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AMP-activated protein kinase (AMPK) is involved in cellular energy homeostasis. Its functions

have been extensively studied in muscles and liver. AMPK stimulates pathways which increase

energy production (glucose transport, fatty acid oxidation) and switches off pathways which

consume energy (lipogenesis, protein synthesis, gluconeogenesis). This has led to the concept

that AMPK has an interesting pharmaceutical potential in situations of insulin resistance and it

is indeed the target of existing drugs and hormones which improve insulin sensitivity. Adipose

tissue is a key player in energy metabolism through the release of substrates and hormones

involved in metabolism and insulin sensitivity. Activation of AMPK in adipose tissue can be

achieved through situations such as fasting and exercise. Leptin and adiponectin as well as

hypoglycaemic drugs are activators of adipose tissue AMPK. This activation probably involves

changes in the AMP/ATP ratio and the upstream kinase LKB1. When activated, AMPK limits

fatty acid efflux from adipocytes and favours local fatty acid oxidation. Since fatty acids have a

key role in insulin resistance, especially in muscles, activating AMPK in adipose tissue might be

found to be beneficial in insulin-resistant states, particularly as AMPK activation also reduces

cytokine secretion in adipocytes.
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Adipose tissue: energy and endocrinology

Storage of energy when food is available is a determinant
of survival in periods of increased energy expenditure
or decreased energy availability. Quantitatively, the main
form of energy storage is represented by triglycerides
in the adipocytes of adipose tissue. Adipose tissue is
also composed of endothelial cells, fibroblasts and
macrophages which are found in the stroma–vascular
fraction. New adipocytes can be formed throughout life
from this fraction depending upon the nutritional and
hormonal conditions. The origin of the lipids stored can
be either the diet or de novo synthesis from non-lipid
substrates (lipogenic process). This process is active in
rodent adipose tissue but relatively minor in human
adipose tissue. In order to take up lipids from plasma,
adipocytes synthesize a specific enzyme called lipoprotein
lipase which is exported to the luminal side of vascular
endothelium where it can hydrolyse triglyceride-rich
lipoproteins such as chylomicrons and VLDLs (very
low density lipoproteins) to yield fatty acids and free
glycerol. Fatty acids enter into the adipocytes through
transporters and are re-esterified with glycerol phosphate

to form triglycerides stored in a single lipid droplet
in white adipocytes. This droplet is surrounded by a
membrane, itself covered with a protein called perilipin
found exclusively in adipocytes. When needed,
triglycerides are hydrolysed (lipolysis) into fatty acids
and glycerol which are exported back into the blood.
Lipolysis requires several enzymes acting successively and
key enzymes are adipose tissue triglyceride lipase and
hormone-sensitive lipase (HSL). HSL activity is regulated
acutely through several mechanisms including reversible
phosphorylation and translocation from the cytosol to
the surface of the lipid droplet. Insulin favours lipid
storage through the activation of lipogenesis, lipoprotein
lipase synthesis and export to the vascular endothelium,
and triglyceride esterification through the production of
glycero-phosphate from glucose. In contrast adrenergic
hormones produced either by the adrenal medulla or
by the local sympathetic innervation activate lipolysis
through binding to a β-agonist receptor and production
of cAMP.

It is now well appreciated that, in addition to its
functions related to energy storage and release, adipose
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tissue is also an endocrine organ, strongly involved in
overall energy homeostasis and substrate partitioning. The
most important hormones produced by adipose tissue are
leptin and adiponectin. Leptin is a cytokine produced in
proportion to the amount of adipose tissue and which
acts in specific brain hypothalamic nuclei to reduce food
intake and in rodents to activate thermogenesis (Friedman,
2000). Leptin also has actions outside of the brain, one of
which is to stimulate fatty acid oxidation in muscles and
liver, at least in part through AMP-activated protein kinase
(AMPK) activation (Minokoshi et al. 2002).

Adiponectin belongs to the complement 1q family. It
is one of the most abundant transcripts in adipocytes
and its plasma concentration is high. It circulates and
signals as a homomultimer. In contrast to leptin, its
secretion and plasma concentration are inversely related
to adiposity. Plasma adiponectin concentrations are
decreased in obese and type 2 diabetic rodents, primates
and humans (Tsao et al. 2002). Adiponectin is considered
to be an insulin-sensitizing hormone since it activates
muscle glucose utilization but also induces muscle and
hepatic fatty acid oxidation (accumulation of fatty acids
or fatty acyl-CoAs in insulin-sensitive cells is deleterious
for insulin signalling) and decreases hepatic glucose
production (Fruebis et al. 2001; Berg et al. 2002; Matsuzawa
et al. 2004). It has been shown, at least in the liver, that
adiponectin effects require AMPK activation (Yamauchi
et al. 2002). Cytokines such as interleukin-6 (IL-6) and
tumour necrosis factor (TNFα) are produced by adipose
tissue although probably not specifically by adipocytes
but also by cells from the stroma–vascular fraction
and can favour insulin resistance in insulin-sensitive
tissues.

AMPK is involved in other tissues in the maintenance
of cellular as well as body energy homeostasis.
When activated, it inhibits energy-consuming processes
and activates energy-producing processes (see other
contributions in this issue). Adipose tissue is a major
component of energy homeostasis and a key player
in the regulation of insulin sensitivity through fatty
acid release and hormone secretion. Understanding the
function of AMPK in adipocytes is thus crucial for
assessing the importance of this enzyme in overall energy
metabolism.

Structure of AMPK in adipose tissue

AMPK exists in the cell as a heterotrimeric complex with
a catalytic (α) and two regulatory subunits (β and γ )
(Woods et al. 1996a). Several isoforms have been identified
for each subunit (α1, α2, β1, β2, γ 1, γ 2, γ 3), that can
lead to the formation of 12 different complexes. These
combinations confer different properties to the AMPK
complexes (Hardie & Carling, 1997) and show relative
tissue specificity (Cheung et al. 2000). Muscle cells mainly

express AMPK complexes containing the α2 catalytic
subunit and liver expresses both α1 and α2 isoforms
(Stapleton et al. 1996; Woods et al. 1996b). In adipose
tissue, the α1 catalytic subunit is the predominant
isoform expressed and accounts for the major part of
AMPK activity (Lihn et al. 2004; Daval et al. 2005).
Although the functional significance of these different
complexes remains unclear, it can be emphasized that
AMPK complexes containing the α1 isoform are less
sensitive to AMP (Salt et al. 1998). At present there is no
data concerning the respective expression of other AMPK
subunits in adipocytes.

Regulation of AMPK in adipose tissue

In adipose tissue, fasting and exercise activate AMPK (Park
et al. 2002; Daval et al. 2005; Sponarova et al. 2005).
Since both situations are concomitant with adrenergic
stimulation, it could be anticipated that β-adrenergic
agonists and their second messenger cAMP would
stimulate AMPK activity. This is indeed the case (Haystead
et al. 1990; Moule & Denton, 1998; Daval et al. 2005;
Sponarova et al. 2005). It has been suggested that the
effect of exercise on adipose tissue AMPK could also be
secondary to the secretion of IL-6 by muscles (Kelly et al.
2004). Indeed, IL-6 is able to activate AMPK in F442A
adipocytes and a decreased AMPK phosphorylation is
found after exercise in adipose tissue of IL-6 knock-out
mice.

Leptin (Orci et al. 2004) and adiponectin (Wu et al. 2003;
Sell et al. 2006) are able to activate AMPK in adipose tissue.
Hypoglycaemic drugs such as biguanides are also inducing
an increase of AMPK activity in adipocytes (Daval et al.
2005; Huypens et al. 2005). More controversial results are
found using thiazolidinediones, another class of hypo-
glycaemic agents which are ligands of the transcription
factor PPARγ since Huypens et al. were unable to detect
AMPK activation in 3T3-L1 adipocytes using 10 μm

troglitazone (Huypens et al. 2005) whereas an increased
AMPK activity was shown in vivo in adipose tissue
of rats treated with pioglitazone (Saha et al. 2004) or
rosiglitazone (Ye et al. 2004). In our own experiments,
AMPK was activated by thiazolidinediones in isolated
adipocytes but at concentrations higher than 200 μm

(authors’ unpublished results).
AMP and ATP concentrations in the cell are closely

related due to the presence of the enzyme adenylate
kinase. An increase in AMP is an exquisitely sensitive
indicator of a decrease in the level of cellular energy
charge. AMP activates AMPK by a complex mechanism
involving allosteric effects and more importantly, the
phosphorylation by upstream protein kinases of the
threonine residue 172 within the activation loop of the α

catalytic subunit (Hardie & Carling, 1997). Two upstream
kinases have been characterized. LKB1 is a kinase which
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is constitutively active and phosphorylates AMPK when
AMP concentration rises in the cell and binds to the γ

subunit, thus transforming AMPK in a suitable substrate
for LKB1 (Hawley et al. 2003; Woods et al. 2003; Shaw et al.
2004). The second kinase, calmodulin kinase kinase β,
phosphorylates and activates AMPK in the presence of
an increased calcium concentration, independently of
an increase in AMP concentration (Hawley et al. 2005;
Woods et al. 2005). In adipose tissue, several indirect
arguments suggest that LKB1 is involved in AMPK
activation. Treatment of adipocytes with AICAR, a drug
which is transformed in the cell into ZMP, an analogue of
AMP, activates AMPK in adipocytes (Sullivan et al. 1994;
Corton et al. 1995; Salt et al. 2000; Lihn et al. 2004; Daval
et al. 2005). In addition phenformin, a biguanide, induces
AMPK activation and decreases ATP concentration (Daval
et al. 2005). In transgenic mice expressing an uncoupling
protein (UCP1) in white adipose tissue, the AMP/ATP
ratio is increased and AMPK is activated (Matejkova
et al. 2004). Finally, β-adrenergic lipolytic agents which
induce AMPK stimulation are concomitant with a decrease
in ATP concentration (Angel et al. 1971; Issad et al.
1995). To the best of our knowledge, a potential role of
calmodulin kinase kinase β in AMPK activation has not
been demonstrated in adipocytes.

Exercise

Fasting

Leptin

Adiponectin

Biguanides

(e.g. metformin)

Thiazolidinediones ?

AMP/ATP

AMPK

LKB1LKB1

Decreased :

Lipogenesis

Trig lyceride synthesis

Lipolysis

TNFα and IL6 secretion
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Fatty acid oxidation

Glucose transport

Adiponectin secretion ?
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Fatty acid oxidation

Glucose transport

Adiponectin secretion ?

Decreased availability of free fatty acids
Improvement of insulin sensitivityFigure 1. AMPK activation in adipose tissue and

its intracellular actions

In conclusion, several situations which activate AMPK
in adipose tissue are concomitant with an increased
AMP/ATP ratio, strongly suggesting the involvement of
the upstream kinase LKB1 (Fig. 1).

AMPK and adipocyte differentiation

Indirect evidence suggests that AMPK activation can
inhibit preadipocyte differentiation. AICAR treatment
of 3T3-L1 or F442A preadipocytes inhibits adipocyte
differentiation and blocks the expression of late adipogenic
markers such as fatty acid synthase and the transcription
factors PPARγ and C/EBPα and promotes apoptosis
(Habinowski & Witters, 2001; Dagon et al. 2006). This is
not totally unexpected if one considers that differentiation
is an energy-consuming process involving new membrane
(and thus lipid) and protein synthesis, two pathways which
are strongly inhibited by AMPK activation (Bolster et al.
2002; Horman et al. 2002). However, in mice lacking the
catalytic α1 subunit, the main catalytic isoform present in
adipose tissue, the differentiation potential does not seem
to be grossly affected since adipocytes are smaller but not
more numerous (Daval et al. 2005). It is thus not clear
whether AMPK has a physiological regulatory function in
adipocyte differentiation.
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AMPK and regulation of adipose tissue metabolism

Once activated, AMPK phosphorylates a number of
proteins and modulates the transcription of genes
implicated in the regulation of energy metabolism to
switch on catabolic pathways that produce ATP and switch
off anabolic pathways that consume ATP.

Lipogenesis and triglyceride synthesis. One of the first
proteins identified as a target of AMPK was acetyl-CoA
carboxylase (ACC) which synthetizes malonyl-CoA from
acetyl-CoA and is a key enzyme of the lipogenic
pathway (Sim & Hardie, 1988). The phosphorylation
and thus inhibition of ACC by AMPK has been
shown in several studies in vivo and in intact cells.
In adipocytes, a direct effect of AMPK activation on
ACC phosphorylation and activity was shown in rodent
adipocytes using either AICAR (Sullivan et al. 1994)
or expression of a constitutively active AMPK (Daval
et al. 2005). This was concomitant with a decreased
lipogenic rate (Sullivan et al. 1994). Conversely, over-
expression of a dominant negative form of AMPK in
adipocytes precludes the phosphorylation of ACC after
AICAR or isoproterenol (isoprenaline) treatment (Daval
et al. 2005). Exercise, which activates AMPK in adipose
tissue is concomitant with a decreased ACC activity
and malonyl-CoA concentration (Park et al. 2002).
Exercise in rats also induces an increase in malonyl-CoA
decarboxylase activity, thus further reducing malonyl-CoA
concentrations, and a decrease in glycerol-acyl transferase
activity, an enzyme involved in triglyceride synthesis.
These effects are mimicked by AICAR treatment of the
animals. As in the liver (Foretz et al. 1998; Leclerc et al.
1998), an activation of AMPK in adipocytes is concomitant
with a decreased expression of lipogenic enzyme mRNA
(Orci et al. 2004).

In conclusion, activation of AMPK in rodent adipocytes
leads to a decreased lipogenic flux and a decreased
triglyceride synthesis.

Lipolysis. The other major function of adipose tissue
is the breakdown of triglycerides through the lipolytic
pathway that occurs during fasting to provide fatty acids
and glycerol as fuels for peripheral tissues. In adipocytes,
AMPK activation using AICAR has been shown to
inhibitβ-adrenergic-induced lipolysis (Sullivan et al. 1994;
Corton et al. 1995). Recent work (Daval et al. 2005) has
confirmed these studies in a more direct way, showing
that overexpression of a constitutively active AMPK in rat
adipocytes was indeed inhibiting isoproterenol-induced
lipolysis, whereas overexpression of a dominant negative
form of AMPK had a converse effect. Other activators
of AMPK such as biguanides also had an inhibitory
action on lipolysis (Daval et al. 2005). These results are at

variance with the study of Yin et al. in 3T3-L1 adipocytes
(Yin et al. 2003) since these authors have shown that
overexpression of a dominant negative form of AMPK
inhibits isoproterenol-induced lipolysis suggesting, rather,
a lipolytic action of AMPK activation. However, AMPK
activity was not measured in these conditions and thus final
conclusions from these experiments are difficult. Using
the same cell line, we have demonstrated that AICAR and
phenformin induce AMPK activity and strongly impair
lipolysis (Daval et al. 2005). Interestingly, in mice lacking
the predominant α1 AMPK isoform, the size of adipocytes
is reduced and basal and isoproterenol-induced lipolysis
is higher than that of control adipocytes (Daval et al.
2005). This argues in favour of an inhibitory role of AMPK
activation on lipolysis.

Mice with a general knock-out of the AMPK α2
catalytic subunit have an increase in adipose mass due
to adipocyte hypertrophy when fed a high fat diet and
compared with high fat fed control mice (Villena et al.
2004). Since the AMPK α2 subunit represents only a
very minor part of AMPK activity in adipose tissue, this
adipocyte hypertrophy may be the consequence of the
adaptation of adipose metabolism subsequent to the loss
of AMPK α2 activity in other tissues such as muscle or
liver.

What could be the mechanism accounting for lipolysis
inhibition by AMPK? At present, two rate-limiting
enzymes controlling the hydrolysis of triglycerides in
adipocytes have been described. Hormone-sensitive lipase
(HSL) was the first one to which a regulatory role
was ascribed. HSL hydrolyses triglycerides, diglycerides
and cholesteryl esters, although it has a much higher
specific activity for diglycerides. Lipolytic agents such as
β-adrenergic agonists acutely regulate HSL by increasing
cAMP levels in the cell, thus activating cAMP-dependent
protein kinase (protein kinase A; PKA) which in turn
phosphorylates HSL and increases its intrinsic activity
as well as promoting its translocation to the lipid
droplet (Yeaman, 2004). HSL is a substrate for AMPK
(Garton & Yeaman, 1990). AMPK phosphorylates Ser-565,
precluding the further phosphorylation of the regulatory
Ser-563 by PKA. Although it was later suggested
that the true regulatory serines phosphorylated by
PKA of HSL were Ser-659 and Ser-660 (Anthonsen
et al. 1998), we have confirmed that activation of
AMPK increases HSL phosphorylation on Ser-565 in
adipocytes and more importantly that it precludes its
isoproterenol-induced translocation to the lipid droplet,
a major requirement for lipolysis activation (Daval et al.
2005).

The existence of a second regulatory lipase was
discovered during the studies of HSL knock-out mice
(Osuga et al. 2000; Wang et al. 2001; Haemmerle et al.
2002). In these mice, the amount of adipose tissue is
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decreased and its lipid composition is affected with a
marked diacylglycerol accumulation. β-Agonist-induced
lipolysis is also lower. However, basal lipolysis is normal
and although a cholesteryl ester hydrolase activity is no
longer detectable in the adipose tissue of HSL knock-out
mice, a neutral triglyceride lipase activity is still pre-
sent. This activity was identified as an adipose triglyceride
lipase (ATGL) (Zimmermann et al. 2004). Recently, the
genetic deletion of this ATGL has confirmed its importance
in triglyceride hydrolysis as well as the likely role of
HSL as a diglyceride (rather than a triglyceride) hydro-
lase (Haemmerle et al. 2006). Interestingly, in HSL
knock-out mice, the residual triglyceride lipase activity
(ATGL) is increased in the presence of β-agonists and
part of this lipolytic response could be secondary to a
translocation from the cytoplasm to the lipid droplet, as
shown previously for HSL (Okazaki et al. 2002). Thus,
it is obviously of interest to test whether ATGL is also
a substrate for AMPK and whether its phosphorylation
precludes its translocation to the lipid droplet.

The lipid droplet membrane is covered with peri-
lipin, a hydrophobic phosphoprotein. Phosphorylation of
perilipin by PKA induces its relocation away from the
lipid droplet membrane, allowing HSL (and probably
ATGL) to reach its substrates (Tansey et al. 2004).
Perilipin knock-out mice have indeed an enhanced basal
lipolysis. Whether perilipin is a target of AMPK which
when phosphorylated by this enzyme would be unable
to relocate away from the droplet membrane is presently
unknown.

To summarize, AMPK is activated in conditions of
increased lipolysis such as exercise and fasting. This
activation inhibits fatty acid and triglyceride synthesis
and could limit lipolysis. This latter finding might seem
counter-intuitive if one considers AMPK as an enzyme
which in case of energy shortage should rather enhance
energy availability (here fatty acids through lipolysis) for
cells. However, a high rate of lipolysis could be very
demanding for adipocyte energy homeostasis since part of
the fatty acids can be reactivated into acyl-CoA, a reaction
which consumes ATP and generates AMP. Alternatively,
accumulation of free fatty acids into the adipocyte could
be deleterious for energy-producing processes since they
are well-known mitochondrial uncouplers (Kadenbach,
2003). Activation of AMPK would then be a feedback
mechanism limiting the cellular energy drain associated
with lipolysis in adipocytes.

Fatty acid oxidation. Two models of AMPK activation in
adipose tissue are concomitant with an increased fatty acid
oxidation. In the first one, the uncoupling mitochondrial
protein UCP-1 is overexpressed in adipocytes leading
to an increase in the AMP/ATP ratio, activation of
AMPK, inactivation of ACC and a decreased lipogenesis
(Matejkova et al. 2004). This induces an increased capacity

for fatty acid oxidation which could be due to a decreased
concentration of malonyl-CoA, alleviating the inhibition
on carnitine palmitoyl-transferase I which catalyses the
entry of fatty acids in mitochondria and constitutes
the rate-limiting enzyme of fatty acid oxidation. UCP-1
overexpression is also concomitant with mitochondrial
biogenesis in adipocytes (Rossmeisl et al. 2002).
Interestingly, these mice are resistant to nutrient-induced
obesity.

In a second model, Orci and coworkers (Orci
et al. 2004) have induced hyperleptinaemia using an
adenoviral-mediated overexpression of leptin in the liver.
In adipose tissue of these hyper-leptinized rats, UCP-1 and
UCP-2 expression is increased, AMPK activity is induced
and leads to the phosphorylation and inactivation of ACC.
There is also a strong mitochondrial biogenesis, features
that could lead to the ‘rapid transformation of white
adipocytes into fat-oxidizing machines’ (Orci et al. 2004).
In these animals, hyperleptinaemia induces a depletion
in body fat stores (Shimabukuro et al. 1997) and the
authors suggest that this is due to oxidation of fatty acids
within the adipocytes inasmuch as these adipocytes release
glycerol but no fatty acids (Wang et al. 1999). Interestingly,
leptin had no effect during diet-induced obesity implying
a leptinergic blockade in adipocytes during overnutrition.

Although activation of AMPK is probably not
responsible for all the metabolic characteristics of these
models, the results nevertheless suggest that, similar to
its effects in other tissues, AMPK activation in adipocytes
induces increased fatty acid oxidation.

Glucose transport. AMPK activation stimulates glucose
transport through increased GLUT4 translocation in
muscles (Kahn et al. 2004). Only a few studies have
addressed the potential role of AMPK in glucose uptake in
adipose cells. Studies performed in 3T3-L1 adipocytes have
reported that treatment of differentiated adipocytes with
AICAR enhances basal glucose uptake by a mechanism
independent of insulin signalling (Salt et al. 2000; Sakoda
et al. 2002). However, overexpression of a dominant
negative form of AMPK in 3T3-L1 adipocytes treated
with AICAR abolishes AMPK activation without affecting
the increase in glucose uptake (Sakoda et al. 2002),
raising the question of a direct involvement of AMPK
in AICAR-stimulated glucose transport in this model. A
third study performed in primary rat adipocytes has shown
that adiponectin activates AMPK and increases glucose
uptake (Wu et al. 2003). In this study, the inhibition
of AMPK by pharmacological compounds abolishes the
adiponectin-stimulated glucose transport and it occurs
without affecting insulin-stimulated glucose uptake. This
suggests a role of AMPK in glucose transport in adipocytes
which could involve a mechanism independent of the
insulin signalling pathway. However, whether AMPK
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induces the translocation of GLUT4 to the membranes
of adipocytes remains unclear.

AMPK and adipokine secretion

As stated above, adipose tissue is now considered as
an endocrine organ involved in energy homeostasis,
food intake and inflammation. In human adipose tissue,
AICAR has been shown to increase the expression of
the insulin-sensitizing hormone adiponectin (Lihn et al.
2004; Sell et al. 2006). A study performed in 3T3-L1 has
shown the converse, reporting an inhibition of adiponectin
expression and secretion in response to AMPK activation
by the anti-diabetic drug metformin (Huypens et al. 2005).
Metabolic and insulin-sensitizing effects of metformin
have been shown to be in part mediated through the
activation of AMPK (Zhou et al. 2001). However, type 2
diabetic patients treated with metformin display no
change in serum adiponectin concentration or adipocyte
adiponectin content (Phillips et al. 2003; Tiikkainen et al.
2004). The role of AMPK in the regulation of adiponectin
expression and secretion thus remains unclear.

In human adipose tissue, inhibitory effects of AICAR
on the expression and secretion of two pro-inflammatory
cytokines, TNFα and interleukin-6 (IL-6) have been
reported (Lihn et al. 2004; Sell et al. 2006). Since TNFα

inhibits adiponectin expression (Kappes & Loffler, 2000), it
has been suggested that the decrease in TNFα protein may
be involved in an up-regulation of adiponectin expression
and that the effects of AICAR on adiponectin may be
indirect. The inhibition of TNFα and IL-6 secretion by
AMPK could be beneficial, since inflammation is thought
to contribute to the development of disorders associated
with obesity such as insulin resistance. Activation of
AMPK in adipose tissue by decreasing TNFα and IL-6
and indirectly increasing adiponectin secretion may thus
contribute to the prevention or counteraction of insulin
resistance in obese patients. However, the demonstration
of a more direct effect of AMPK on cytokine secretion
awaits additional experiments.

Conclusion

In the liver, AMPK is part of a mechanism which
coordinates changes of lipid metabolism from anabolism
to catabolism in case of energy shortage. It includes
an inhibition of lipid synthesis and an increased lipid
oxidation mediated by a decreased malonyl-CoA content
due to an inhibition of ACC activity (Assifi et al. 2005). In
adipocytes, a similar role for AMPK is conceivable in case
of energy shortage or higher energy demand (exercise)
since in these situations the observed activation of AMPK
can lead to an inhibition of fatty acid synthesis and an
activation of fatty acid oxidation. However, in adipocytes
AMPK also inhibits lipolysis (Fig. 1). All these actions of

AMPK will tend to decrease the availability of fatty acids
in the plasma. Since fatty acids have a key role in the onset
of insulin resistance, especially in muscles, activating
AMPK in adipose tissue might be extremely beneficial in
insulin-resistant states such as type 2 diabetes, particularly
as AMPK activation also reduces inflammatory
cytokine secretion in adipocytes. A number of questions
remain nevertheless unsolved: Can AMPK be stimulated
in adipose tissue by non-AMP-dependent mechanisms?
Is there any difference in AMPK distribution and
responsiveness in subcutaneous and deep visceral adipose
tissues (an important question if one considers that
visceral fat might be a preferred target)? Since many of
the studies have been performed on rodent adipocytes or
cell lines do they really apply to human adipocytes?
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