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Top i ca l Rev iew

Electrophysiological and gene expression profiling
of neuronal cell types in mammalian neocortex
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It is a challenging question to understand how different neuronal types are organized into a

complex architecture in the cortex, an architecture which is also adapted in different regions

to subserve very different functions. Recent developments in genetic and molecular techniques

have opened up the possibility of using gene expression profiling for neuronal cell typing, with

the aim of uncovering novel cell types and the underlying mechanisms which generate and

maintain neuronal heterogeneity in the cortex. This review introduces some current ideas about

neuronal cell types in the cortex and describes recent approaches to expression profiling for

defining cortical neuronal cell types.
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Basic concept of neuronal cell type

In a strict sense, a neuronal cell type means a group
of neurons that have a specific localization, protein
expression pattern, excitability, and connectivity with
other types of neurons. Potentially, a cell type population
might also be expected to have a common function. A
point of possible confusion is that, for example, ‘pyramidal
cells’ could mean neurons in cortex with a ‘pyramidal’
morphology (triangular-shaped soma perpendicular to
the layers, long prominent apical dendrite, etc.) or a
group of neurons which, in addition to having pyramidal
morphology, use glutamate as a neurotransmitter and
exhibit a ‘regular-spiking’ pattern (Connors & Gutnick,
1990). A public debate on this issue is in progress at the
moment (Yuste, 2005) but here we refer to a grouping of
the first kind as a ‘neuronal class’ and refer to, for example,
Cajal-Retzius cells or Martinotti cells as distinct neuronal
cell types. In the future, classification of neuronal cell types
should be standardized by an international organization
as done for gene and protein names.

Classification of cortical neurons
in the postgenomic era

Many neuronal classes in cortex have been discovered
by morphological or neurochemical techniques (Peters
& Jones, 1984). Such approaches remain important, not
just because of the amount of knowledge accumulated

over the long history of research, but also because they
are well correlated with their functions. For this reason,
it is becoming more common to use a combination of
protein markers for classification of cortical neurons.
The discriminatory power of these protein markers
has been demonstrated by the development of reliable
antibodies and confocal microscopy to visualize them,
transgenic mice expressing markers with fluorescent
proteins or knockout mice lacking transcription factors
essential for development of particular cell types (Xu et al.
2004; Cheng et al. 2005b).

In theory, all the proteins expressed in cortical neurons
could be candidate markers, and the GENSAT project
(see this issue of The Journal of Physiology) is now
examining the specific distributions of a large number
of proteins in the brain, some of which seem to be
localized to subsets of cortical neurons. The current list
of commonly used markers includes metabolic enzymes
and transporter proteins for neurotransmitters (e.g.
the GABA synthesizing enzyme glutamate decarboxylase
(GAD) and VGLUT) (Esclapez et al. 1994; Hisano, 2003),
calcium binding proteins (e.g. parvalbumin, calbindin
and calretinin) (Hof et al. 1999) and neuropeptides (e.g.
VIP, cholesystokinin, somatostatin, neuropeptide Y and
substance P) (Baraban & Tallent, 2004). Coexpression of
calcium-binding proteins and neuropeptides has been
examined at the single-cell level (Cauli et al. 2000; Wang
et al. 2002). These markers have typically been studied,
owing to their functional importance as neurotransmitter
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systems or cell-signalling components, or owing to the
availability of good quality antibodies for immuno-
histochemistry.

Unfortunately, it is still unclear for many markers why
they are specifically expressed in certain classes of neurons
and how their expression is regulated. Addressing these
questions is potentially important for understanding the
complex spatial and temporal patterns of their expression
during development, when marker expression changes
in different ways in different groups of neurons (Hof
et al. 1999; Lee et al. 1998; Schuske & Jorgensen, 2004).
Moreover, the subcellular distribution of markers can also
change during development (Guo et al. 1997; Sheikh et al.
1999), which sometimes gives the false impression that the
density and localization of cell types have changed. Overall,
understanding the cell-specific control of expression of
genes and their protein products that confer distinct
functions on neuronal types is part of the broader question
of neuronal cell fate determination in the developing
nervous system, and of the nature of the genetic networks
that operate to control terminal neuronal differentiation
(Livesey & Cepko, 2001).

All of the techniques outlined above typically study the
coexpression of one or two genes or gene products. Thus
they are ill-suited for a post-genomic approach which uses
genomic data and high-throughput techniques to study
neuronal gene expression at the whole genome level. A
recent development is the combined use of flow cytometry
and transgenic mice expressing markers tagged with green
fluorescent protein to isolate a population of neurons
and obtain expression profiles (Arlotta et al. 2005; Sugino
et al. 2006). It has also been demonstrated in lymphocytes
that multiparameter flow cytometry can be used to detect
phosphorylation of signalling proteins and thereafter
infer causal networks using Bayesian analysis (Sachs
et al. 2005), and this may be applicable to neuronal cell
subpopulations after improvement in cell yields or protein
detection sensitivity. With the increasing application of
genomics methods to studying development and function
of the CNS, there are now opportunities to apply these
methods to classifying neocortical cell types, particularly
in combination with electrophysiology.

Single cell gene expression profiling of neurons
with patch clamping and microarray

Expression profiling by microarray has been used for
characterizing cell types in various systems, such as cancer
cells (Bucca et al. 2004), blood cells (Klein et al. 2003)
and stem cells (Perez-Iratxeta et al. 2005). One of the
advantages of using microarrays is that they can provide a
large amount of expression data for genes associated with a
wide variety of biological processes. This means that each
cell type can be characterized not just by a few selected

markers but also by a group of genes, which may be in the
same gene family or ontology (Ashburner & Lewis, 2002)
or have the same temporal expression patterns. Moreover,
microarrays can be used to uncover new genes expressed in
known cell types, and to infer their functions by comparing
their spatial and temporal expression patterns with those
of well-characterized genes.

Microarray analysis can be applied to a group of
pooled neurons expressing a fluorescent-tagged protein
(Arlotta et al. 2005; Sugino et al. 2006) or to single
neurons (Kamme et al. 2003; Seshi et al. 2003). Fluorescent
tag-based cell pooling can significantly improve the yield
of microarray-detectable transcripts (by 19% when using
30 or more cells instead of a single cell) (Sugino et al.
2006). Since the cells can be easily identified in brain
tissues, the cell populations can be further characterized
by morphological and immunohistochemical techniques.
While this method is only applicable to well-established
neuronal classes with known protein markers, single-cell
expression profiling is potentially extremely powerful for
discovering novel neuronal cell types, and offers great
flexibility to characterize individual neurons by different
combinations of classifications. In addition, single-cell
expression profiling is potentially a powerful way to resolve
the degree of heterogeneity within individual subtypes,
and to test the very concept of a distinguishable subtype.
The technique can be used when the expression patterns
of proteins markers are uncharacterized, for examples
in developing or genetically modified brains, or in stem
cell-derived neurons.

Single-cell expression profiling can be combined with
electrophysiological recordings which, unlike most other
techniques, are obtainable from living single neurons
before sampling mRNA (Monyer & Markram, 2004).
Passive membrane properties, such as input resistance
and membrane capacitance, can be used to infer the size
and channel densities of neurons, and spiking patterns
seen in cortical neurons during current injection are often
correlated with specific neuronal cell types (Markram et al.
2004). For example, spikes in pyramidal neurons have
a ‘regular spiking’ pattern which is characterized by low
and smooth afterhyperpolarization, long spike duration
and low maximum spike frequency (Tateno et al. 2004).
As expected from their large morphological and neuro-
chemical heterogeneity, spiking patterns in interneurons
can be classified into several subtypes (Markram et al.
2004). One of the major subtypes is the ‘fast spiking’ (FS)
neuron, which has fast and sharp afterhyperpolarization,
short spike duration and high maximum spike frequency
which is constant during stimulation (Tateno et al. 2004).
Fast spiking neurons are associated with basket cells and
chandelier cells in cerebral cortex and express parvalbumin
(Kawaguchi & Kubota, 1997).

A critical step in microarray analysis at the single-cell
level is million-fold amplification of the starting
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picogram amounts of mRNA. Either linear T7-based
amplification methods or exponential PCR-based
amplification techniques can be used to amplify the initial
single-cell mRNA. While the exponential PCR-based
amplification technique has been shown to outperform
linear amplification methods in precision, time and
cost-efficiency, single-cell PCR-based amplification still
has some limitations and problems. The most important
problem is the mRNA sampling effect, which has been
shown to introduce a high level of noise in microarray
data, particularly for low abundant transcripts. A lower
limit of 80 copies of mRNA of a particular gene per cell is
reported to be necessary to register a two-fold change in
input RNA (Theilgaard-Monch et al. 2001). Estimates of
these limits by Nygaard and co-workers (Nygaard et al.
2005) are even higher. For a sample of 1000 pooled cells,
differences in transcripts expressed with 121 gene mRNA
copies per cell can be detected with statistical reliability,
while for 250 cells, the limit was 1806 transcripts per
cell. However, the sampling effect depends not only on
transcript abundance, but also is strongly affected by the
efficiency of RNA preparation and the first amplification
steps, including an initial reverse transcription. Previously
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Figure 1. Potential problems with single-cell gene expression profiling by cytoplasmic harvesting via
patch-pipette
Collecting extremely low amounts of mRNA from single cells is the biggest challenge of this technique. Only a
small proportion of cytosol can be obtained by suction via patch-pipette, and poorly diffusible mRNA or dendritic
mRNA are particularly hard to collect. The yield of mRNA can be improved by including inhibitors of RNases in the
pipette, but these are often cytotoxic and can be detrimental to electrophysiological recording. It is also possible
that some mRNA adheres to the interior wall of the glass capillary and evades expulsion from the patch-pipette.

we have demonstrated that the global polyadenylated
PCR-based amplification technique generates reliable
data from picogram amounts of RNA (Subkhankulova &
Livesey, 2006). More recently we estimated that the most
crucial steps of amplification of original mRNA (reverse
transcription, polyadenylation and the subsequent first
cycles of PCR) reproduce the original mRNA profile with
approximately 90% efficiency (unpublished observations;
TS & FJL). We found that such a high efficiency produces
random noise which is comparable with technical
noise from microarray hybridizations, and allows us to
estimate the expression ratios for the majority of tested
genes.

Although it is an exciting technology, the data from
single-cell gene expression analysis of neuronal cell
require careful scrutiny, even with the best possible
mRNA amplification techniques (Fig. 1). It is possible
that transcripts which are crucial for distinguishing the
subtypes are missed during cytoplasmic harvesting or
amplification. It has been observed in previous single-cell
expression studies that even highly abundant transcripts
can frequently be lost (Nygaard & Hovig, 2006). Some of
the cytoplasmic mRNA can be located away from the soma
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from which the cytoplasm is collected, and they can be
poorly mobile because of cytosolic RNA binding proteins
such as Hu antigen D and Fragile X mental retardation
protein (FMRP) (Bolognani et al. 2004; Ule & Darnell,
2006). Therefore, gene expression profiles from single cells
should be interpreted as a reflection of somatic mRNA
distributions which may still be used to classify neuro-
nal cell types, without naively assuming that observed
mRNA levels can predict total mRNA or protein expression
levels. Expression profiles of some well-studied genes,
particularly calcium binding proteins and ion channels
have been confirmed by single-cell RT-PCR and immuno-
histochemistry, and expanding the list of genes which
show consistent expression profiles in both techniques
will significantly improve the use of single-cell microarray
data.

Future perspectives

With new technological developments, it now seems
possible to generate a comprehensive classification of
neuronal cell types in the cortex. Armed with a reliable
cell type list, we can start asking, for example, if specific
cell types are related to certain higher cognitive functions
or neurological disorders. Detailed phenotypical data on
neuronal cell types can also be used to characterize neurons
derived from stem cells, using a variety of parameters. For
this purpose, it would be highly desirable to have a public
repository for information on each cell type obtained by
a series of standardized techniques, so that neuroscientists
can deposit information on their cells and compare it
against known cell types, similarly to BLAST for nucleotide
and protein sequences. We have already witnessed how
comprehensive knowledge of genomes can reshape the
understanding of complex cellular systems, and, over the
next few years, it should be possible to define the neuronal
cell types of cerebral cortex and their functions, in much
greater detail.
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