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Integrative spike dynamics of rat CA1 neurons:
a multineuronal imaging study
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The brain operates through a coordinated interplay of numerous neurons, yet little is known

about the collective behaviour of individual neurons embedded in a huge network. We used

large-scale optical recordings to address synaptic integration in hundreds of neurons. In

hippocampal slice cultures bolus-loaded with Ca2+ fluorophores, we stimulated the Schaffer

collaterals and monitored the aggregate presynaptic activity from the stratum radiatum and

individual postsynaptic spikes from the CA1 stratum pyramidale. Single neurons responded

to varying synaptic inputs with unreliable spikes, but at the population level, the networks

stably output a linear sum of synaptic inputs. Nonetheless, the network activity, even though

given constant stimuli, varied from trial to trial. This variation emerged through time-varying

recruitment of different neuron subsets, which were shaped by correlated background noise. We

also mapped the input-frequency preference in spiking activity and found that the majority of

CA1 neurons fired in response to a limited range of presynaptic firing rates (20–40 Hz), acting like

a band-pass filter, although a few neurons had high pass-like or low pass-like characteristics. This

frequency selectivity depended on phasic inhibitory transmission. Thus, our imaging approach

enables the linking of single-cell behaviours to their communal dynamics, and we discovered

that, even in a relatively simple CA1 circuit, neurons could be engaged in concordant information

processing.
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Neurons are network elements and do not work alone.
Their accurate behaviour or function cannot be estimated
only by observing individual neurons, but most physio-
logical studies have focused on single or a few neurons
or monosynaptic transmission, the main reason being
probably the lack of appropriate experimental procedures
to approach network operations. To resolve this dilemma,
we adopted a functional imaging technique with multicell
loading of calcium fluorophores. This technique was
originally introduced by Yuste & Katz (1991) and has
recently been put to practical use in vivo (Stosiek
et al. 2003; Nimmerjahn et al. 2004; Ohki et al. 2005;
Kerr et al. 2005). The remarkable advantages include:
(i) simultaneous recordings from 100 to 1000 neurons in
a wide area (> 0.1 mm2), (ii) single-cell and single-spike
resolution, and (iii) identifiable locations of neurons
(including inactive cells during recording periods).

We used this large-scale imaging in order to examine
the response of hippocampal CA1 networks to afferent
stimulation in vitro. The perspicuous CA1 network
architecture can be a minimal model for understanding
how single neurons and their synaptic connections
combine to execute a coordinated function. In addition, its

stereotyped laminar structure allows separating network
input and output activities at the level of single
neurons. Taking advantage of them, we aimed to examine
(i) the input–output (I/O) relationship, (ii) trial-to-trial
variation, and (iii) frequency-dependent spike transfer, at
the network level.

Methods

Materials

Oregon green BAPTA 1-AM, Pluronic F-127 and
sulforhodamine 101 were obtained from Molecular Probes
(Eugene, OR, USA). Chromophore EL, sulfinpyrazone,
d,l-2-amino-5-phosphonopentanoic acid (AP5), 6-
cyano-7-nitroquinoxoxaline-2,3-dione (CNQX), picro-
toxin and gabazine (SR-95531) were purchased from
Sigma (St Louis, MO, USA). Drugs were dissolved in
double-distilled water or DMSO so as to make 1000×
stock solutions, except for picrotoxin (100×). The stock
solutions were stored at −20◦C and diluted immediately
before use. They were all bath applied.
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Slice preparations

Preliminary data show that, as compared with acutely
prepared slices, organotypic cultures are more consistently
loaded with calcium indicators and offer improved
imaging resolution, presumably because of less cellular
debris (data not shown; see Morita et al. 2003).
Therefore we decided to use slice cultures, rather than
acute slice preparations, in this study, although synaptic
connections in organotypic cultures might undergo
unnatural remodelling during the incubation period
(Robain et al. 1994; Sakaguchi et al. 1994; Gutierrez &
Heinemann, 1999).

Hippocampal slice cultures were prepared from
postnatal day 7 Wistar/ST rats (SLC, Shizuoka, Japan) as
previously described (Yamamoto et al. 1989; Stoppini et al.
1991; Ikegaya, 1999), according to National Institutes of
Health guidelines for laboratory animal care and safety.
Briefly, rat pups were chilled and decapitated with a
small animal guillotine (SN-629, Shinano manufacturing
cooperation, Tokyo, Japan). The brains were rapidly
removed and cut into horizontal 300-μm-thick slices
using a DTK-1500 microslicer (Dosaka, Kyoto, Japan) in
aerated, ice-cold Gey’s balanced salt solution (Invitrogen,
Gaithersburg, MD, USA) supplemented with 25 mm

glucose. Entorhino-hippocampal stumps were cultivated
on Millicell-CM membranes (Millipore, Bedford, MA,
USA) for 7–14 days. Cultures were fed with 1 ml of 50%
minimal essential medium, 25% Hanks’ balanced salt
solution (Invitrogen), 25% horse serum (Cell Culture
Laboratory, Cleveland, OH, USA) and antibiotics in a
humidified incubator at 37◦C in 5% CO2. The medium
was changed every 3.5 days.

Ca2+ imaging

Experiments were performed in artificial cerebrospinal
fluid (ACSF) consisting of (mm): 127 NaCl, 26 NaHCO3,
1.5 KCl, 1.3 KH2PO4, 1.4 MgSO4, 2.4 CaCl2, and 10
glucose), bubbled with 95% O2 and 5% CO2. Slices were
washed three times with ACSF, transferred into a 35-mm
dish filled with 2 ml of dye solution, and incubated for
1 h in a humidified incubator at 37◦C in 5% CO2. The
dye solution is ACSF containing 10 μl of 0.1% Oregon
green 488 BAPTA-1AM/DMSO, 2 μl of 10% Pluronic
F-127/DMSO, 2 μl of 5% Cremophor EL/DMSO, and
2 μl of 100 mm sulfinpyrazone (Ikegaya et al. 2005).
The final concentrations were 0.0005% Oregon green,
0.01% Pluronic F-127, 100 μm sulfinpyrazone, 0.005%
Cremophor EL, and 0.8% DMSO.

After being washed, slices were incubated at room
temperature for > 30 min, mounted in a recording
chamber and perfused with 32◦C ACSF at a rate of
1.0–1.5 ml min−1. Incision was made between the CA2
and CA3 regions and between CA1 and the subiculum

to reduce recurrent excitation. Images (653 pixels × 492
pixels, 16-bit intensity) were captured at 10 frames s−1

with a CSU10 Nipkow spinning-disk confocal micro-
scope (Yokokawa Electric, Tokyo, Japan), equipped with
a Cascade cooled CCD camera (Roper Scientific, Tucson,
AZ, USA), a Zeiss AxioSkop2 microscope (Oberkochen,
Germany), water-immersion objectives (20×, 0.5 NA,
Achroplan, Zeiss), and Metamorph software (Molecular
Devices, Union City, CA, USA). Fluorophores were excited
with the 488-nm line from an argon–krypton laser
(15–20 mW, 641-YB-A01, Melles Griot, Carlsbad, CA,
USA) and visualized with a 507-nm long-pass emission
filter. Bipolar tungsten electrodes were placed in the CA1
stratum radiatum sufficiently apart from the imaged area
to avoid direct stimulation of dendrites of the monitored
neurons, and a single pulse or burst train stimuli (50 μs,
60–270 μA) were applied every 30 s to activate Schaffer
collateral axons. To minimize photodamage and photo-
bleaching, a laser shutter was opened during the 3–5 s
period around the stimulation under the Metamorph
Journal control.

Electrophysiological recordings

Patch-clamp recordings were obtained from CA1
pyramidal cells with an Axopatch 700B amplifier
(Molecular Devices). For cell-attached and whole-cell
recordings, borosilicate glass pipettes (4–9 M�) were
filled, respectively, with ACSF and internal solution
consisting of (mm): 120 potassium gluconate, 20 KCl, 0.1
CaCl2, 10 Hepes, 0.2 EGTA, 3.4 MgATP, and 5 QX-314
(pH 7.2). Signals were low-pass filtered at 1–2 kHz,
digitized at 20 kHz and analysed with pCLAMP 9.2
software (Molecular Devices).

Data analysis

Spikes were reconstructed from neurons by using
custom-written software in NIH ImageJ (Bethesda, MD,
USA) and Microsoft Visual Basic (Redmond, WA, USA),
as previously described (Ikegaya et al. 2004). For each
cell and each stimulus, the fluorescence change �F/F was
calculated as:

[(F1 − FBACK) − (F0 − FBACK,0)]/F0,

where F1 is fluorescence intensity at any time point,
FBACK is the average background obtained from the whole
area of movie at the corresponding time point, F0 is
the average baseline of the cell during each prestimulus
epoch, and FBACK,0 is the average background baseline
of the whole image during each prestimulus epoch.
Compensation with FBACK was required because
stimulation-evoked presynaptic (probably also dendritic)
signals were massively synchronized especially when
stimulated at high intensities, contributing to somatic
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signals as well. Thus, without this compensation, signals
of non-spiking cells were contaminated with small Ca2+

transients due to synchronized background signals and
occasionally misjudged as spike-triggered transients.
In our movies, the total area of the monitored somata
constituted only 11.8 ± 1.8% of the whole confocal field,
so our �F/F measure did not significantly underestimate
spike-triggered signals even during synchronous cell
activation. Spike-triggered Ca2+ signals were auto-
matically determined as a transient with > 3% amplitude,
> 3.5% s−1 maximal first derivative (�t = 0.7 s) and 1- to
2-frame peak latency. They were then inspected by eye to
remove noise detected in error. Spike-related events had
fast-rise and slow-decay kinetics (τ > 0.3 s), so they were
separable from background or optical noise (Fig. 1B and
C). To estimate the total amount of presynaptic inputs,
the fluorescence change �F/F = (F1 − F0)/F0 in the
presence of 20 μm CNQX and 50 μm d,l-AP5 was
obtained from CA1 stratum radiatum by placing a box
(100-μm × 100-μm). This measure might reflect glial
Ca2+ waves as well. But the area of glial cells occupied only
a small portion (less than 5%) in the entire monitored
region. Moreover, glial waves were usually unlocked
to electric stimuli, and if there were any, they had
much slower kinetics than spike-triggered neural Ca2+

transients. Thus, glial Ca2+ waves contributed only
minimally to the amplitude of presynaptic Ca2+ trans-
ients, which had a latency of 1 frame. Data were discarded
when massive spontaneous activity occurred during
imaging.

To estimate the chance level of trial-to-trial variations
(Figs 3D and E and 4B), we created spike-matrix
surrogates, in which, under the null hypothesis of time-
and space-independent processes, we scattered ‘fake’
spikes while maintaining the mean firing probability
(Monte Carlo simulation), that is, a procedure in which
a spike (‘active bin’) randomly selected from a rasterplot
was exchanged with another randomly selected bin, and
this was repeated for all active bins. This procedure
eliminates a temporal correlation between the spikes
without changing the total number of events. For this
surrogate, we computed the standard deviation (s.d.) of
the summed activity through all cells. This simulation was
repeated 100–1000 times to calculate the mean ± s.d. of
these s.d. values. In addition, we carried out two other
derivatives of this simulation. First, a surrogate rasterplot
was created by exchanging individual active bins with
either right or left neighbouring bins (Fig. 4C). This
procedure collapses temporal correlations between the
events but preserves the activity level (i.e. spike probability)
of each cell as well as a slow fluctuation of global excitability
over time. Second, a surrogate rasterplot was generated by
placing vertically clustered bins (3- to 13-cell clusters).
This procedure mimics cell-assembly like behaviours
(Fig. 4D).

To reveal neuron cliques (Fig. 5B-E), we computed the
normalized dot product between all possible pairs of cells
<i,j> and constructed the similarity matrix S (Schreiber
et al. 2003). If the spike train �gi (i = 1, . . . , N) of cell i is
represented as a binary vector (1: spike, 0: no spike), the
similarity index (type 1) between �gi and �g j is defined as:

si, j = �gi · �g j

‖�gi‖ · ‖�g j‖
which is equivalent to the cosine of the angle between �gi

and �g j , taking values between 0 and 1. Unless otherwise
specified, we used this definition as a similarity index.

In addition, we used two other similarity indexes (type 2
and type 3). Because the dot product is normalized
by the vector lengths, the type-1 index treats highly
active cells and relatively silent cells in the network as
equally important entities. To take activity weights into
consideration therefore we introduce the similarity index
type 2 defined as:

si, j = �gi · �g j

which is a simple dot product, an unnormalized version of
the index type 1. It purely reflects how many spikes concur
in two cells. In this index, highly active cells tend to be
overestimated because these active cells numerically have
higher probabilities of coactivation with other cells. We
thus used another index (type 3). We digitized a spike train
�g as a ‘1’ and ‘−1’ binary vector (1: spike, −1: no spike),
instead of a ‘1’ and ‘0’ vector, and defined the similarity
index type 3 as si, j = �gi · �g j , in which normalization is
unnecessary because all vectors have the same length ‖�g‖.
In this index, simultaneous ‘activity’ and ‘silence’ of two
cells are equally weighted.

A hierarchical clustering algorithm was applied to
the similarity matrix to construct a dendrogram that
assembles all elements into a single tree (Fig. 5B). The
matrix was scanned to identify the highest value, and a
node was created by joining these two cells. The similarity
matrix was updated with this new node replacing the
two joined elements. The same process was repeated
N − 1 times until only a single element remained.
We also manually highlighted neuron groups with the
aid of a modified K-means algorithm (Fig. 5C). Cells
were randomly assigned to one of K clusters, and the
K centroids were determined. Each cell was re-assigned to
a cluster to minimize the distance to the cluster centroid,
and new centroids were determined. This procedure was
iterated until the optimum assignment was attained. Then,
the number of clusters (K) was increased with K = 2M

(M = 1, 2, . . .), and the same algorithm was repeated.
To determine whether synaptic inputs and membrane

potentials immediately before stimulation influence
subsequent spike generation, we compared intra-
cellular traces simultaneously recorded from two cells
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by computing their Euclidian distance (Fig. 6B). For
30–250 ms fractions of the traces x t and yt before
stimulation, the modified Euclidian distance ED was
calculated as:

ED =
√√√√ −30∑

t=−250

[{(xt − x̄) − (yt − ȳ)} × �t]2

where x̄ and ȳ represents the mean membrane potential
x t and yt , respectively, between 550 and 30 ms before
stimulation, and �t is the time resolution of whole-cell
recordings (�t = 50 μs).

We report the means ± s.d. in all measurements.

Figure 1. Reliable reconstruction of action potentials from somatic ΔF/F traces of Ca2+ fluorophores
A, confocal image of the CA1 pyramidal cell layer of a hippocampal slice bulk-loaded with Oregon green 488
BAPTA-1. B, simultaneous recording of cell-attached extracellular responses and somatic Ca2+ transients with
(Spike) and without an action potential (No spike). Stratum radiatum (SR) was stimulated. A portion of the trace
(indicated by bar) is magnified in the bottom inset (25 ×). C, left: distribution of the �F/F amplitudes in trials with
and without spikes. The amplitude was defined as the maximal �F/F (%) during the 1 s period after a stimulus.
Trials with spikes and without spikes are completely separable. Data of five cells were pooled. Right: relationship
between the number of spikes and the amplitude of the resultant �F/F increase. Multiple spikes were evoked by
repetitive stimulation at 50 Hz, and their actual spike numbers were confirmed with cell-attached patch-clamp
recordings. If each pulse in a 50 Hz train did not elicit the corresponding spike, the data were discarded. D, optical
signals recorded from the CA1 stratum radiatum (SR), the subregion that contains presynaptic terminals of Schaffer
collateral axons, in the presence of 20 μM CNQX and 50 μM D,L-AP5 to block synaptic transmission. Unlike somatic
Ca2+ transients, the presynaptic Ca2+ size gradually increased as a function of the electric stimulation intensity.

Results

Virtually all CA1 neurons in cultured hippocampal
slices were loaded with Oregon green 488 BAPTA-1AM
(Fig. 1A). To prevent dye leakage, we performed cell-
attached recordings of a dye-loaded CA1 neuron and
simultaneously measured the fluorescence intensity from
the cell body. Each stimulus of the Schaffer collaterals
elicited or failed to elicit an action potential in the
neuron (Fig. 1B), and the occurrence of a spike was
tightly associated with the occurrence of a somatic �F/F
transient, the amplitude of which was almost constant
among trials (Figs 1C left, 2B and 3A) and could
be separated from optical noise (Fig. 1C left). This
all-or-none nature of somatic �F/F signals was not
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due to the dye saturation because the somatic �F/F
amplitude increased as the number of spikes involved in
a burst increased (Fig. 1C right). Thus, the somatic �F/F
transients reflect spike outputs, rather than postsynaptic
potential, of the observed neurons.

We monitored presynaptic activity from CA1 stratum
radiatum in the presence of the non-NMDA receptor
antagonist CNQX (20 μm) and the NMDA receptor
antagonist d,l-AP5 (50 μm) to prevent a possible
contamination of postsynaptic activity, e.g. dendritic Ca2+

influx induced by action potential back-propagation (Jaffe

Figure 2. Quasilinear I/O relationship of the CA1 network at the population level
A, cell map: multineuronal optical recordings from 101 neurons located in CA1 stratum pyramidale. B, presynaptic
�F/F traces were recorded from the stratum radiatum in the presence of 20 μM CNQX and 50 μM D,L-AP5, whereas
postsynaptic �F/F traces were recorded from 101 somata in the absence of these antagonists. Stimulus strength
was gradually increased from left to right. Postsynaptic activities were converted to a black-and-white rasterplot
(right), which further was summed into the bottom histogram showing the percentages of spiking neurons to the
total. C, summary of the I/O-transfer relationship of the CA1 network. Top: the average percentages of spiking
neurons (i.e. postsynaptic net responses) are plotted against presynaptic activity levels normalized to the maximal,
saturated Ca2+ transient size. The stimulus intensity that activated 50% neurons was 123 ± 16 μA (n = 6 slices).
Bottom: data were collected from the same slices after exposure to 200 nM and 10 μM gabazine.

et al. 1992; Spruston et al. 1995) or local synaptic activity
(Yuste & Denk, 1995). Assuming the uniform distribution
of afferent fibres and uniform dye loading, one can
consider that �F/F is proportional to the total number
of presynaptic fibres activated by stimulation, i.e. the sum
of presynaptic inputs (Kerr et al. 2005). Indeed, the �F/F
peak increased in a gradual manner as the stimulus was
strengthened (Figs 1D and 2B top). They were almost
unchanged for a constant stimulus intensity (Fig. 3A);
the coefficient of variance (CV) in the �F/F size was
only 0.06 ± 0.03 for 50 constant stimuli (n = 3 slices).
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Therefore, we were able to separate network input and
output activities, even though not at the same time, in the
same slice.

Quasilinear I/O relationship at the population level

In Fig. 2A and B, spike responses were reconstructed from
101 neurons. As stimulus intensity was increased from
60 to 170 μA, more cells fired spikes. We generated a
black-and-white rasterplot that indicated a spike or no
spike of each cell at each stimulus intensity (Fig. 2B right)
and then collapsed it into an activity histogram, which
represents the percentage of activated cells at a given
stimulus intensity (Fig. 2B right-bottom).

The averaged I/O relationship is illustrated by plotting
the percentage of activated neurons against presynaptic
activity levels, i.e. ‘optical fibre volleys’ (Fig. 2C top,
n = 6 slices, each 5 trials). The number of spiking cells
increased nearly linearly with the sum of presynaptic input.
Presynaptic �F/F transients (abscissa) and postsynaptic
spike responses (ordinate) reached 100% almost at the
same point. The presynaptic 100% point was defined as
the saturated �F/F level obtained at the highest stimulus
intensity, whereas postsynaptic 100% indicates the point at
which all observed CA1 neurons fired. Therefore, the I/O
relationship was almost linear across the entire activity
range (see also Kerr et al. 2005).

Gabazine, a GABAA receptor antagonist, abolished
the linearity; gabazine reduced the minimal stimulus
intensity required to activate all neurons and the threshold
intensity at which the network started to react to
stimulation (Fig. 2C bottom). It did not affect the relation
between stimulus intensities and optical presynaptic
fibre volleys (online Supplemental material Fig. 2A).
Non-averaged raw data of these experiments are shown in
Supplemental Fig. 2B. Similar results were obtained with
50 μm picrotoxin, another GABAA receptor antagonist
(data not shown). It is reported that unlike picrotoxin,
gabazine at low concentrations (e.g. 200 nm) blocks phasic
inhibition without affecting tonic inhibition, but it blocks
both phasic and tonic inhibition at higher concentrations
(e.g. 10 μm) (Stell & Mody, 2002). We confirmed this with
whole-cell patch-clamp recordings (Supplemental Fig. 1).
Gabazine-induced collapse of the I/O linearity was found
at 200 nm (Fig. 2C bottom). Therefore, phasic inhibition,
rather than tonic inhibition, is likely to be responsible for
the I/O linearity.

Trial-to-trial variability of postsynaptic neuronal
responses

Upon examining the I/O relationship, we noticed that
spike responses of individual cells varied from trial to
trial (Fig. 3A). An example of trial-to-trial variation of

132 spiking cells during 50 consecutive stimuli at a fixed
intensity (120 μA) is shown in Fig. 3B. A few neurons
responded faithfully to the repetitive stimuli, whereas
others fired much less reliably. Figure 3C illustrates the
distribution of the mean firing probability of each
cell. Figure 3D left histogram indicates the trial-to-trial
fluctuation in the percentage of activated cells, which
further was collapsed into the Fig. 3D middle histogram
as a distribution map. The percentage of activated cells
was 38.7% on average, but it unstably went up and down
across trials, with s.d., i.e. the degree of trial-to-trial
variation, equal to 8.9%. Thus, the postsynaptic net
CV (0.23 = 8.9/38.7) was significantly higher than that
of presynaptic �F/F (= 0.06 ± 0.03), indicating that
presynaptic variations, e.g. stochastic release of neuro-
transmitter or trial-to-trial variation in the number
of presynaptic fibres activated by electric stimulation,
if any, cannot fully explain the postsynaptic net
variability.

To estimate the chance level of s.d., we performed
Monte Carlo simulation, in which we created a surrogate
rasterplot with a random number generator by setting the
mean firing probability to 38.7%. In this ‘mock’ rasterplot,
the s.d. value was 4.1%, smaller than that of the real data
(Fig. 3D right). This held true for all 1000 repetitions
of simulation. Another example is shown in Fig. 4B. We
repeated the same experiments with different stimulus
intensities (60–270 μA) and showed the data in Fig. 3E
(n = 112 experiments), in which the s.d. values are plotted
versus the overall mean firing probability because s.d.

depends critically on the firing probability; note that s.d.

naturally takes smaller values if the firing probability is
extremely high or low. In 83 of 112 experiments, s.d.s
(open circles) were significantly higher than chance (linked
filled circles).

In the example shown in Fig. 3D, there happened to be a
trend for spike probability to decrease over time. Although
in most cases, network excitability was invariant over
time (for instance, see Fig. 4A), we sometimes observed
such slow fluctuations (gradual increase/decrease) in firing
probability, like Fig. 3D. It is possible therefore that such
gradual changes in global excitability might contribute to
more-than-chance variability. We can partially rule out
this possibility, based on two following reasons, however.
First, the data shown in Fig. 3B–D were not extraordinarily
different form other data in terms of the s.d. value and
its chance level (indicated by the arrow in Fig. 3E), but
rather they correspond to a case in which the variability
was close to the chance level. Second, statistical significance
was still confirmed by a non-stationary shuffling in which
spike positions were randomly exchanged with either right
or left neighbouring bins in the rasterplot (P < 0.001;
data not shown); note this procedure preserves the slow
fluctuation in global excitability (see Fig. 4C). Thus, the
net variability cannot be fully accounted for by simple
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stochastic behaviours of individual cells or a slow change
in net excitability.

There were commonly some trials which produced
extremely high or low responses (for instance, Trial no. 16
in Fig. 3B and Trial no. 12 in Fig. 4A). To examine
how much such occasional outliers contributed to the

Figure 3. More-than-chance variability of network responses to the same stimuli
A, representative traces of presynaptic (top) and postsynaptic Ca2+ transients (bottom). Spike and no spikes are
shown in black and white, respectively, in the bottom boxes. B, spike responses of 132 cells to 50 successive stimuli.
Cell locations are shown in the right-hand map, in which the firing probability of each neuron is indicated in the
grey scale. C, number of neurons versus firing probability. D, percentage of activated neurons to the total number
of neurons recorded. The broken line (38.7%) shows the mean percentage for all 50 trials. The right-hand two
histograms show the distributions (trial-to-trial fluctuations) of the percentage of activated neurons in the original
rasterplot and a Monte Carlo-generated surrogate (see text). E, summarized data for all 112 experiments in
28 slices. The across-trial S.D. of the percentage of spiking neurons is plotted against the average firing probability.
Each pair of circles indicates an experiment. Open circles, S.D. of real data; filled circles, the Monte Carlo-estimated
average S.D. ± S.D. (n = 100 surrogates). Arrow indicates the data shown in panels B–D.

measure of variability, we again utilized the non-stationary
shuffling (Fig. 4C). This procedure eliminated such
extreme trials with preserving the spike probability of each
cell as well as slow fluctuations of global excitability over
time. s.d. obtained from this simulation was significantly
lower than that of the real rasterplot. Therefore, occasional
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Figure 4. Cell assembly like dynamics
can explain trial-to-trial variability:
numerical simulation
A, spike responses of 148 neurons to 50
repetitive constant stimuli. In the 148 × 50
rasterplot, 3159 activities (black bins) were
seen. Bottom histogram represents the
percentage of active cells to the total at
each trial. The S.D. value of the summed
activities across trials was 8.8. B, surrogate
rasterplot created by Monte-Carlo
simulation. By using a random number
generator, we scattered 3159 ‘black’ bins in
the 148 × 50 blank rasterplot. In this ‘fake’
rasterplot, S.D. was calculated to be 3.7. We
repeated this simulation 1000 times and
showed the distribution of S.D.s in the
right-bottom panel, in which the S.D. of
original rasterplot data (S.D. = 8.8) is
indicated by the arrow (real data). The real
S.D. was consistently higher than S.D.s
obtained with 1000 simulations, indicating
that the trial-to-trial variation seen in the
real net activity cannot be explained by
simple stochastic dynamics. C, surrogate
rasterplot that was created by exchanging
individual activities with either right or left
neighbouring bins. This procedure collapses
temporal correlations between the events
but preserves the activity level (spike
probability) of each cell as well as slow
fluctuations of global excitability over time.
The real S.D. was still higher than expected
by this simulation. D, surrogate rasterplot
generated by putting vertically clustered
bins. This procedure mimics cell-assembly-
like behaviours, which was implied by our
cluster analyses in Fig. 5. Simulation was
carried out by allocating 3-to-13-cell
clusters. When the cluster size was larger
than 7 cells, the real S.D. was not
significantly different from the chance level.
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hyperactive or hypoactive trials significantly contributed
to trial-to-trial variation, although they seemed unlikely
to fully explain the total variation.

We now hypothesize that the net variation must come
from certain structured dynamics, e.g. cell-assembly-like

Figure 5. Cell-assembly-like dynamics underlie trial-to-trial diversity: cluster analysis
A, the same data as shown in Fig. 4A. B, the rasterplot was converted to a similarity matrix to construct a
dendrogram. In this dendrogram, the right-most eight cells had no spikes for any trials. C–D, three examples
of neuron groups extracted by the K-means algorithm (C) are shown in the cell map (D). Arrowheads mark trials
where all cells in the same neuron group were activated. E–G, cluster dynamics are robust, evidenced by three
different similarity indexes (types 1–3). For the definition of these indexes, see Methods. The similarity indexes are
all represented in the form of grey-scaled matrices. For each panel, the left-hand matrix is shown in the order of
the neuron number (A), the right-hand one in the order assorted with the K-means analysis with 16 clusters.

dynamics (see Supplemental Movie 1; the stimuli no. 2
and no. 4 invoked a similar cell subpopulation). To address
this possibility, we computed the similarity of activation
patterns between pairs of neurons. In 148-cell recordings
in Fig. 5A, we compared 21 756 (= 148 × (148 − 1)) cell
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pairs by computing the type-1 similarity indexes (see
Methods) and depicted a dendrogram. The configuration
of the dendrogram, as expected, implies the existence
of neuron subgroup dynamics (Fig. 5B). We next used
the K-means algorithm as another cluster analysis. This
clustering algorithm is sensitive to the initial cluster
assignments and often drops into different local minima so
that we can identify indistinct quasi-clusters by reiterating
the clustering procedure. In Fig. 5C, we illustrated some
examples of neuron groups found in the rasterplot in
Fig. 5A. Interestingly, identical neurons often participated
in different groups (for instance, neuron no. 55 is involved
in Groups no. 1 and no. 2). Therefore, the subgrouping
seems to be heterogeneous and flexible in nature. Neurons
in the subgroups did not have any specific architecture in
network geometry and were dispersed in space (Fig. 5D).
To determine whether these cluster dynamics are robust,
we computed three types of similarity indexes (types 1–3)
and sorted their matrices with the K-means algorithm (see
Methods). Clusters were evident in all cases (Fig. 5E-G).
Therefore, the cluster dynamics are not mathematical
artifacts.

We next questioned whether the cluster dynamics
contribute to trial-to-trial variation. We modified the
Monte-Carlo method. If the neuron order in a rasterplot,
which is arbitrarily assigned, is ignored, cell clusters are
conceptually identical to vertically grouped active bins.
We thus scattered vertically clustered active bins (3–13
consecutive bins) in a blank rasterplot by keeping the total
number of active bins equal to that in the original rasterplot
(Fig. 4D). The trial-to-trial variability (i.e. s.d.) seen in
this simulation was now similar to that in real data if the
cluster size was larger than seven bins. Thus, the subgroup
dynamics can increase the net variability to a realistic point.

What shapes the cluster dynamics, then? The most
probable cause is spontaneously occurring synaptic
activity because we activated the CA1 circuit by applying
single-pulse stimulation per trial. To examine whether
spontaneous activity is temporally correlated among
neurons so as to yield the subgroup dynamics, we
performed dual patch-clamp recordings from pairs of
CA1 pyramidal neurons. Voltage was clamped at −90 and
0 mV to singularize EPSCs and IPSCs, respectively (Fig. 6A
traces). As we expected, the correlograms revealed that
spontaneous EPSCs and IPSCs were both synchronized
between neurons, IPSCs being more correlated (Fig. 6A).
Within a 2 ms jitter, 14.8% EPSCs and 34.0% IPSCs
concurred in two neurons (n = 4 pairs).

To determine how much correlated noise
contributes to coherent spike dynamics, we monitored
stimulation-evoked spikes of two neurons in the
current-clamp configuration. Stimulus intensity was
adjusted to generate 30–70% of firing probabilities in
both neurons. When a spike occurred, its latency relative
to stimulation was short and invariant across trials and

across cells; thus it reflected a monosynaptic event. Across
trials, two neurons variably responded with spikes (S) or
without spikes (N). As to response combinations, four
types of paired responses existed, i.e. S–S, N–N, S–N, and
N–S (for example, S–S denotes that both neurons fired).
They can roughly be classified into two groups, i.e. the
same behaviours (S–S or N–N) and different behaviours
(S–N or N–S). To examine whether these behaviours
resulted from the differences in preceding membrane
potentials, we compared the Euclidian distance between
two intracellular traces in the period from 250 to 30 ms
before each stimulus (see Methods). This measurement
represents the ‘dissimilarity’ between two membrane
potentials immediately before stimulation. The distance
was slightly, but significantly, shorter when two neurons
displayed the same responses (S–S or N–N), as compared
to different responses (S–N or N–S). Thus, two neurons
that received similar background noises before stimulation
tended to produce the same responses (S–S or N–N).

Band-pass filtering properties in CA1 spike
transmission

Firing rates of hippocampal neurons range widely from
< 1 Hz to> 100 Hz and play an important role in encoding
external information (O’Keefe & Dostrovsky, 1971; Wilson
& McNaughton, 1993). The final series of experiments
was designed to describe the input frequency-dependent
responses. The stimulus intensity was lowered to a
subthreshold level, which did not evoke a spike by a
single-pulse stimulus, and the Schaffer collaterals were
activated by a four-pulse train at various rates (5–200 Hz)
in the presence of 50 μm AP5 to avoid induction of synaptic
plasticity. We did not discriminate spiking activity across
four train pulses because of the insufficient frame rate in
our movie (i.e. 10 fps scanning versus 5–200 Hz trains);
instead we focused on whether or not at least one spike
occurred during a train stimulus. Trains were repeated 10
times, and the firing probabilities were averaged within
each neuron to determine which frequency more or less
reliably activated the neuron. Data of 93 neurons in
a slice (Fig. 7A) are massed across neurons in Fig. 7B.
The summed activity displayed a frequency preference.
On average, the network responded more reliably in the
near-gamma frequency (20–40 Hz) range, acting like a
band-pass temporal filter. Individual neurons, however,
responded differently to train stimuli. Their filtering
properties were expediently categorized into low-pass-like,
band-pass-like, and high-pass-like filters by thresholding
the mean firing probability at 50% (Fig. 7C). Data from
seven slices are summarized in Fig. 7D. Cells that did
not show spikes or frequency preference were excluded
from data analysis because in these cases, stimulation
intensity might not be optimal to produce the filtering
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properties. Data indicate that 63.9% of neurons showed
band-pass-like properties, whereas other cells behaved
like a low-pass (9.5%) or high-pass (26.6%) filter in
the frequency range tested here. When perfused with
200 nm gabazine, almost all neurons started to fire in the
entire frequency range (data not shown). Thus, stimulus
intensity was reduced to a point that filtering responses
emerged in>80% neurons. It now turned out that all these
neurons had a high-pass-like transfer function (Fig. 7D).
The same results were obtained with 50 μm picrotoxin
(data not shown).

Figure 6. Spontaneous synaptic noise is correlated, synchronizing spikes between neurons
A, representative traces of simultaneous whole-cell recordings from two adjacent neurons. EPSCs (top) and IPSCs
(bottom) were isolated by clamping at −90 and 0 mV, respectively. Coincident EPSCs/IPSCs (2 ms jitter) are indicated
by broken lines. The right-hand panels are cross-correlograms for EPSC/IPSC relative timings (2 ms bin, n = 4 pairs).
B, two neurons responded to an electric stimulus with spikes (S) or no spikes (N). Paired responses to each trial are
classified into four types, i.e. S–S, N–N, S–N, and N–S. The modified Euclidian distance between two intracellular
traces (from 250 to 30 ms before a stimulus, 40 consecutive trials) was plotted versus these response types (right).
∗P = 0.031, t38 = 2.25; t test after F-test.

Discussion

Trial-to-trial net variation

Central neurons are known to react to repeated
presentation of the same stimulus with high variability
(Henry et al. 1973; Tomko & Crapper, 1974; Rose, 1979;
Softky & Koch, 1993). Evidence is accumulating that
this variability results from random ongoing background
activity (Arieli et al. 1996; Azouz & Gray, 1999; Kisley
& Gerstein, 1999). The variability, however, has long
been examined in one or a few neurons and remains
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to be elucidated in a large cell population. We have
shown that trial-to-trial variation seen at the single-cell
level does not average out even at the population level
and that the variation is higher than would be expected
by chance. Interestingly, this non-stationarity seemed to
arise from time-varying recruitment of different neuron
subpopulations because mimicking cell-assembly-like
metadynamics increased the net variability to a point that
met with our empirical data.

What brings about the cell-assembly-like dynamics?
Axonal electrical coupling and recurrent excitation, both
of which are present in CA1 pyramid–pyramid circuits
(Deuchars & Thomson, 1996; Draguhn et al. 1998), are
possible factors. In addition, we found that background
synaptic noise is weakly correlated in space and time.
The coherent noise could depolarize (or hyperpolarize)
a metapopulation of neurons and yield dynamic subset
behaviours. This seems consistent with work by Cobb et al.
(1995) who found that single GABAergic interneurons can
synchronize the firing of a set of hippocampal pyramidal
cells. One direct approach to address our hypothesis
is to investigate the effect of gabazine and picrotoxin.
Unfortunately, these antagonist extremely enhanced the
firing probability even at very weak stimulation intensities,
leading the population dynamics to a nearly all-or-none

Figure 7. Frequency-dependent spike
transmission
A, grey-scaled rasterplot depicting the firing
probabilities of individual neurons activated at a
low stimulus intensity of 4-pulse burst trains in
the 5–200 Hz range. B, percentages of
activated neurons versus frequencies of bursty
stimulation. C, diversity of frequency
preferences. Neurons no. 4 (top), no. 10
(middle) and no. 56 (bottom) showed
low-pass-like, band-pass-like or high-pass-like
profiles, respectively. The filtering threshold was
set to 50% (indicated by dashed lines).
D, distribution of neurons belonging to each
filtering category in the absence (open bars,
631 neurons in 7 slices) and presence of 200 nM

gabazine (filled bars, 404 neurons in 4 slices).

form (see Fig. 2C), and we hence were unable to perform
this experiment. Instead, we carried out intracellular
recordings from two neurons and tried to compare their
spiking behaviours with membrane potential dynamics
immediately before stimulation. This idea was based on
a report showing that membrane potential fluctuations
reliably designate spike timings (Mainen & Sejnowski,
1995). We indeed found that, when two neurons displayed
similar kinetics of ongoing fluctuations in membrane
potentials, these neurons tended to produce the same
responses to a subsequent stimulus. Thus, the correlated
background noise is likely to contribute to the dynamics
of cell-assembly formation.

Quasilinear I/O relationship

In general, the linearity reasonably helps minimize a loss
of information transfer because the graded output covers a
wide range of input levels. Our data show that the summed
activity of individual neurons is apparently proportional
to the overall network input. At the single neuron level,
it has already been shown that CA1 dendrites can linearly
integrate synaptic inputs (Cash & Yuste, 1999; Gasparini &
Magee, 2006). The linear dendritic summation, however,
occurs only within individual cells and is not necessarily
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linked to the net linearity; note firing is an all-or-none
event of a cell and its reliability is not determined only
by synaptic input levels but is also affected by many
other factors, including spike threshold, channel noise,
adaptation and refractory period. It is thus surprising
that the non-linear units (spikes of single neurons)
somehow produce the global linearity. Computational
simulation shows that synaptic noise can shape a linear
population response (van Vreeswijk & Sompolinsky,
1996). Consistent with this, we found that the linearity
was distorted by GABAA receptor antagonists, suggesting
the role of inhibitory background noise. Because even
a low concentration of gabazine abolished the linearity,
phasic inhibition, shown to be correlated between neurons
(Fig. 6A), is required for the I/O linearity.

Band-pass filter

GABAA receptor antagonists shifted the band-pass filtering
property of CA1 neurons to a high-pass function. Thus, the
band-pass filtering depended on inhibitory synaptic trans-
mission, rather than short-term monosynaptic plasticity
(Fortune & Rose, 2001) or intrinsic cellular resonance
(Pike et al. 2000; Fellous et al. 2001; Izhikevich et al.
2003). In other words, without inhibition, CA1 neurons
simply act like integrate-and-fire units, that is, EPSP
accumulation is more efficient at higher frequencies.
In this case, we do not think that background noise
plays a pivotal role. In these experiments, the afferent
activation was repeated four times, and therefore poly-
synaptic inhibition contributes to spike responses. In
hippocampal local circuits, inhibition flow dynamically
changes depending on the input frequencies (Andersen
et al. 1963; Pouille & Scanziani, 2001, 2004; Mori et al.
2004). Such a frequency-dependent switch in GABAergic
feedforward/feedback routing may also contribute to the
band-pass-like transfer function.

Summary

In this work, we imaged input and output activities
from large neuron populations to elucidate how single
CA1 neurons execute integrative dynamics at the
multicellular level. The main findings are: (1) the network
responds nearly in proportion to single-pulse inputs, but
non-linearly to multipulse inputs, i.e. in a band-pass
manner, and (2) the net responses vary from trial to
trial, beyond chance levels. In conclusion, even in simple
CA1 circuits, neurons can work in harmony together
to make an organized output to the cortex although
their individual responses are ostensibly unreliable and
stochastic. To extrapolate our results, which were obtained
from organotypic cultures, to in vivo brain activity, studies
are underway at higher levels of experimental preparations,

including the whole hippocampus in vitro and the brain
of anaesthetized animals.
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