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Microarrays and the microscope: balancing throughput
with resolution
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The cellular complexity of the brain is a major issue in the planning, execution and interpretation

of microarray studies. Recent technical advances allow for high-throughput study of specific cell

populations and circuits. Here we review representative examples of currently available methods

that allow high resolution and specificity in brain microarray studies, while maintaining the goal

of comprehensive, high-throughput analysis.
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The notion that tissue complexity and cellular
heterogeneity pose major challenges to the progress
of microarray-powered research in neuroscience is now
widely accepted (Geschwind, 2000; Mirnics & Pevsner,
2004; Arlotta et al. 2005; Dougherty & Geschwind, 2005;
Coppola & Geschwind, 2006). Microarray platforms are
capable of querying the whole known transcriptome
on a single slide but, in many cases, most of the genes
on the array are not detected, or not detected at a level
allowing assessment of differential expression. Not only
is the number of cell types in many CNS samples large,
but the complexity of their interactions with other cells is
enormous. When different cell types are analysed together
in the same sample with a microarray platform, only the
common features may be detected by the assay, whereas
the specific profiles may be diluted. For example, certain
signalling molecules may be differentially expressed in
opposite directions in adjacent inhibitory and excitatory
neurons or pathways, cancelling each other out at
the whole tissue level in a microarray experiment. In
addition, low abundance mRNAs coding for receptors or
transcription factors expressed in a small percentage of
cells may not be detected at all. Depending on the goal
of the experiment, this may pose significant problems for
the subsequent analysis and interpretation of the data
and, while whole tissue experimentation still can play a
major role, one needs to be wary of basing conclusions
on what is not observed, given the potential type II error
(e.g. Geschwind, 2000).

Technical advances now allow one to select experimental
samples with complexity ranging from the regional to the
cellular level. Still, RNA amplification is needed, adding
potential sources of noise, and perhaps not providing

a complete representation (Lobo et al. 2006; Nygaard
& Hovig, 2006). Recent approaches to achieve increased
sample specificity include microarray studies on specific
regions or cells, using functional imaging methods to
guide tissue selection, microdissection of specific nuclei or
brain areas, and separation and sorting of individual cells
based on fluorescent signals or other markers (recently
reviewed in Nelson et al. 2006; Fig. 1). This review focuses
on the currently available approaches to address molecular
genomic profiling at the regional, circuit and cellular level.

Regional analysis

A first level of specificity in expression studies in the
nervous system is at the level of distinct brain regions
or nuclei. Although studies have been reported analysing
RNA from whole rodent brain, for example, the most
intuitive and productive approach in recent years has
involved the selection of specific brain regions for micro-
array studies. This makes sense at one level, since brain
regions and nuclei are functionally relevant divisions of
the CNS. Genes and pathways involved in human disorders
in human brain and mouse models (Mirnics et al. 2000,
2005), and region-specific genes in rodent (Sandberg et al.
2000; Zhao et al. 2001; Zirlinger et al. 2001; Funatsu
et al. 2004; Zapala et al. 2005) and human and primate
brain (Bunney et al. 2003; Evans et al. 2003; Khaitovich
et al. 2004), have been successfully identified using this
approach. Although whole-tissue analysis still results in
the inevitable inclusion of heterogeneous cell types, which
may limit detection of rare transcripts, it still allows
detection of many relevant gene expression changes. As
such, it remains a reasonable approach, especially when
coupled with extensive downstream verification. Progress
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towards specificity in regional brain analysis has been made
combining microarrays with in situ hybridization (ISH;
Zhao et al. 2001) and functional neuroimaging methods
(Lewandowski & Small, 2005).

For example, Zhao et al. (2001) were able to micro-
dissect distinct hippocampal regions, profile them with
microarrays, and confirm the regional specificity of
the identified genes through ISH. They report distinct
anatomical and functional boundaries based on gene
expression, providing evidence that gene expression
studies from anatomical regions can be the first step on the
path to the identification of molecularly based subregions
in the hippocampus. Using a similar approach, a subset of
amydgala-specific genes was identified with microarrays,
followed by ISH confirmation which showed boundaries

Figure 1. Schematic illustrating the major methods currently available to address regional and cell
specificity in human brain and experimental models
In human brain, neuroanatomical methods can be used to guide dissection and laser-guided microdissection.
Voxelation approaches allow visualization of 3D gene expression maps. In experimental models, in addition to
image-based methods, cell specificity can be achieved with labelling methods, based on both neuroanatomical
and genetic markers (e.g. http://www.ncbi.nlm.nih.gov/projects/gensat/). Such intrinsic labels can be used to guide
dissection or FACS-based approaches. Most of these methods require an amplification step due to low RNA
amounts, prior to gene expression profiling using microarrays. Many robust methods for such amplification are
now widely available, making this a worthwhile approach.

of expression of many of these genes as corresponding
to cytoarchitectonically defined subnuclei (Zirlinger
et al. 2001). The same group went a step further by
microdissecting the amygdaloid subregions, hybridizing
the extracted RNA in an additional microarray
experiment, and identifying genes specifically enriched
in amygdaloid subnuclei (Zirlinger, 2003; Zirlinger &
Anderson, 2003).

Neuroimaging approaches using MRI allow one to
visualize distinct hippocampal subregions in living
subjects (Small et al. 2000). In an elegant study using
neuroanatomical data, Small et al. were able to guide
microdissection for microarray analysis identifying the
retromer trafficking complex as possibly involved in the
pathogenesis of Alzheimer’s disease (AD) (Lewandowski
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& Small, 2005; Small et al. 2005). With this approach,
coupling a regional, hypothesis-driven dissection with a
microarray-based assay, Small and colleagues have begun
to address the key issue of regional vulnerability in
neurodegenerative disorders such as AD.

Two innovative methods, voxelation and gene
expression tomography, are conceptually close to
neuroimaging (Singh & Smith, 2003). Voxelation employs
high-throughput gene expression analysis of discrete
brain microareas (voxels), followed by 3D reconstruction
(Brown et al. 2002a), whereas gene expression tomography
involves the analysis of parallel tomographic sections
(Brown et al. 2002b) and 3D image reconstruction from
these sections, similar to tomographic imaging techniques.
Proof-of-principle applications of these techniques have
been reported on both human (Brown et al. 2002a) and
mouse (Brown et al. 2002c) brain. At low-resolution, this
technique suffers from the same issues of macro-regional
dissection, i.e. cellular heterogeneity and dilution of rare
signals. However, higher resolution maps and new RNA
amplification procedures will probably improve these
promising tools in the near future, allowing en masse
regional analysis of gene expression across the brain.

These methods all essentially couple microarrays with
neuroanatomical visualization and dissection methods,
and have proven powerful in providing a proof of principle
for future studies aimed at (1) identifying genes and
pathways of interest in disease with known regional
vulnerability, and (2) further defining the molecular
anatomy of cortical and subcortical subregions with
distinct functional identities.

Neuronal populations and circuits

The study of neuronal populations and brain circuitry
components is key to understanding the molecular basis
of neuronal diversity and circuit function. Cell types
with a distinct ‘identity’ can be classified based on
expressed markers, or on histological/structural features.
Once tagged, the target cells can be isolated and studied
using a variety of methods, including patch-clamp,
fluorescence-activated cell sorting (FACS), or laser capture
microdissection (LCM).

Genetic markers

Specific neuronal populations can be genetically labelled
using reporters expressed from the promoter of a
cell-specific gene, or using BAC-mediated transgenesis.
Gustincich et al. (2004) used a transgenic mouse line in
which catecolaminergic retinal neurons were genetically
marked and, after cell selection using a monoclonal
antibody and patch-clamp, performed single-cell global
amplification and microarray analysis, identifying a
number of transcripts specific for this rare retinal cell

type (Gustincich et al. 2004). Using genetically and
retrogradely labelled mouse samples, Sugino et al. (2006)
studied with microarrays the gene expression profile of
∼100 hand-sorted neurons from each of 12 neuronal
populations in a tour-de-force study. Microarray data
mostly confirmed the known classification based on
expression markers and provided new markers for
neuronal characterization, but also suggested that some
neuronal populations identified by one marker were
actually heterogeneous, supporting the role of micro-
array studies in characterizing neuronal types (Diaz, 2006;
Sugino et al. 2006). This method – while high-resolution –
may be hard to adapt to very high-throughput analysis of
multiple samples and models, since it relies on manual
dissociation and sorting. Further, these studies rely on
small numbers of neurons, and it is likely that sample
sizes of several hundred cells or more provide more
comprehensive detection of low-abundance messages
(Lobo et al. 2006).

BAC-mediated transgenesis permits region- and
cell-specific reporter expression without altering the
promoter region of the gene of interest (Heintz, 2000).
In particular, the gene expression nervous system
atlas (GENSAT) (Gong et al. 2003) is a repository
of BAC-transgenic mice with hundreds of genetically
labelled neuronal types. A conceptually simple way
to obtain expression profiling of distinct neuronal
populations involves the sorting of Green fluorescent
protein (GFP)-labelled cell types prior to RNA extraction
and microarray hybridization. Overcoming the technical
issues related to tissue dissociation and RNA amplification,
Lobo et al. (2006) were able to dissociate juvenile and adult
striatonigral and striatopallidal neurons, do FACS-sort
them based on the expression of known markers and,
after RNA extraction and amplification, run microarrays.
This approach allowed identification of numerous genes
– with a significant overlap between postnatal day 20
(P20) and adult neurons – whose expression clearly
distinguishes these two cell populations, including a
lineage-specific transcription factor. Lobo et al. showed
the functional significance of their work by showing
specific disruption of striatonigral pathways in an Ebf1
knockout mouse. This study demonstrated the feasibility
of such an approach in young and adult mice, and
provided a clear proof-of-principle supporting the use
of this technology (FACS-array) in studies addressing
other neuronal populations. The GENSAT resource
makes this approach scalable across a wide range of
cell types. The main advantage of FACS-based sorting
methods is the number of cells obtained: thousands of
neurons can be quickly obtained per sort, so one is
not limited to a few dozens or a hundred cells, which
may affect the number of genes detected (Lobo et al.
2006). Furthermore, this method works in adult neurons,
without induction of injury- or apoptosis-related genes,
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providing a higher-throughput alternative to current
methods (Nelson et al. 2006).

In simpler organisms, labelling and FACS sorting can
be coupled to cell culture to obtain homogeneous cell
populations. In C. elegans, it is possible to dissociate
embryos genetically expressing markers for specific
cell types, culture dissociated embryonic cells (which
undergo morphological differentiation in vitro), collect
GFP-marked differentiated neurons in sufficient quantity
to extract RNA, and perform gene expression studies
(Christensen et al. 2002; Zhang et al. 2002). Using this
technique, touch (Zhang et al. 2002), sensory (Colosimo
et al. 2004), and motor (Cinar et al. 2005; Fox et al. 2005)
neurons have been successfully labelled, FACS-sorted and
studied using microarrays.

Histological/structural markers

Injection of neural tracers (such as fluorescent
microspheres) in axonal terminals results in retrograde
transport and cell body labelling. This approach selects
neuronal populations based on their functionally relevant
projections, in the absence of antigenic markers. In the first
study based on sorting in mammals, Arlotta et al. (2005)
injected fluorescent microspheres in the axonal projection
fields of developing corticospinal motor neurons. After
labelling of the cell bodies in the sensorimotor cortex
by retrograde transport, they were able to dissociate and
FACS-purify this specific cellular type in enough quantity
to perform highly reproducible RNA amplification and
expression profiling with microarrays (Arlotta et al.
2005). These investigations identified a number of
transcripts involved in differentiation programs related to
specific motor neuron subsets, based on their projections
(Molyneaux et al. 2005) – a first step in molecularly
defining functionally relevant circuiting.

Laser capture microdissection (LCM) (Emmert-Buck
et al. 1996; Bohm et al. 2005) allows the specific and
selective isolation of single cells, without disruption of the
surrounding tissue. Fluoro-gold-labelled neurons can be
used to visually guide LCM. For example, this technique
has been used to mark dopaminergic (Yao et al. 2005) and
motor (Cui et al. 2006) neurons. Using a similar approach,
Lombardino et al. (2005) differentially marked (injecting
dye-marked tracers) replaceable and non-replaceable
projection neurons in the vocal centres of songbirds,
isolated them through LCM, and compared their
expression profile. Their results provided a possible link
between cell renewal and neurodegeneration (Lombardino
et al. 2005).

In a multifaceted approach, Diaz et al. (2002) achieved
specificity by combining data from multiple conditions
(whole cerebella, purified and cultured granule cells),
multiple time points, and multiple models (wild-type
and genetic mutant analysis) to dissect the genetic

program of ponto-cerebellar system development. The
data integration at the bioinformatics level – and a solid
confirmation strategy with ISH – allowed them to draw a
map of gene expression of this relatively simple developing
system (Diaz et al. 2002). This work demonstrates how
careful experimental design and detailed experimentation
can lead to many functionally relevant insights.

Single-cell profiling

Intuitively, one could consider the single-cell level as the
gold standard of gene expression studies: looking at a few
or even one cell should yield the maximum specificity, and
should allow one to classify cell types based on a molecular
expression profile. Still, this apparent simplicity belies
a number of technical issues, including increasing the
number of experiments, cost, analytic burden, etc., which
paradoxically increases the complexity of the experiments,
as we discuss below.

In the past, single cells have been obtained with micro-
dissection using a needle or a micromanipulator (O’Dell
et al. 1998). Since the earliest studies in the field, the
aim of many single-neuron analyses was to characterize
the expression abnormalities associated with the neuro-
pathological hallmarks of Alzheimer’s disease, after single
neuron microaspiration and RNA amplification (Chow
et al. 1998; Ginsberg et al. 2000, 2006; Mufson et al. 2002).
In a landmark paper, Luo et al. (1999) coupled LCM with
T7 RNA amplification and microarray technology to study
gene expression in single neuronal types. The composite
strategy combining LCM, RNA amplification, microarray
analysis, and ISH has been used in studies addressing a
variety of conditions and cell types, including diseases such
as amyotrophic lateral sclerosis (Jiang et al. 2005), brain
nuclei (Bonaventure et al. 2002), hippocampal neurons
(Kamme et al. 2003; Torres-Munoz et al. 2004), and
the highly heterogeneous mammalian olfactory system
(Tietjen et al. 2003). Paradoxically, the study of cells
considered to be homogeneous has in some cases allowed
identification of distinct groups based on gene expression
profile (Kamme et al. 2003).

LCM allows collection of a higher number of cells
compared with aspiration and other manual methods,
but less than with FACS-based methods. RNA quality is
dependent on fixation, staining and general handling of
the tissue prior to LCM, and is generally better preserved
in fresh-frozen samples. How FACS sorting of live cells
compares with LCM-derived samples is not known, since
no side-by-side comparisons of the two methods have been
published; such studies would be valuable contributions
to the field.

The idea of capturing single cells for molecular profiling
has been tightly linked to the available options to achieve
reliable and accurate RNA amplification. A typical yield
from LCM is 10–30 pg of RNA per cell, and technologies
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for single cell mRNA analysis have been developed
(Eberwine et al. 1992; Eberwine, 2001). Two issues
inherent in single-cell analysis are worth mentioning:
the first is somewhat of a paradox, in that microarray
experimentation requires replication, yet some single-cell
analyses strive to profile unique features of individual
cells. The more replicates performed, the less individual
variability may be detected, depending on the analytic
strategy (e.g. Zirlinger, 2003), especially since we do
not know how much heterogeneity to expect in gene
expression studies within a defined cellular population.
In this case, application of analytic methods (such as
ANOVA) suited to detect variable genes, rather than
simple differential expression across groups, may be more
powerful. The second technical limitation is inherent
to RNA amplification: since there can be a loss of
linearity for very diluted transcripts (Sugino et al. 2006),
transcripts with lower levels of expression may be too
rare to be detected with microarrays, even after two
rounds of amplification, leading to the possibility of
obtaining different transcription profiles from the same
cell types, depending on the starting amount of RNA.
Therefore, a critical mass of cells is needed to detect rarer
transcripts with current high-throughput technologies
relying on RNA amplification. Attempts to estimate this
number have been recently reported, and it may lie between
30 (Sugino et al. 2006) and 300 (Lobo et al. 2006) cells,
possibly depending on the cell type. It is becoming clear
that once a threshold of several hundred cells is reached, as
in the case of FACS-array in this issue is less of a concern
(Lobo et al. 2006, e.g. supplementary Fig. 5).

The next frontier of specificity is at the subcellular level.
Zhong et al. (2006) took advantage of the anatomy of
the rodent hippocampus, which permits the dissection
of dendritic projections of hippocampal neurons, and
compared the dendritic transcripts to the mRNA pool
present in the cell body (Zhong et al. 2006). Finally,
coimmunoprecipitation techniques allow one to extract
and study transcripts included in a macromolecular
complex. In one of the earliest studies in the field,
Brown et al. (2001) used this method to identify
transcripts binding the fragile X mental retardation
protein (Brown et al. 2001). A similar approach, involving
cell-specific expression of a FLAG-tagged polyA binding
protein, followed by cross-linking and purification of
cell-type-specific mRNA, has been successfully applied in
worm and fly models (Kunitomo et al. 2005; Yang et al.
2005). PolyA- or other tagging/IP-based approaches will
not allow detection of micro RNAs or other non-coding
RNA species (Cao et al. 2006; Furuno et al. 2006).

How gene expression studies can contribute to
system level knowledge: new analytical approaches

The knowledge of behaviour at the level of a single cell is
a necessary component of understanding the system in

which it acts. Given the high number of variables and
confounding factors involved, bioinformatics methods
naturally have been involved in dealing with such
complexity. This field represents a meeting point between
‘wet’ molecular biology and computational approaches.
The availability of datasets from distinct cell types and
brain regions allows comprehensive approaches, aimed
at detecting general mechanisms of cellular behaviour, as
well as cell-type specific features. A considerable number
of datasets and computationally intensive approaches
are needed to obtain a clear signal-to-noise ratio. From
analysis of coexpression across different species (Stuart
et al. 2003) to evolutionary analysis of coexpression
networks (Oldham et al. 2005), this largely unexplored
approach is beginning to show its power, a trend that
will continue as the number of available microarray
datasets grows. Coexpression networks have modular
architecture that closely follows neuroanatomy and other
key functional elements of the CNS (Oldham et al. 2005).
It is likely that this strategy will be more able (compared
with conventional analysis) to detect genes involved in
maintaining (and disrupting) the wiring patterns of the
brain, and is expected to provide significant advances
at every level of complexity (Zhang & Horvath, 2005;
Pocklington et al. 2006), as hundreds of datasets on
specific cell populations are expected to be generated
and made available to the scientific community in the
near future. This will facilitate more rapid translation
of this high-dimensional data to provide new functional
insights.
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