI (1:1000; Santa Cruz Biotechnology, Santa

Cruz, CA). Equal amounts of protein were immunoprecipi-

tated with antisera FGF-RI attached to protein A/G plus

agarose beads and separated on 8% polyacrylamide gel.

Immunoblotting analyses were performed by probing with

a monoclonal antiphosphotyrosine (PY99; Santa Cruz Bio-

technology) and with FGF-R as control. The effect of FGF-R

tyrosine kinase inhibition was also examined in the pres-

ence of FGF-1 stimulation (5 ng/ml) for 15 minutes. Similarly,

VEGF-RII was immunoprecipitated with an antireceptor

antibody, followed by immunoblotting with an antiphospho-

tyrosine monoclonal antibody.

Tumor Induction in Athymic Nude Mice

Five-week-old male nude mice (BALB/Ca) were used for

subcutaneous and orthotopic tumor implantations [35,36].

The experimental protocol was approved by the Chancellor’s

Animal Research Committee of the University of California

(Los Angeles, CA) in accordance with national guidelines for

animal care and the use of laboratory animals. The poorly

differentiated human pancreatic cancer cell line MIA PaCa-2

and the more differentiated HPAF-II cell line were used for

xenograft tumor induction. After subcutaneous tumor for-

mation, one small tumor fragment (f 1 mm in diameter)

was removed from the subcutaneous tumor and trans-

planted into the tail of the mouse pancreas. To standardize

experimental conditions in vivo, all 20 animals for each cell

line to be tested were transplanted in the same session

with tumor pieces from the same subcutaneous tumor and

randomly assigned to either the PD173074-treated group

(n = 10) or the sham-treated group (n = 10). After orthotopic

tumor transplantation, the mice were inspected daily. The

growth rate of the tumor was monitored by abdominal palpa-

tion, and tumor volume was determined after the sacrifice

of animals using the formula: tumor volume = 1/2(length �
width � depth). Metastatic tumor spread was determined

macroscopically in all thoracic, abdominal, retroperitoneal,

and pelvic organs, and all suspicious lesions were confirmed

by microscopic analysis. Metastatic spread was quantified

by counting different organs that contained metastatic

lesions. Thus, every point in themetastatic score represented

a different organ of metastatic tumor spread, as previously

described [35]. Ascites volume was measured with a single-

channel adjustable 1000-ml laboratory Eppendorf pipette.

Therapeutic Efficiency of PD173074 in Athymic Nude Mice

One week after orthotopic tumor transplantation, treat-

ment was initiated. PD173074 (25 mg/kg per day) was given

intraperitoneally in a volume of 0.1 ml in PBS, which also

served as control vehicle. Treatment was continued until

sacrifice, which was performed when clinical signs of excess

tumor burden, such as cachexia or ascites with abdominal

distension, became evident or when the tumor has grown

larger than 1.5 cm.

Immunohistochemical Labeling for the Quantitation

of Microvessel Density (MVD)

Tumors were fixed in 10% buffered formalin, embedded in

paraffin, and sectioned (2–4 mm) for hematoxylin–eosin

staining or immunohistochemistry. Apoptosis staining was

performed using the TUNEL method according to the man-

ufacturer’s instructions (Roche Diagnostics, Penzberg, Ger-

many). Labeling of microvessels was performed with rat

anti-mouse CD31 (PharMingen, San Diego, CA), followed

by biotinylated goat anti-rat antibody (Jackson Immuno-

Research Laboratories, West Grove, PA) and streptavidin-

conjugated horseradish peroxidase (DAKO, Carpinteria, CA)

using a protocol that has been previously described in detail

[36]. Quantification of MVD has been described previously

[36–40]. Briefly, MVD was determined using three sections

of each xenograft tumor cut from different tumor regions. On

each slide, three vascular hot spots were selected by scan-

ning a tumor section at low magnification (�40). Once the

vascular hot spot has been defined, a higher magnification

was selected to be able to count individual microvessels.

Magnifications on the order of �200 and a field size of

0.25 mm2 were used [37,39,40]. Thus, quantification of

stained vessels was achieved by measuring the highest

microvascular density. All measurements were performed

by a single pathologist blinded to the sample’s identity.

Statistical Analysis

Experiments were repeated at least thrice. Results are

expressed as mean ± SE. Statistical significance was deter-

mined by Student’s t test (P < .05).

Results

FGF-RI Expression in Pancreatic Cancer Cell Lines

It has previously been reported that the angiogenic

system consisting of VEGF and its receptors VEGF-RI and

VEGF-RII is activated in human pancreatic cancer growth

[7,41]. Therefore, we determined the expression and phos-

phorylation of FGF-RI. We measured FGF-RI mRNA by

reverse transcription–polymerase chain reaction (RT-PCR),
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and protein expression was quantified by Western blot anal-

ysis. FGF-RI mRNA expression was detectable in three of

five cell lines (Figure 1A). In Western blot analysis, these

cell lines also exhibited the expression of FGF-RI protein,

whereas cell lines devoid of FGF-RI mRNA did not express

relevant protein levels (Figure 1A). Whether PD173074

inhibits FGF-RI or VEGF-RII phosphorylation in pancreatic

cancer cells was tested in the AsPC-1 cell line. Cell lysates

from PD173074-treated cells were subjected to FGF-RI

immunoprecipitation, followed by blotting with an anti-

phosphotyrosine antibody. In the case of VEGF-RII, immuno-

precipitation was performed with an antiphosphotyrosine

antibody, followed by blotting with VEGF-2 antibody. Although

robust FGF-1–mediated and VEGF-mediated phosphoryla-

tions were evident in the absence of the small molecule

inhibitor PD173074, cells pretreated with PD173074 showed

a dose-dependent inhibition of FGF-RI and VEGF-RII phos-

phorylation (Figure 1B). The functional relevance of this ob-

servation was further studied in cell proliferation assays

measuring DNA synthesis by [3H]thymidine uptake. In this

assay, mitogenic response was detectable on stimulation of

pancreatic cancer cells with recombinant human VEGF and

FGF-1 (Figure 2). The mitogenic response induced by the

addition of either of the two cytokines was blocked by increas-

ing doses of PD173074, which in high doses even suppressed

the basal cell proliferation rate (Figure 2B). The functional

relevance of the VEGF-mediated growth stimulation of pan-

creatic cancer cells has previously been reported [7,8,41].

PD173074 Suppressed Cell Growth

The culture of pancreatic cancer cell lines in the pres-

ence of PD173074 resulted in a dose-dependent and time-

dependent growth suppression. This finding was detectable

in cell counts (Figure 3, B and D) and was confirmed in MTT

assays (Figure 3, B and D), where a strong time-dependent

(Figure 3, A and B) and dose-dependent (Figure 3, C and D)

growth inhibition was detectable. The IC50 dose of pancreatic

cancer cell lines was in the range of 2.5 to 15 mM, depending

on the individual cancer cell line (data not shown). In com-

parison, nontransformed normal human cells are more sus-

ceptible to PD173074 therapy (50-fold to 100-fold) than are

cancer cells. HUVECs and human fibroblast cells showed

a marked reduction in cell viability at PD173074 doses of

0.01 to 0.1 mM, as analyzed by MTTassays (Figure 3E ).

Figure 1. Expression of FGF-RI in pancreatic cancer cell lines. (A) mRNA

was isolated, and RT-PCR was performed. After PCR with specific primers

for FGF-RI, the PCR product was separated on a 1% agarose gel (upper

panel). The corresponding FGF-RI Western blot analysis is shown below

(lower panel). In (B), the effect of PD173074 on FGF-RI and VEGF-RII

signaling is shown. AsPC-1 cells were grown for 24 hours in the presence or

in the absence of PD173074 and were stimulated for 15 minutes with FGF-1

(50 �g/ml) in the presence of heparin or stimulated with recombinant human

VEGF (25 ng/ml). Total cell lysates were immunoprecipitated (IP); sub-

sequently, immunoblotting (IB) was performed with the indicated antibodies.

Figure 2. [3H]thymidine incorporation on FGF-1 and VEGF stimulation of various human pancreatic cancer cell lines. (A) Cells (f 5 � 104) were grown for 3 days

and stimulated with different doses of recombinant human VEGF (1 and 10 ng/ml). In (B), cells were stimulated with recombinant human FGF-1 (0, 1, and 5 ng/ml).

The inhibitory effect of PD173074 was tested by adding PD173074, 60 minutes before the addition of growth factors at two different concentrations (1 and 10 �M).

After 14 hours of stimulation, cells were pulse-labeled for 6 hours with [3H]thymidine (0.25 �Ci/ml). Values represent the mean ± SE of at least three independent

experiments. *P < .05, compared with untreated cells. #P < .05, compared with cells stimulated with VEGF or FGF-1.
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Effect of PD173074 on the Anchorage-Independent Growth

of Human Pancreatic Cancer Cells

To determine the growth-inhibitory efficacy of PD173074

on anchorage-independent growth, we analyzed pancreatic

cancer cell lines in soft agar assays. Because of the dura-

tion and specific characteristics of this experimental setting,

we used 1.0 mM PD173074 in this experiment, which is a

concentration well below the IC50 concentration of pancre-

atic cancer cell lines. The well-differentiated human pancre-

atic cancer cell line Capan-1 did not grow in soft agar assays.

Figure 3. Dose-dependent and time-dependent effects of PD173074 on cell growth in different human pancreatic cancer cell lines. (A and B) Time-dependent

effect of PD173074 (10 �M) on pancreatic cancer cell growth. (A) Cells were grown in complete cell medium for up to 96 hours in the presence of 10 �M PD173074.

Cells were collected and counted with a hemocytometer. (B) Cells were cultured for 96 hours in complete cell medium in the presence of 10 �M PD173074. Cell

viability was determined by MTT assay. (C and D) Dose-dependent effect of PD173074 on cell growth (48 hours). (C) Cells were grown in complete cell medium in

the presence of the indicated doses of PD173074 for 48 hours and analyzed as described in (A). In (D), cells were cultured and analyzed as described in (B), and

cell viability was determined by MTT assay. In (E), normal HUVECs and NHDFs were treated with PD173074, and cell viability was analyzed by MTT assay. Values

represent the mean ± SE of at least three independent experiments. *P < .05 indicates that the values for PD173074-treated cells were less statistically significant

than those for untreated cells. ns = not significant.
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In contrast, the growth of all four cell lines that grew in soft

agar was markedly inhibited, similar to that seen in mono-

layer cultures, although lower concentrations were needed

in anchorage-independent growth assays (Figure 4). In

summary, the growth-inhibitory effect of equal concentra-

tions of PD173074 was more pronounced in anchorage-

independent growth assays than in monolayer cultures,

where higher doses were needed for equal growth suppres-

sion (Figures 3 and 4).

Cell Cycle Arrest and Induction of Apoptosis after Treatment

with PD173074

To analyze how PD173074 modulates the cell growth of

pancreatic cancer cells in vitro, we analyzed whether

PD173074 inhibited cell cycle progression or caused apopto-

sis by FACS analysis using hypotonic PI and annexin V cell

stainings. Cell cycle progression was significantly inhibited

in all pancreatic cancer cell lines tested, but a clear differ-

ence was observed with regard to the potency of inhibition

(Table 1). AsPC-1 cells that expressed the highest levels of

FGF-RI protein reacted with the most pronounced G0/G1–

phase arrest (Table 1). Nevertheless, the HPAF-II cell line,

in which FGF-RI was not detectable, also displayed cell

cycle arrest, as seen as well for PANC-1 and MIA PaCa-2

cells (Table 1).

Apart from altering cell cycle progression, PD173047

therapy had a significant influence on apoptosis as it in-

creased the rate of apoptosis in pancreatic cancer cells

(Figure 5, A and B). Quantitative analysis of apoptotic rate

with annexin V staining showed that PD173074 dose-

dependently and time-dependently increased apoptosis

(Figure 5, A and B). This effect was first detectable at a dose

of 1.0 mM PD173074 in cells cultured for 48 hours. Similarly,

10 mM PD173074 resulted in an increase in apoptosis as

early as 24 hours after the onset of treatment. The potency of

induction was markedly different and more pronounced in

cells with higher FGF-RI levels. Noteworthy also, the FGF-

RI–negative cell line HAPF-II showed an increase in the

rate of apoptosis (Figure 5, A and B). The dose and time

dependencies of the effects of PD173074 on apoptosis over-

lapped with the corresponding effects of PD173074 on cell

count and cell viability (Figure 3).

Therapeutic Efficacy of PD173074 In Vivo

For in vivo studies, we used a highly metastatic murine

model for pancreatic cancer. One week after tumor induc-

tion, treatmentwas initiated, and 25mg/kg per dayPD173074

or an equal volume of solvent was injected intraperitoneally.

Treatment was continued for 10 weeks. Only moderate

side effects were seen in PD173074-treated animals, which

Table 1. Cell Cycle Phase Distribution of Pancreatic Cancer Cells Treated with PD173074.

AsPC-1 (%) Capan-1 (%) HPAF-II (%) MIA PaCa-2 (%) PANC-1 (%)

Control PD173074 Control PD173074 Control PD173074 Control PD173074 Control PD173074

48 hr G0/G1 39 59 42 59 46 55 41 58 39 67

S 43 32 37 29 35 29 48 31 34 18

G2/M 18 9 21 12 19 15 11 11 27 15

96 hr G0/G1 43 69 39 64 47 61 38 76 42 77

S 49 25 42 21 33 22 45 9 35 11

G2/M 8 6 19 15 20 17 17 15 23 12

Logarithmically growing pancreatic cancer cells were collected after 48 and 96 hours of treatment with 10 mM PD173074 and stained with PI, and DNA content was

subjected to flow cytometry analysis. The percentage of cells in each cell cycle phase was determined by the analysis of DNA content histograms using ModFit LT

software. Numbers in the G0/G1 phase that are presented in italics are statistically different from the corresponding control values (P < .05, Student’s t test). Values

from a representative experiment are presented, and similar results were obtained in at least two independent experiments.

Figure 4. Effect of PD173074 on anchorage-independent growth assays. (A)

Pancreatic cancer cells (103–104) were seeded on a bottom layer dependent

on individual cell growth rate. After 10 days of culture, the MTT reagent was

added as described in the Materials and Methods section. Colonies with > 20

cells were counted. Values represent the mean ± SE of at least three

independent experiments. *P < .05 indicates that values for PD173074-

treated cells were statistically significantly different from those for untreated

cells. (B) Representative culture of PANC-1 cells is shown. Untreated cells

(left well) compared to PD173074-treated cells (right well) are shown after the

MTT reagent has been added.
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had a lower weight in both groups compared to the sham-

treated animals.

PD173074 therapy resulted in significant tumor growth

suppression (Table 2). Overall growth-suppressive efficiency

was even more pronounced in the MIA PaCa-2 cell line

than in the HPAF-II cell line. Local tumor infiltration into peri-

pancreatic organs (e.g., stomach, liver, and spleen) was

lower in the treated groups. Tumor metastasis was de-

creased in MIA PaCa-2 xenograft tumors on PD173074

treatment (Table 2), and a clear trend in HPAF-II tumors

was seen, but this did not reach statistical significance in

HPAF-II animals. Furthermore, the production of ascites

in MIA PaCa-2 xenografted animals was reduced in the

treated group.

In an attempt to further translate our in vitro results, we

analyzed the apoptotic index in treated and untreated xeno-

graft tumors (Figure 6, A and B). The quantification of apop-

tosis in xenografts paralleled in vitro findings, as PD173074

significantly (P < .05) increased the rate of apoptosis in both

xenografted cell lines with a more pronounced effect on MIA

PaCa-2 xenograft tumors (13.1 ± 3.9% vs 3.7 ± 1.8%) but

also increased apoptosis in HPAF-II tumor xenografts (19.3 ±

6.2% vs 11.0 ± 4.1%).

Given the high potency of PD173074 for the simultaneous

blockade of FGF-RI and VEGF-RII, the MVD of xenograft

tumors was analyzed to test whether tumor-suppressive

effects were also due to blocked angiogenesis (Figure 6, C

and D). For specific identification, we stained tumor speci-

mens from both groups with an anti-mouse CD31 antibody—

a specific marker for blood vessel endothelium. MVD in

MIA PaCa-2 xenograft tumors was reduced by > 30% on

PD173074 treatment (41.9 ± 10.1 vs 63.4 ± 12.5), and a

similar reduction was seen in HPAF-II xenografts as well

(39.9 ± 12.8 vs 63.8 ± 13.2).

Discussion

Pancreatic cancer is a devastating disease with only a few

therapeutic options for the majority of patients, who have to

be treated palliatively. Even those patients who undergo

tumor resection often develop recurrent disease [42–44].

In a palliative therapeutic setting, radiation and chemo-

therapy offer—if at all—only marginal survival advantage

[43,45–47]. Therefore, new treatment strategies and com-

pounds are necessary to treat pancreatic cancer. Anti-

angiogenic therapy appears promising as it targets the

nutritional support of tumor cells by inhibiting blood vessel

formation [10,48,49]. Nevertheless, antiangiogenic therapy

is adjunctive only and is usually given together with addi-

tional cytotoxic compounds [49]. PD173074 is a novel small

molecule inhibitor, which blocks VEGF-RII and FGF-RI sig-

naling [27,28]. By its dual affinity, PD173074 simultaneously

exerts both the antiangiogenic and the antimitogenic ac-

tivities of these growth factors, thus abrogating two crucial

pathways in cancer growth and metastasis [41].

Because we have previously shown that mitogenic and

active VEGF-RII is expressed in human pancreatic cancer

cells in vitro and in vivo, we determined the expression of

FGF-RI in various human cell lines [41]. FGF-RI expression

was present in three of five pancreatic cancer cell lines, which

could be stimulated with recombinant FGF-1. This mitogenic

response induced by FGF-1 was completely revertible by

PD173074. Additionally, a strong antiproliferative effect was

observed in pancreatic cancer cells grown without further

stimulation by growth factors. This effect was both dose-

dependent and time-dependent in all cancer cell lines. Be-

cause higher doses of PD173074 inhibited the growth of all

cancer cell lines (even those that did not express FGF-RI), it

is likely that higher doses of PD173074 may also crossact

through nonspecific inhibition of other growth factor receptors

and tyrosine kinases. PD173074 demonstrated a selective

Table 2. Therapeutic Efficiency of PD173074 Treatment In Vivo Using a

Highly Metastatic Orthotopic Murine Model for Pancreatic Cancer.

Tumor Parameters MIA PaCa-2 HPAF-II

Sham PD173074 Sham PD173074

Tumor volume (cm3) 1.57 ± 0.3 0.46 ± 1.5* 1.72 ± 0.3 0.90 ± 0.3*

Metastatic score 2.20 ± 0.5 0.90 ± 0.3* 1.20 ± 0.4 1.00 ± 0.3

Ascites volume (ml) 2.10 ± 0.7 0.60 ± 0.2* 1.50 ± 0.6 0.55 ± 0.3

Animal weight (g) 27.6 ± 1.6 21.3 ± 0.9* 29.5 ± 1.9 22.6 ± 1.1*

*P < .05, unpaired t-test.

Figure 5. Dose and time dependencies of PD173074-induced apoptosis in different human pancreatic cancer cell lines. Cells were treated with PD173074 (10 �M)

for the indicated time (A) or cultured for 48 hours in the presence of the indicated doses of PD173074 (B). Cells were trypsinized and stained with annexin V and PI.

Annexin V–positive and PI-negative cells were considered apoptotic. Values represent the mean ± SE of at least three independent experiments. *P < .05

indicates that for all cell lines studied, values for PD173074-treated cells were statistically significantly greater than those for untreated cells. ns = not significant.
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growth-inhibitory action toward HUVECs and normal human

fibroblasts when compared with a panel of pancreatic cancer

cells. In soft agar assays, a similar growth inhibition was

observed, but the drug doses required were lower than those

in monolayer cultures. Growth inhibition appeared to be

mediated by altered cell cycle progression in theG0/G1 phase

and by additional induction of apoptosis as determined by

flow cytometry.

Because PD1730474 appears to inhibit growth in vitro, we

tested the ability of this compound also in vivo using a highly

metastatic orthotopic murine model for pancreatic cancer. In

this study, we used a dose higher than that previously

described for antiangiogenic studies with nontransformed

endothelial cells [27]. In contrast, this study aimed to abro-

gate the mitogenesis of transformed cancer cells as well. In

general, this dose regimen was well tolerated. Tumor growth

in PD173074-treated animals was significantly reduced in

both MIA PaCa-2 and HPAF-II animals. In the highly meta-

static cell line MIA PaCa-2, there was also a lower incidence

of metastatic tumor spread and a lower volume of ascites

produced. A similar trend was seen in the dissemination

score of HPAF-II– tumor bearing animals, but this observa-

tion did not reach statistical significance due to the relatively

small sample size. The antitumor activity of PD173074 was

most likely due to the simultaneous targeting of several

cellular pathways affecting tumor cell proliferation, apoptosis,

and tumor angiogenesis. In as much as the number of newly

formed tumor blood vessels (MVD) may reflect the activity of

tumor neoangiogenesis, we determined the number of blood

vessels by staining them with endothelial-specific markers

and found that PD173074 led to a significant reduction in

tumor blood vessel formation. Clearly, reduction in the MVD

itself is not specific for the antiangiogenic activity of a chem-

ical compound because nonspecific tumor cell killing may

also cause a reduction in blood vessel formation. Similarly

treated animals showed a marked increase in apoptosis,

similar to the effect seen in vitro.

The current study is the first study to have used high doses

of PD173074 as a single compound and provides preclinical

evidence that PD173074 tailored cancer therapy toward the

simultaneous inhibition of angiogenesis, induction of apopto-

sis, and inhibition of tumor growth factor–mediated mito-

genesis. By therapeutic unification of these pathways, a

compound such as PD173074 may represent a new and

promising treatment option for patients suffering from pan-

creatic cancer.
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