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Abstract
Item response theory (IRT) has a number of potential advantages over classical test theory in
assessing self-reported health outcomes. IRT models yield invariant item and latent trait estimates
(within a linear transformation), standard errors conditional on trait level, and trait estimates anchored
to item content. IRT also facilitates evaluation of differential item functioning, inclusion of items
with different response formats in the same scale, and assessment of person fit and is ideally suited
for implementing computer adaptive testing. Finally, IRT methods can be helpful in developing better
health outcome measures and in assessing change over time. These issues are reviewed, along with
a discussion of some of the methodological and practical challenges in applying IRT methods.
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Classical test theory (CTT) partitions observed item and scale responses into true score plus
error. The person to whom the item is administered and the nature of the item itself influence
the probability of a particular item response. A major limitation of CTT is that person ability
and item difficulty cannot be estimated separately. In addition, CTT yields only a single
reliability estimate and corresponding standard error of measurement, but the precision of
measurement is known to vary by ability level.

Item response theory (IRT) comprises a set of generalized linear models and associated
statistical procedures that connect observed survey responses to an examinee’s or a subject’s
location on an unmeasured underlying (“latent”) trait.1 IRT models have a number of potential
advantages over CTT methods in assessing self-reported health outcomes. IRT models yield
item and latent trait estimates (within a linear transformation) that do not vary with the
characteristics of the population with respect to the underlying trait, standard errors conditional
on trait level, and trait estimates linked to item content. In addition, IRT facilitates evaluation
of whether items are equivalent in meaning to different respondents (differential item
functioning) and inclusion of items with different response formats in the same scale, assessing
person fit, and it is ideally suited for implementing computerized adaptive testing. IRT methods
can also be helpful in developing better health outcome measures over time. After a basic
introduction to IRT models, each of these issues is discussed. Then we discuss how IRT models
can be useful in assessing change. Finally, we note some of the methodological and practical
problems in applying IRT methods.
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To illustrate results from real data, we refer to the 9-item measure of physical functioning
administered to participants in the HIV Cost and Services Utilization Study (HCSUS).2–4
Study participants were asked to indicate whether their health limited them a lot, a little, or not
at all in each of the 9 activities during the past 4 weeks (see Appendix). The items were selected
to represent a range of functioning, including basic activities of daily living (feeding oneself,
bathing or dressing, preparing meals, or doing laundry), instrumental activities of daily living
(shopping), mobility (getting around inside the home, climbing stairs, walking 1 block, walking
>1 mile), and vigorous activities. Five items (vigorous activities, climbing 1 flight of stairs,
walking >1 mile, walking 1 block, bathing or dressing) are identical to those in the SF-36 health
survey.5

Item means, standard deviations, and the percentage not limited in each activity are provided
in Table 1. The 9 items are scored on the 3-point response scale, with 1 representing limited a
lot, 2 representing limited a little, and 3 representing not limited at all. Items are ordered by
their means, which range from 1.97 (vigorous activities) to 2.90 (feeding yourself). These data
will be used to provide an example of estimating item difficulty and discrimination parameters,
category thresholds, model fit, and the unidimensionality assumption of IRT.

IRT Basics
IRT models are mathematical equations describing the association between a respondent’s
underlying level on a latent trait and the probability of a particular item response using a
nonlinear monotonic function.6 The correspondence between the predicted responses to an
item and the latent trait is known as the item-characteristic curve (ICC). Most applications of
IRT assume unidimensionality, and all IRT models assume local independence.7
Unidimensionality means that only 1 construct is measured by the items in a scale. Local
independence means that the items are uncorrelated with each other when the latent trait or
traits have been controlled for.8 In other words, local independence is obtained when the
complete latent trait space is specified in the model. If the assumption of unidimensionality
holds, then only a single latent trait is influencing item responses and local independence is
obtained.

Item-Characteristic Curves
With dichotomous items, there tends to be an s-shaped relationship between increasing
respondent trait level and increasing probability of endorsing an item. As shown in Figure 1,
the ICC displays the nonlinear regression of the probability of a particular response (y axis) as
a function of trait level (x axis). Items that produce a nonmonotonic association between trait
level and response probability are unusual, but nonparametric IRT models have been
developed.9 The middle of the ICC is steeper in slope, implying large changes in probability
of an endorsement with small changes in trait level. Item discrimination corresponds to the
slope of the ICC. The ICC for items with a higher probability of endorsement (easier items)
are located farther to the left on the trait scale, and those with a lower probability of endorsement
(harder items) are located further to the right (Figure 1). For example, Figure 1 shows ICCs
for 3 items, each having 2 possible responses (dichotomous): (1) no and (2) yes. Item 1 is the
“easiest” item because the probability of a “yes” response for a given trait level tends to be
higher for it than for the other 2 items. Item 3 is the “hardest”item because the probability of
a “yes” response for a given trait level tends to be lower than for the other 2 items.

Dichotomous IRT Models
The different kinds of IRT models are distinguished by the functional form specified for the
relationship between underlying ability and item response probability (ie, the ICC). For
simplicity, we focus on dichotomous item models here and briefly describe examples for
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polytomous items (items with multiple response categories). Polytomous models are
extensions of dichotomous IRT models. The features of the 3 main types of dichotomous IRT
models are summarized in Table 2. As noted, each of these models estimates an item difficulty
parameter. The 2- and 3-parameter models also estimate an item discrimination parameter.
Finally, the 3-parameter model includes a “guessing” parameter.

This article takes the position that the Rasch model is nested within the 2- and 3-parameter
models. We do not address the side debate in the literature about whether the Rasch model
should be referred to as distinct rather than a special case of IRT models.

One-Parameter Model
The Rasch model specifies a 1-parameter logistic (1-PL) function.10,11 The 1-PL model allows
items to vary in their difficulty level (probability of endorsement or scoring high on the item),
but it assumes that all items are equally discriminating (the item discrimination parameter, α,
is fixed at the same value for all items). Observed dichotomous item responses are a function
of the latent trait (θ) and the difficulty of the item (β):

P(θI) = eDα(θ−β) / 1 + eDα(θ−β) = 1 / 1 + e−Dα(θ−β)

D is a scaling factor that can be used to make the logistic function essentially the same as the
normal ogive model (ie, setting D = 1.7). Latent trait scores and item difficulty parameters are
estimated independently, and both values are on the same z-score metric (constrained to sum
to zero). Most trait scores and difficulty estimates fall between −2 and 2.

The difficulty parameter indicates the ability level or trait level needed to have a 50% chance
of endorsing an item (eg, responding “yes”to a “yes or no”item). In the Rasch model, the log
odds of a person endorsing or responding in the higher category is simply the difference
between trait level and the item difficulty. A nice feature of the Rasch model is that observed
raw scores are sufficient for estimating latent trait scores using a nonlinear transformation. In
other IRT models, the raw score is not a sufficient statistic.

Figure 1 presents ICCs for 3 dichotomous items, differing in their degree of difficulty on the
z-score metric from −1, 0, to 1. Note that the s-shaped curves are parallel (have the same slope)
because only item difficulty is allowed to vary in the 1-PL model. The probability of a “yes”
response to the easiest item (β1 = −1) for someone of average ability (θ = 0) is ~0.73, whereas
the probability for the item with the intermediate difficulty level (β2 = 0) is 0.50 (this is true
by definition given its difficulty level), and the probability for the hardest items (β3 = 1) is
0.27. The discrimination parameter of each item was set to 1.0.

For purposes of illustration of the Rasch model, we dichotomized the items by collapsing the
“yes, limited a lot”and the “yes, limited a little”response options together and coding this 0.
The “no, not limited”at all response was coded 1. We fit a 1-PL model to these data using
MULTILOG12 (see Table 3). Slope (discrimination) estimates are typically fixed at 1.0 in the
absence of any information. In this example, the slopes were fixed at 3.49 by MULTILOG on
the basis of the generally high level of discrimination for this set of items.

Item difficulty estimates (Table 3) ranged from −1.60 (feeding yourself) to 0.46 (vigorous
activities). The second hardest item was walking >1 mile, followed by climbing 1 flight of
stairs, shopping, walking 1 block, bathing or dressing, and getting around inside the home.
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Two-Parameter Model
The 2-parameter (2-PL) IRT model extends the 1-PL Rasch model by estimating an item
discrimination parameter (α) and an item difficulty parameter. The discrimination parameter
is similar to an item-total correlation and typically ranges from ~0.5 to 2. Higher values of this
parameter are associated with items that are better able to discriminate between contiguous
trait levels near the inflection point. This is manifested as a steeper slope in the graph of the
probability of a particular response (y axis) by underlying ability or trait level (x axis). An
important feature of the 2-PL model is that the distance between an individual’s trait level and
item difficulty has a greater effect on the probability of endorsing highly discriminating items
than on less discriminating items. Thus, more discriminating items provide greater information
about a respondent than do less discriminating items. Unlike the Rasch model, discrimination
needs to be incorporated, and the raw score is not sufficient for estimating trait scores.

We also fit a 2-PL model for the dichotomized physical functioning items (Table 4). Difficulty
estimates were similar to those reported above for the 1-PL model, ranging from −1.62 (feeding
yourself) to 0.49 (vigorous activities). Thus, difficulty estimates were robust to whether or not
the item discrimination parameter was estimated. Item discriminations (slopes) ranged from
2.51 (vigorous activities) to 4.09 (walking >1 mile). These slopes are very high; each one
exceeds the upper value (2.00) of the typical range noted above.

Three-Parameter Model
The 3-parameter (3-PL) model includes a pseudo-guessing parameter (c), as well as item
discrimination and difficulty parameters: P(θI) = c + (1−c)eDα(θ−β)/(1 +eDα(θ−β)). This
additional parameter adjusts for the impact of chance on observed scores. In the 3-PL model,
the probability of the response at θ = β = (1 + c)/2. In ability testing, examinees can get an
answer right by chance, raising the lower asymptote of the function. The relevance of this
parameter to HRQOL assessment remains to be demonstrated. Response error, rather than
guessing, is a plausible third parameter for health outcomes measurement.

Examples of Polytomous IRT Models
Graded Response Model

The graded response model,13 an extension of the 2-PL logistic model, is appropriate to use
when item responses can be characterized as ordered categorical responses. In the graded
response model, each item is described by a slope parameter and between category threshold
parameters (one less than the number of response categories). For the graded response model,
1 operating characteristic curve needs to be estimated for each between category threshold. In
the graded response model, items need not have the same number of response categories.
Threshold parameters represent the trait level necessary to respond above threshold with 0.50
probability. Category response curves represent the probability of responding in a particular
category conditional on trait level. Generally speaking, items with higher slope parameters
provide more item information. The spread of the item information and where on the trait
continuum information is peaked are determined by the between-category threshold
parameters.

We fit the graded response model to the HCSUS physical functioning items, preserving the
original 3-point response scale. Responses were scored as shown in the Appendix: 1 = yes,
limited a lot; 2= yes, limited a little; and 3 = no, not limited at all. In running the model, 2
category threshold parameters and 1 slope parameter were estimated for each item.

Table 5 shows the category threshold parameters and the slope parameter for each of the 9
physical functioning items. The category threshold parameters represent the point along the
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latent trait scale at which a respondent has a 0.50 probability of responding above the threshold.
Looking at the first row of Table 5, one can see that a person with a trait level of 0.62 has a
50/50 chance of responding “not limited at all”in vigorous activities. Similarly, a person with
a trait level of −0.31 has a 50/50 chance of responding “limited a little” or “not limited at all”
in vigorous activities. The trait level associated with a 0.50 probability of responding above
the 2 thresholds is higher for the vigorous activities item than for any of the other 8 physical
functioning items. This is consistent with the fact that more people reported limitations in
vigorous activities than on any of the other items. For example, 65% of the sample reported
being limited in vigorous activities compared with only 9% for feeding.

Partial Credit Model
The partial credit model14 is an extension of the Rasch model to polytomous items. Thus, item
slopes are assumed to be equal across items. The model depicts the probability of a person
responding in category x as a function of the difference between their trait level and a category
intersection parameter. These intersection parameters represent the trait level at which a
response in a category becomes more likely than a response in the previous category. The
number of category intersection parameters is equal to one less than the number of response
options. The partial credit model makes no assumption about rank ordering of response
categories on the underlying continuum.

Rating Scale Model
The rating scale model15 assumes that the response categories are ordered. Response
categories are assigned intersection parameters that are considered equal across items, and item
location is described by a single scale location parameter. The location parameter represents
the average difficulty for a particular item relative to the category intersections. Each item is
assumed to provide the same amount of information and have the same slope. Therefore, the
rating scale model is also an extension of the Rasch model.

Assessing Model Fit
Choosing which model to use depends on the reasonableness of the assumptions about the
scale items in the particular application.16 Unlike CTT, the reasonableness of the IRT model
can be evaluated by examining its fit to the data. Dimensionality should be evaluated before
choosing an IRT model. Tests of equal discrimination should be conducted before choosing a
1-PL model, and tests of minimal guessing, if relevant, should be conducted before choosing
a 2-PL model. Finally, item fit χ2 statistics17 and model residuals can be examined as a means
of checking model predictions against actual test data (Table 6). The mean discrepancy
(absolute values) across the 9 items and 3 response categories was 0.1 (SD = 0.01). The item
fit χ2 statistics were significant (P < 0.05) for all items. Because statistical power increases
with sample size, larger samples lead to a greater likelihood of significant χ2 differences.
Appropriate caution is needed in interpreting χ2 statistics. The results in Table 6 suggest
minimal practical differences between observed and expected response frequencies.

Potential Advantages of Using IRT in Assessing Health Outcome Assessment
Table 7 lists some of the advantages of using IRT in health outcome assessment. This section
summarizes these potential advantages.

More Comprehensive and Accurate Evaluation of Item Characteristics
Invariant Item and Latent Trait Estimates—In CTT, item means are confounded by valid
group differences, and item-scale correlations are affected by group variability on the construct.
When an IRT model fits the data exactly in the population, sample invariant item and latent
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trait estimates are possible.18,19 Within sampling error, the ICC should be the same regardless
of what sample it was derived from (within a linear transformation), and the person estimates
should be the same regardless of what items they are based on.

Invariance is a population property that cannot be directly observed but can be evaluated within
a sample. For instance, one can look to see if individual scores are the same regardless of what
items are administered or whether item parameters are the same across subsets of the sample.
Embretson20 illustrated with simulations that CTT estimates of item difficulty for different
subgroups of the population can vary considerably and the association between the estimates
can be nonlinear. In contrast, difficulty estimates derived from the Rasch model were robust
and very highly correlated (r = 0.997).

Item and Scale Information Conditional on Trait Level—Any ICC can be transformed
into an item information curve (utility of information curves is dependent on how well the ICC
fits the data).19 Information curves are analogous to reliability of measurement and indicate
the precision (reciprocal of the error variance) of an item or test along the underlying trait
continuum. An item provides the most information around its difficulty level. The maximum
information lies at β in the 1-PL and 2-PL models. In a 3-PL model, the maximum information
is not quite at β because as c decreases information increases (all else being equal). The steeper
the slope in the ICC and the smaller the item variance, the greater the item information.

Scale information depends on the number of items and how good the items are. The information
provided by a multi-item scale is simply the sum of the item information functions. Standard
error of measurement in IRT models is inversely related to information and hence is conditional
on trait level: SE = 1/(information|θ)1/2. Because information varies by trait level, a scale may
be quite precise for some people and not so precise for others. It is also possible to average the
individual standard errors to obtain a composite estimate for the population.20 This means that
items can be selected that are most informative for specific subgroups of the population.

To illustrate the information function, the formula for the 3-PL logistic model is given below:

I (θI) = 2.89αi
2(1 − ci) / cI + e

1.7α(θ−βi) × 1 + e−1.7α(θ−βi)
2

Working through this equation shows that information is higher when the difficulty of the item
is closer to the trait level, when the discrimination parameter is higher, and when the pseudo-
guessing parameter, c, is smaller. Figure 2 plots item information curves for 3 items that vary
in the 3-PL parameters: item 1 (c = 0.0; β = −1.5; α = 1.8), item 2 (c = 0.1; β = −0.5; α = 1.2),
and item 3 (c = 0.0; β = 1.0; α= 1.8). Note that the information peaks at the difficulty level for
items 1 and 3, because c = 0.0 for both of these items. For item 2, information peaks close to
its difficulty level, but the peak is shifted a little because of the 0.1 c parameter.

Trait Estimates Anchored to Item Content—In CTT, the scale score is not typically
informative about the item response pattern. However, if dichotomous items are consistent
with a Guttman scale,21 then they are ordered along a single dimension in terms of their
difficulty, and the pattern of responses to items is determined by the sum of the endorsed items.
The linkage between trait level and item content in IRT is similar to the Guttman scale, but
IRT models are probabilistic rather than deterministic.

In IRT, item and trait parameters are on the same metric, and the meaning of trait scores can
be related directly to the probability of item responses. Hence, it is possible to obtain a relatively
concrete picture of response pattern probabilities for an individual given the trait score. If the
person’s trait level exceeds the difficulty of an item, then the person is more likely than not to
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“pass” or endorse this item. Conversely, if the trait level is below the item difficulty, then the
person is less likely to endorse than not endorse the item.

Assessing Group Differences in Item and Scale Functioning
IRT methods provide an ideal basis for assessing differential item functioning (DIF), defined
as different probabilities of endorsing an item by respondents from 2 groups who are equal on
the latent trait. When DIF is present, scoring respondents on the latent trait using a common
set of item parameters causes trait estimates to be too high or too low for those in 1 group
relative to the other.22,23 DIF is identified by looking to see if item characteristic curves differ
(item parameters differ) by group.24

One way to assess DIF is to fit multigroup IRT models in which the slope and difficulty
parameters are freely estimated versus constrained to be equal for different groups. If the less
constrained model fits the data better, this suggests that there is significant DIF. For example,
Morales et al25 compared satisfaction with care responses between whites and Hispanics in a
study of patients receiving medical care from an association of 48 physician groups.26 This
analysis revealed that 2 of 9 items functioned differently in the 2 groups but that the DIF did
not have meaningful impact on trait scores. When all 9 items were included in the satisfaction
scale, the effect size was 0.27, with whites rating care significantly more positively than
Hispanics. When the biased items were dropped from the scale, the effect size became 0.26
and the mean scale scores remained significantly different. Thus, statistically significant DIF
does not necessarily invalidate comparisons between groups.

Evaluating Scales Containing Items With Different Response Formats
In CTT, typically one tries to avoid combining items with different variances because they
have differential impact on raw scale scores. It is possible in CTT to convert items with different
response options to a common range of scores (eg, 0 to 100) or to standardize the items so that
they have the same mean and standard deviation before combining them. However, these
procedures yield arbitrary weighting of items toward the scale score. IRT requires only that
item responses have a specifiable relationship with the underlying construct.27 IRT models,
such as the graded response model, have been developed that allow different items to have
varying numbers of response categories.13

Improving Existing Measures
One possible benefit of IRT is facilitation of the development of new items to improve existing
measures. Because standard errors of measurement are estimated conditional on trait level,
IRT methods provide a strong basis for identifying where along the trait continuum the
measurement provides little information and is in need of improvement. The ideal measure
will provide high information at the locations of the trait continuum that are important for the
intended application. For example, it may be necessary to identify only people who score so
high on a depression scale that mental health counseling is needed to prevent a psychological
crisis from occurring. The desired information function would be one that is highly peaked at
the trait level associated with the depressive symptom threshold.

IRT statistics cannot tell the researcher how to write better items or exactly what items will fill
an identified gap in the item difficulty range. Poorly fitting items can provide a clue to the types
of things to avoid when writing new items. An item with a double negative may not fit very
well because of respondent confusion. Items bounding the target difficulty range can provide
anchors for items that need to be written.

For example, a Rasch analysis of the SF-36 physical functioning scale resulted in log-odds
(logits) item location estimates of −1.93 for walking 1 block compared with −3.44 for bathing
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or dressing.28 To fill the gap between these difficulty levels, one might decide to write an item
about preparing meals or laundry. This could be based on intuition about where the item will
land or on existing data including CTT estimates of item difficulty.

Computerized Adaptive Testing
CTT scales tend to be long because they are designed to produce a high coefficient α.29,30
But most of the items are a waste of time for any particular respondent because they yield little
information. In contrast, IRT methods make it possible to estimate person trait levels with any
subset of items in an item pool. Computerized adaptive testing (CAT) is ideally suited to IRT.
Traditional, fixed-length tests require administering items that are high for those with low trait
values and items that are too low for those with high trait values.

There are multiple CAT algorithms.31 We describe one example here to illustrate the general
approach. First, an item bank of highly discriminating items of varying difficulty levels is
developed. Then each item administered is targeted at the trait level of the respondent. Without
any prior information, the first item administered is often a randomly selected item of medium
difficulty. After each response, examinee trait level and its standard error are estimated. If
maximum likelihood is used to estimate trait level, step-size scoring (eg, 0.25 increment up or
down) can be used after the first item is administered. The next item administered to those not
endorsing the first item is an easier item located the specified step away from the first item. If
the person endorses the item, the next item administered is a harder item located the specified
step away. After 1 item has been endorsed and 1 not endorsed, maximum likelihood scoring
is possible and begun. The next item selected is an item that maximizes the likelihood function
(ie, item with a 50% chance of endorsement in the 1- and 2-PL models). CAT is terminated
when the standard error falls below an acceptable value. Note that CAT algorithms can be
designed for polytomous items as well.

Modeling Change
IRT models are well suited for tracking change in health. IRT models offer considerable
flexibility in longitudinal studies when the same items have not been administered at every
data collection wave. Because trait level can be estimated from any subset of items, it is possible
to have a good trait estimate even if the items are not identical at different time points. Thus,
the optimal subset of items could be administered in theory to different respondents, and this
optimal subset would vary, depending on their trait level at each time point. This feature of
IRT models means that respondent burden is minimized. Each respondent can be administered
only the number of items that are needed to establish a satisfactory small enough standard error
of measurement. This feature of IRT also will help to ensure that the reliability of measurement
is sufficiently high to allow for monitoring individual patients over time.

IRT can also help address the issue of clinically important difference or change (see the article
by Testa et al32 in this issue). Anchor-based approaches have been proposed that compare
prospectively measured change in health to change on a clinical parameter (eg, viral load) or
to retrospectively reported global change.33 For example, the change in a health-related quality
of life scale associated with going from detectable to undetectable levels of viral load in people
with HIV disease might be deemed clinically important. Because IRT trait estimates have direct
implications for the probability of item responses and items are arrayed along a single
continuum, substantive meaning can be attached to point-in-time and change scores. Trait level
change can therefore be cast in light of concrete change in levels of functioning and well-being
to help determine the threshold for clinically meaningful change.

One suggested advantage of IRT over CTT is interval level as opposed to ordinal level
measurement. Although interval level and even ratio level measurement has been argued for
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Rasch models34 and a nonlinear transformation of trait level estimates can provide ratio-scale
type of interpretation,35 the trait level scale is not strictly an interval scale. However, it has
been noted that assessing change in terms of estimated trait level rather than raw scores can
yield more accurate estimates of change.36 Ongoing work directed at item response theory
models of change for within-subject change that can be extended to group level change offers
exciting possibilities for longitudinal analyses.37

Evaluating Person Fit
An important development in the use of IRT methods is detection of the extent to which a
person’s pattern of item responses is consistent with the IRT model.38–40 Person fit indexes
have been developed for this purpose. The standardized ZL Fit Index is one such index: ZL|
θI = ∑[ln L|θI − ∑E(ln L|θI]/(∑V[ln L|θI)),1/2 where ln = natural logarithm. Large negative
ZL values (ZL< = −2.0) indicate misfit. Large positive ZL values indicate response patterns
that are higher in likelihood than the model predicts.

Depending on the context, person misfit can be suggestive of an aberrant respondent, response
carelessness, cognitive errors, fumbling, or cheating. The bottom line is that person misfit is a
red flag that should be explored. For example, unpublished baseline data from HCSUS revealed
a large negative ZL index41 for a respondent who reported that he was “limited a lot” in feeding,
getting around inside his home, preparing meals, shopping, and climbing 1 flight of stairs but
only “limited a little” in vigorous activities, walking >1 mile, and walking 1 block. The apparent
inconsistencies in this response pattern suggests the possibility of carelessness in answers given
in this face-to-face interview.

Methodological and Practical Challenges in Applying IRT Methods
Unidimensionality

In evaluations of dimensionality in the context of exploratory factor analysis, it has been
recommended that one examine multiple criteria such as the scree test,42 the Kaiser-Guttman
eigen values >1.00 rule, the ratio of first to second eigenvalues, parallel analysis,43 the Tucker-
Lewis44 reliability coefficient, residual analysis,45 and interpretability of resulting factors.
46 Determining the extent to which items are unidimensional is important in IRT analysis
because this is a fundamental assumption of the method. Multidimensional IRT models have
been developed.7

It is generally acknowledged that the assumption of unidimensionality “cannot be strictly met
because several cognitive, personality, and test-taking factors always affect test performance,
at least to some extent.”19 As a result, there has been recognition that establishing “essential
unidimensionality” is sufficient for satisfying this assumption. Stout47,48 developed a
procedure by which to judge whether or not a data set is essentially unidimensional. In short,
a scale is essentially unidimensional when the average between-item residual covariances after
fitting a 1-factor model approaches zero as the length of the scale increases.

Essential unidimensionality can be illustrated conceptually by use of a previously published
example. In confirmatory factor analysis, it is possible that multiple factors provide a better fit
to the data than a single dimension. Categorical confirmatory factor analytic models can now
be estimated.49,50 The estimated correlation between 2 factors can be fixed at 1.0, and the fit
of this model can be contrasted to a model that allows the factor correlation to be estimated.
A χ2 test of the significance of the difference in model fit (1 df) can be used to determine
whether 2 factors provide a better fit to the data. Even when 2 factors are extremely highly
correlated (eg, r = 0.90), a 2-factor model might provide better fit to the data than a 1-factor
model.51 Thus, statistical tests alone cannot be trusted to provide a reasonable answer about
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dimensionality. This is a case in which, even though unidimensionality was not fully satisfied,
the items may be considered to have essential unidimensionality.

The 9 physical functioning items described earlier are polytomous (ie, have 3 response
choices). We tested the unidimensionality assumption of IRT by fitting 1-factor categorical
confirmatory factor analysis.49 The model was statistically rejectable because of the large
sample size (λ2 = 1,059.29, n = 2,829, df = 27, P < 0.001), but it fit the data well according to
practical fit indexes (comparative fit index = 0.99). Standardized factor loadings ranged from
0.72 to 0.94, and the average absolute standardized residual was 0.05.

When Does IRT Matter?
Independent of whether IRT scoring improves on classic approaches to estimating true scores,
IRT is likely to be viewed as a better way of analyzing measures. Nonetheless, there is interest
in the comparability of CTT and IRT-based item and person statistics. Recently, Fan52 used
data collected from 11th graders on the Texas Assessment of Academic Skills to compare CTT
and IRT parameter estimates. The academic skills assessment battery included a 48-item
reading test and a 60-item math test, with each of the multiple choice items scored correct or
incorrect. Twenty random samples of 1,000 examinees were drawn from a pool of more than
193,000 participants.

CTT item difficulty estimates were the proportion of examinees passing each item, transformed
to a the (1−p)th percentile from the z distribution. This transformation assumed that the
underlying trait measured by each item was normally distributed. CTT item discrimination
estimates were obtained by taking the Fisher z transformation of the item-scale correlation: z
= [ln(1 + r) − ln(1−r)]/2. Fan52 found that the CTT and IRT item difficulty and discrimination
estimates were very similar. In this particular application, the resulting estimates did not change
as a result of using the more sophisticated IRT methodology.

In theory, there are many possibilities for identifying meaningful differences between CTT
and IRT. Because IRT models may better reflect actual response patterns, one would expect
IRT estimates to be more accurate reflections of true status than CTT estimates. As a result,
IRT estimates of health outcomes should be more sensitive to true cross-sectional differences
and more responsive to change in health over time. Indeed, a recent study found that the
sensitivity of the SF-36 physical functioning scale to differences in disease severity was greater
for Rasch model–based scoring than for simple summated scoring.53 Similarly, a study of 194
individuals with multiple sclerosis54 revealed that the RAND-36 HIS mental health composite
score, an IRT-based summary measure,55 correlated more strongly with the Expanded
Disability Status Scale than did the SF-36 mental health summary score, a CTT-based measure.
Moreover, the RAND-36 scores were found to be more responsive to change in seizure
frequency than the SF-36 scores in a sample of 142 adults participating in a randomized
controlled trial of an antiepileptic drug.56

Because nonlinear transformations of dependent variables can either eliminate or create
interactions between independent variables, apparent interactions in raw scores may vanish
(and vice versa) when scored with IRT.57 Given the greater complexity and difficulty of IRT
model–based estimates, it is important to document when IRT scoring (trait estimates) makes
a difference.

Practical Problems in Applying IRT
There are a variety of software products available that can be used to analyze health outcomes
data with IRT methods, including BIGSTEPS/WINSTEPS,58 MULTILOG,12 and
PARSCALE.59 BIGSTEPS implements the 1-PL model. MULTILOG can estimate
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dichotomous or polytomous 1-, 2- and 3-PL models; Samejima’s graded response model;
Master’s partial credit model; and Bock’s nominal response model. Maximum likelihood and
marginal maximum likelihood estimates can be obtained. PARSCALE estimates 1-, 2-, and 3-
PL logistic models; Samejima’s graded response model; Muraki’s modification of the graded
response model (rating scale version); the partial credit model; and the generalized partial credit
model.

None of these programs are particularly easy to learn and implement. The documentation is
often difficult to read, and finding out the reason for program failures can be time consuming
and frustrating. The existing programs have a striking similarity to the early versions of the
LISREL structural equation-modeling program.60 LISREL required a translation of familiar
equation language into matrixes and Greek letters. Widespread adoption of IRT in health
outcome studies will be facilitated by the development of user-friendly software.

Conclusions
IRT methods will be used in health outcome measurement on a rapidly increasing basis in the
21st century. The growing experience among health services researchers will lead to
enhancements of the method’s utility for the field and improvements in the collective
applications of the methodology. We look forward to a productive 100 years of IRT and health
outcomes measurement.
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Fig. 1.
Item characteristic curves for 3 dichotomous items.
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Fig. 2.
Item information functions for 3 polytomous items: 3-PL model.
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Fig. 3.
Physical functioning items in HCSUS. R indicates respondent.
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Table 1
Item Means, Standard Deviations, and Percent Not Limited for 9 Physical Functioning Items

Item Mean (SD) Not Limited, %

Vigorous activities 1.97 (0.86) 45
Walking >1 mile 2.22 (0.84) 49
Climbing 1 flight of stairs 2.37 (0.76) 55
Shopping 2.61 (0.68) 72
Walking 1 block 2.63 (0.64) 72
Preparing meals or doing laundry 2.67 (0.63) 75
Bathing or dressing 2.80 (0.49) 84
Getting around inside your home 2.81 (0.47) 84
Feeding yourself 2.90 (0.36) 91

Items are scored 1 = yes, limited a lot; 2 = yes, limited a little; and 3 = no, not limited at all.
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Table 2
Features of Different Types of Dichotomous IRT Models

Item Difficulty Item Discrimination Guessing Parameter

1-Parameter (Rasch) X
2-Parameter X X
3-Parameter X X X
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Table 3
Item Difficulty Estimates for Physical Functioning Items: Rasch Model

Item Item Difficulty (SE)

Vigorous activities 0.46 (0.02)
Walking >1 mile 0.06 (0.03)
Climbing 1 flight of stairs −0.14 (0.02)
Shopping −0.65 (0.02)
Walking 1 block −0.67 (0.02)
Preparing meals or doing laundry −0.78 (0.03)
Bathing or dressing −1.18 (0.03)
Getting around inside your home −1.19 (0.03)
Feeding yourself −1.60 (0.04)

Items are ordered by difficulty level. Estimates were obtained from MULTILOG, version 6.30. Slopes were fixed at 3.49.
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Table 4
Item Difficulty and Discrimination Estimates for Physical Functioning Items: Two-Parameter Model

Item Item Difficulty (SE) Discrimination (SE)

Vigorous activities 0.49 (0.03) 2.51 (0.12)
Walking >1 mile 0.06 (0.02) 4.09 (0.19)
Climbing 1 flight of stairs −0.14 (0.03) 3.46 (0.15)
Shopping −0.64 (0.02) 3.74 (0.26)
Walking 1 block −0.66 (0.02) 3.69 (0.26)
Preparing meals or doing laundry −0.76 (0.03) 3.83 (0.25)
Bathing or dressing −1.18 (0.03) 3.52 (0.21)
Getting around inside your home −1.18 (0.03) 3.59 (0.21)
Feeding yourself −1.62 (0.05) 3.21 (0.25)

Items are ordered by difficulty level. Estimates were obtained from MULTILOG, version 6.30.
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Table 5
Category Thresholds and Slope Estimates for HCSUS Physical Functioning Items: Graded Response Model

Item Category Threshold
Parameter—Between “A
Lot” and “A Little” (SE)

Category Threshold
Parameter—Between “A

Little” and “Not at
All” (SE)

Slope Parameter (SE)

Vigorous activities −0.31 (0.03) 0.62 (0.04) 2.22 (0.09)
Climbing 1 flight of stairs −1.09 (0.04) −0.05 (0.03) 2.77 (0.10)
Walking >1 mile −0.65 (0.03) 0.17 (0.03) 3.28 (0.13)
Walking 1 block −1.56 (0.04) −0.62 (0.03) 3.27 (0.19)
Bathing or dressing −2.03 (0.07) −1.13 (0.03) 3.25 (0.20)
Preparing meals or doing laundry −1.59 (0.04) −0.73 (0.03) 3.27 (0.19)
Shopping −1.41 (0.04) −0.59 (0.03) 3.39 (0.16)
Getting around inside your home −2.14 (0.07) −1.14 (0.04) 3.18 (0.18)
Feeding yourself −2.73 (0.12) −1.71 (0.06) 2.35 (0.18)

Estimates were obtained from MULTILOG, version 6.30.
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Table 6
Difference Between Observed and Expected Response Frequencies (Absolute Values) by Item and Response
Category

Yes, Limited a Lot Yes, Limited a Little No, Not Limited at
All

P

Vigorous activities 0.01 0.02 0.02 <0.05
Walking >1 mile 0.01 0.02 0.02 <0.05
Climbing 1 flight of stairs 0.01 0.03 0.03 <0.05
Shopping 0.01 0.01 0.01 <0.05
Walking 1 block 0.01 0.01 0.01 <0.05
Preparing meals or doing laundry 0.01 0.00 0.01 <0.05
Bathing or dressing 0.01 0.01 0.00 <0.05
Getting around inside your home 0.00 0.00 0.02 <0.05
Feeding yourself 0.01 0.01 0.01 <0.05

The mean difference (absolute values) between the observed and expected response frequencies across all items and all response categories was 0.01 (SD

= 0.01). The reported P values are based on the item-fit χ2 reported by Parscale 3.5.
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Table 7
Potential Advantages of Using IRT in Health Outcomes Assessment

• More comprehensive and accurate evaluation of item characteristics

• Assess group differences in item and scale functioning

• Evaluate scales containing items with different response formats

• Improve existing measures

• CAT

• Model change

• Evaluate person fit
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