
Polymorphonuclear leucocytes selectively produce
anti-inflammatory interleukin-1 receptor antagonist and

chemokines, but fail to produce pro-inflammatory mediators

Introduction

Of the leucocytes in peripheral blood, 40–75% are

granulocytes, and with only low levels of eosinophils

and basophils, neutrophils represent their major fraction.

They are the first cells that migrate into infected tissue

and provide innate immunity through phagocytosis

and degranulation.1 The terminally differentiated, mature

polymorphonuclear leucocytes (PMN) in circulation con-

tain few ribosomes and a small amount of endoplasmic

reticulum, and they are therefore traditionally thought to

have only a limited capability for protein synthesis.
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Summary

The role of neutrophils in the immune response has long been regarded

as mainly phagocytic, but recent publications have indicated the produc-

tion of several cytokines by polymorphonuclear leucocytes (PMN). The

results of the individual reports, however, vary considerably. In this study,

we established a cytokine profile of pure human neutrophils and demon-

strated that minor contamination of peripheral blood mononuclear cells

(PBMCs) in PMN preparations can lead to false-positive results. In our

hands, peripheral blood PMN fail to produce the pro-inflammatory cyto-

kines interleukin (IL)-1b, IL-6 and tumour necrosis factor-a (TNF-a).

Instead, they secrete large amounts of the chemokine IL-8 and the anti-

inflammatory IL-1 receptor antagonist (IL-1ra). Additionally, PMN prepar-

ations of a high purity show production of the chemokines macrophage

inflammatory protein (MIP)-1a, MIP-1b and growth-related oncogene-a
(GRO-a), as well as macrophage colony-stimulating factor (M-CSF). The

neutrophil therefore represents a novelty by producing the antagonist of

IL-1b (i.e. IL-1ra) in the absence of IL-1b itself. To support our results,

we differentiated stem cells from human cord blood into PMN and mono-

cytes, respectively. These in vitro-differentiated PMN showed the same cyto-

kine profile as peripheral blood PMN lacking IL-1b, while differentiated

monocytes produced the expected IL-1b in addition to IL-1ra. The clear

anti-inflammatory nature of their cytokine profile enables PMN to antag-

onize pro-inflammatory signals in experimental conditions. It is therefore

possible that PMN play a key role in immune regulation by counteracting

a dysregulation of the inflammatory process. Clinical studies, in which

administration of recombinant G-CSF had a favourable effect on the out-

come of severe infections and even sepsis without worsening inflamma-

tion, could thus be explained by our results.
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Nevertheless, recent studies have described cytokine

production by PMN with results that are quite controver-

sial. Several groups have detected production of pro-

inflammatory cytokines such as interleukin (IL)-1b, IL-6

and tumour necrosis factor-a (TNF-a).1,2 However, some

studies reported no IL-6 production,3,4 and others only

found production of the chemokine IL-85 or the anti-

inflammatory cytokine, interleukin-1 receptor antagonist

(IL-1ra), in addition to IL-1b, IL-8 and TNF-a.6 Secretion

of other chemokines, such as macrophage inflammatory

protein (MIP)-1a (CCL3),7–9 MIP-1b (CCL4)7,9 and

growth-related oncogene-a (GRO-a) (CXCL1),10 has also

been described. The production of granulocyte–macroph-

age colony-stimulating factor (GM-CSF),11 granulocyte

colony-stimulating factor (G-CSF),1 IL-3,11 IL-12,7,12

interferon-a,13 and TGF-b114,15 and -2,16 have been

reported by few or single groups, whereas IL-8 (CXCL8)

has been detected by most groups.

However, the detection of cytokine mRNA by polym-

erase chain reaction (PCR) amplification must be inter-

preted carefully. It is possible that the presence of cytokine

mRNA may be an effect of contaminating monocytes in

neutrophil preparations,5 especially as these cells have a

much higher capacity of RNA and protein synthesis.

G-CSF, a stimulant for the maturation and mobiliza-

tion of neutrophils in bone marrow, increases the level

of circulating PMN.17,18 Several studies have therefore

shown beneficial therapeutic effects in applying recombi-

nant G-CSF (rG-CSF) to patients with chemotherapy-

associated leukopenia.17,19,20 In addition, rG-CSF has been

used, along with antibiotics, to treat pneumonia in animal

models,21 and it was found that leukopenic animals

showed an increased survival under rG-CSF therapy.

Other studies show a beneficial effect of rG-CSF, even in

non-neutropenic animals.22,23 Recently, beneficial effects

of G-CSF therapy or granulocyte transfusions have been

reported in connection with serious infections in neutro-

penic human patients.24–26 However, a cytokine panel, as

described above, would not explain successful results of a

therapy that increases neutrophil counts. If neutrophils

indeed produce pro-inflammatory cytokines such as

IL-1b, IL-6 and TNF-a, they should rather worsen the

situation by enhancing the inflammatory reaction. Inter-

estingly, a human model for immunity impairment,

achieved by ethanol treatment, demonstrated that after

G-CSF application, anti-inflammatory cytokines, such as

IL-1ra and soluble TNF-receptor p55, were increased,

whereas the pro-inflammatory cytokine response was

attenuated.27

We therefore questioned whether the pro-inflammatory

cytokines mentioned above truly are produced by PMN,

and we aimed to establish a revised cytokine profile of

non-contaminated peripheral blood neutrophils. We have

previously established an improved method to isolate

neutrophils of a high purity and with no detectable

prestimulation from human blood.5 This high purity

should exclude false-positive results of cytokine produc-

tion that may be caused by contaminating cells.

Materials and methods

Cell isolation

Neutrophils were isolated from buffy coats of healthy

donors, as described previously.5 Briefly, the cells were

separated by two density gradients of Percoll (Pharmacia,

Uppsala, Sweden) after sedimentation through hydroxy-

ethyl starch (Plasmasteril; Fresenius AG, Bad Homburg,

Germany). Any remaining erythrocytes were removed by

hypotonic lysis. The cell suspension was adjusted to

3 · 106/ml in RPMI-1640 (BioWhittaker, Verviers, Bel-

gium) containing 10% low-endotoxin fetal calf serum

(PAA Laboratories, Coelbe, Germany) and supplemen-

ted with 2 mM L-glutamine, 100 U/ml of penicillin and

100 lg/ml of streptomycin (all from Biochrom KG,

Berlin, Germany). Peripheral blood mononuclear cells

(PBMC) were prepared by Ficoll gradient centrifugation,

as previously described.28 For experiments showing the

effects of contamination, plastic-adherent PBMC were

used and incubated for 1 hr in 10-ml Petri dishes (37�,

5% CO2), as previously described.29

Purity and flow cytometry analysis

Purity and degree of activation of the cells were measured

by flow cytometry analysis (Coulter XL; Coulter Electron-

ics, Krefeld, Germany, and FACScalibur, BD Biosciences,

Heidelberg, Germany) using CD66b as a granulocyte mar-

ker and CD62L as a marker for activation. The cells were

pelleted, resuspended in phosphate-buffered saline (PBS)

containing 1% bovine serum albumin (BSA), and incuba-

ted with CD66b conjugated to fluorescein isothiocyanate

(FITC) (formerly CD67; Immunotech, Hamburg, Ger-

many) and with CD62L conjugated to phycoerythrin (PE)

(alternative names: LECAM-1, L-selectin; Immunotech),

for 15 min. As the control, immunoglobulin G1 (IgG1)–

FITC/IgG1–PE mouse (Immunotech) was used. The cells

were either washed again with 1% PBS/BSA and fixation

was performed automatically in a Multi-Q-Prep (Coulter

Electronics) or they were analysed immediately.

A total of 98 to > 99% of the cells were positive for

CD66b as well as for CD62L.

May–Gruenwald–Giemsa staining (Merck, Darmstadt,

Germany) showed that contaminating mononuclear cells

amounted to < 0�5%.

Stimulation and measurement of cytokines

PMN were cultured in either 6- or 24-well plates with the

following stimuli: zymosan (a mixture of magnesium-
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containing glycoproteins from yeast, 0�16 mg/ml; Serva,

Heidelberg, Germany), GM-CSF (10 U/ml; Strathmann

Biotec, Hamburg, Germany) and lipopolysaccharide (LPS)

(1 lg/ml or 250 ng/ml; Escherichia coli serotype O111:B4;

Sigma, Deisenhofen, Germany). Supernatants were collec-

ted after 24 hr and stored at )80� until measurement.

Enzyme-linked immunosorbent assay (ELISA) kits were

obtained from Bender MedSystems Diagnostics GmbH

(Vienna, Austria) (IL-1b, IL-6, IL-8, IL-12, TNF-a); R &

D Systems GmbH (Wiesbaden, Germany) [IL-1ra, IL-3,

IL-6, IL-8, GROa, macrophage colony-stimulating factor

(M-CSF), MIP-1a, MIP-1b, transforming growth factor

(TGF)-b1, TGF-b2, TNF-a]; Amersham (Buckingham-

shire, UK) (IL-1ra, G-CSF); Laboserve GmbH (Giessen,

Germany) (GM-CSF); and BD Biosciences (IL-1b, IL-6,

IL-8). ELISAs were quantified using an ELISA reader

(Anthos by Labotec and Sunrise by Tecan Austria, both

Salzburg, Austria). Only values equal to or higher than

the lowest standard were regarded as positive.

Cell extracts and western blotting

A total of 107 cells, stimulated as described above (24 hr,

250 ng of LPS per ml) were lysed in ice-cold buffer

(pH 8) containing 50 mM NaCl, 50 mM Tris, 1 mM

EDTA, 1% Triton X-100, 0�1 mM Na-Vanadate, 0�5 mM

dithiothreitol (DTT), 0�5 mM Pefabloc (Roche, Mann-

heim, Germany) and 10 ll/ml of Protease Inhibitor Cock-

tail (Sigma). Lysates were frozen for at least 1 hr at )80�,

then cleared by centrifugation (22 000 g, 20 min, 4�).

Supernatants were collected and assayed for protein con-

centration using the Bradford micro assay (Biorad,

Munich, Germany). Sodium dodecyl sulphate–polyacryla-

mide gel electrophoresis (SDS–PAGE) was performed

using a variant of the Laemmli method.30 Briefly, equival-

ent amounts of protein (usually between 10 and 20 lg)

were supplemented with sample buffer (1�5 M Tris,

pH 6�8) containing 56% Saccharose, 14% SDS, 1�4%

b-mercaptoethanol and 0�02% Bromphenol blue, and

separated using a 15% SDS polyacrylamide gel. Suitable

recombinant controls (Strathmann Biotec) and biotinyl-

ated protein ladders (Cell Signaling Technology, Danvers,

MA) were included. The protein was electrophoretically

transferred onto a nitrocellulose membrane (Biorad), and

equal amounts of protein per lane were verified by Ponc-

eau staining (Fluka, Buchs, Switzerland). After blocking

overnight with 5% dried milk in Tris-buffered saline,

membranes were incubated for 2 hr with the primary anti-

bodies, washed in Tris-buffered saline, incubated again

for 1 hr with the secondary antibody and, if necessary,

washed and incubated for 1 hr with a tertiary antibody

[biotin-anti-IL-1b, R & D Systems; biotin-anti-IL-1ra,

R & D Systems; anti-IL-8, BD Biosciences, Heidelberg,

Germany; anti-biotin-horseradish peroxidase (HRP)-

linked immunoglobulin, Cell Signaling Technology;

biotin-anti-Ms IgG, Becton Dickinson]. Proteins were

detected using the Phototope� HRP Westernblot detec-

tion system (Cell Signaling Technology). In the case of

IL-6, the membrane was stripped and then reprobed as

described above.

Isolation and in vitro differentiation of CD34+

haematopoetic progenitor cells

Isolation of CD34+ cells from cord blood, and their

expansion and differentiation, was performed as previ-

ously reported.31–34 In each case, one third of the undif-

ferentiated cells from the same donor was incubated at

3 · 106 cells/ml, with and without LPS (250 ng/ml), for

3 hr. The cells were then lysed and the cytokines detected

by western blotting, as described above. Another two

thirds were differentiated into granulocytic and monocytic

cells. For differentiation, G-CSF (10 ng/ml) or M-CSF

(25 ng/ml), respectively, was added to RPMI-1640, other-

wise supplemented as described above. Monocytic cells

were differentiated for 7 days and granulocytic cells for

14 days. After the differentiation period, the cells were

incubated with or without LPS for 3 hr and then lysed

and analysed as described above.

Differentiation was examined by May–Gruenwald–

Giemsa staining (Merck) and by flow cytometry with

antibodies against CD14 (BD Pharmingen, Heidelberg

Germany) and CD66b (BD Pharmingen).

Statistical analysis

Experimental data are expressed as means ± standard

error. Where appropriate, significances of difference were

analysed by the Student’s t-test for paired samples, using

the program SPSS. In a conservative manner, negative val-

ues were regarded as 0�1 pg less than the lowest standard

value.

Results

Lack of pro-inflammatory cytokine production

As previously shown, human neutrophils that are stimula-

ted with zymosan do not produce the pro-inflammatory

cytokines IL-1b, IL-6 and TNF-a, yet produce large

amounts of the chemokine IL-8.5 These results differ from

various reports in the literature, and to verify them, we

extended the spectrum of stimuli used. By using GM-CSF

alone (data not shown) or in combination with zymosan,

we again were unable to detect IL-1b, IL-6 or TNF-a
(Fig. 1a). However, there was significant production of

IL-8 in response to the stimulants. We then stimulated

PMN with LPS, and again the cells did not secrete any

IL-1b. A minor secretion of IL-6 was observed in

response to LPS, but the increase in IL-6 production
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compared with the negative-control conditions proved to

be statistically insignificant. As further experiments using

western blotting did not detect any IL-6, this may be

false-positive noise owing to the sensitivity of the assay.

As before, IL-8 was significantly induced in stimulated

cells (Fig. 1b). G-CSF alone did not show any stimulative

activity and, in combination with zymosan, it did not

change the outcome compared to stimulation with zymo-

san alone (data not shown). By extending the range of

our stimulants, we were thus able to show that our previ-

ous results cannot be explained with a limited response to

zymosan.

Cytokine pattern of neutrophils

To examine the spectrum of cytokines produced by neu-

trophils, we tested our cell preparations for additional

cytokines. The production of IL-8 implies that PMN

might also produce other chemokines, and indeed, after

stimulation with zymosan, we found significant produc-

tion of GRO-a, MIP-1a and MIP-1b (Fig. 2a). Also, the

capacity of different stimuli to induce the production of

GRO-a was examined. As before, stimulation with zymo-

san results in a release of significant amounts of GRO-a.

Stimulation with GM-CSF or G-CSF alone did not result

in any significant production of GRO-a, and the com-

bination of G-CSF and zymosan induced an amount of

GRO-a that was similar to stimulation with zymosan

only. However, the combined use of GM-CSF and zymo-

san induced an amount of secreted GRO-a that was signi-

ficantly higher than stimulation with zymosan alone

(Fig. 2b).

PMN were also tested for their capacity to produce the

colony-stimulating factors G-CSF, M-CSF and GM-CSF

in response to zymosan and/or GM-CSF. The only detect-

able factor was M-CSF, which was significantly up-regula-

ted in response to zymosan. GM-CSF alone did not have

any significant effect compared with control conditions,

yet again, when the cells were stimulated with GM-CSF in

combination with zymosan, the increase in M-CSF pro-

duction was significantly higher than stimulation with

zymosan alone (Fig. 2c). These results indicate an import-

ant role of GM-CSF as an accessory stimulant for neu-

trophils. However, as already shown in Fig. 1(a), even the

combination of GM-CSF and zymosan did not induce

detectable levels of the pro-inflammatory cytokines IL-1b,

IL-6 and TNF-a.

In contrast to other reports, ELISAs for IL-3, IL-12,

TGF-b1 and TGF-b2 were all negative for controls and

for 24 hr of stimulation with zymosan (data not shown,

summarized in Table 1). As previously shown, PMN

do not produce type-I interferons in response to viral

stimuli.35

Anti-inflammatory cytokine pattern of neutrophils

The cytokine profile of purified neutrophils determined

so far shows a lack of the pro-inflammatory cytokines

IL-b, IL-6 and TNF-a. We therefore questioned whether

reports of IL-1ra detection could be inaccurate because

there are no data on cells producing the natural antagon-

ist of IL-1b, while IL-1b itself is not detectable. Surpris-

ingly, neutrophils constitutively secreted low levels of

IL-1ra, and stimulation with either zymosan or LPS
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Figure 1. Lack of pro-inflammatory cytokine production by

polymorphonuclear leucocytes (PMN). (a) PMN (3 · 106/ml)

were incubated with zymosan plus granulocyte–macrophage colony-

stimulating factor (GM-CSF) (Zy + GM; 0�16 mg/ml and 10 U/ml,

respectively) for 24 hr, and control cultures (Ctrl) remained unstim-

ulated. Cytokines in supernatants were measured by enzyme-linked

immunosorbent assay (ELISA). Only interleukin (IL)-8 was detected.

Zymosan and GM-CSF significantly increased cytokine production

compared with control conditions (*P < 0�001 versus control). n ¼
4–7 experiments are shown. Neither zymosan stimulation in combi-

nation with granulocyte colony-stimulating factor (G-CSF) (data not

shown), nor with GM-CSF alone (data not shown), stimulated PMN

to produce IL-1, IL-6 or tumour necrosis factor-a (TNF-a).

(b) PMN (3 · 106/ml) were incubated with lipopolysaccharide (LPS)

(250 ng/ml) for 24 hr, whereas control cultures remained unstimu-

lated. Cytokines in supernatants were measured by enzyme-linked

immunosorbent assay (ELISA). Production of IL-8 was significantly

increased upon stimulation with LPS (*P < 0�027 versus control).

Again, there was no significant production of IL-1 or IL-6. n ¼ 5

experiments are shown.

320 � 2006 Blackwell Publishing Ltd, Immunology, 119, 317–327

A. K. Schröder et al.



increased the secreted level significantly (Fig. 3a). Interest-

ingly, in contrast to the other cytokines examined,

GM-CSF as a stimulant alone caused a significant increase

of IL-1ra, similar to the use of GM-CSF and zymosan

combined (Fig. 3b).

IL-1b in neutrophil preparations results from PBMC
contamination

As a possible explanation for the presence of IL-1b and

IL-6, reported in some publications, we deliberately con-

taminated our highly purified neutrophil preparations

with plastic-adherent PBMCs (enriched monocytes) of the

same donor at concentrations of 0�1, 0�5, 1 and 5%. The

samples were stimulated with LPS, and the production of

pro-inflammatory cytokines was measured by ELISA.

Contamination with 1% PBMCs raised the IL-1b level

significantly, as seen in Fig. 4(a), and IL-6 levels showed a

significant elevation at a contamination of 0�5% (Fig. 4b).

Cytokine pattern determined in PMN lysates

To exclude the possibility that none of the stimuli

employed were able to induce a release of pro-inflamma-

tory cytokines from potential intracellular storage, we

detected cytokines in PMN cell extracts by means of west-

ern blotting. As shown in Fig. 5, no IL-1b or IL-6 was

detected, whereas IL-1ra and IL-8 are clearly visible. In

the case of IL-6, the ELISA values were not unequivocal,

and so the membrane was stripped and reprobed with

anti-IL-1ra as a positive control. One isoform of IL-1ra,

the 16 000 molecular weight (MW) intracellular form,

is produced constitutively, and another isoform, of

23 000 MW (the glycosylated 17 000 MW isoform36), is

induced by stimulation with LPS.37 IL-8 is also produced

constitutively. The weaker bands of the 24-hr control and

LPS experiments indicate that owing to the short life span
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Figure 2. Cytokine production by polymorphonuclear leucocytes

(PMN). (a) PMN (3 · 106/ml) were stimulated with zymosan (Zy;

0�16 mg/ml) for 24 hr, whereas control cultures (Ctrl) remained

untreated. Cytokines in supernatants were measured by enzyme-

linked immunosorbent assay (ELISA). PMN showed significant pro-

duction of the chemokines, growth-related oncogene-a (GRO-a),

macrophage inflammatory protein (MIP)-1a and MIP-1b after

stimulation with zymosan (*P < 0�001 for GRO-a, *P < 0001 for

MIP-1a and *P < 0�002 for MIP-1b, all versus the control). n ¼ 6

experiments are shown. (b) PMN were stimulated for 24 hr with zymo-

san (Zy; 0�16 mg/ml), granulocyte–macrophage colony-stimulating

factor (GM-CSF) (GM; 10 U/ml), GM-CSF + zymosan (GM + Zy),

granulocyte colony-stimulating factor (G-CSF) (G; 10 U/ml) and

G-CSF + zymosan (G + Zy). Control cultures remained unstimulated.

GRO-a was measured in supernatants by ELISA. A significant level of

GRO-a was only detected after stimulation with zymosan alone or

in combination with other stimulants (*P < 0�001 versus control).

GM-CSF and G-CSF alone showed no significant effect. However,

GM-CSF in combination with zymosan increased GRO-a secre-

tion significantly compared to stimulation with zymosan alone

(#P < 0�003 versus zymosan). G-CSF did not show this effect. n ¼ 7

experiments are shown. (c) PMN preparations were tested for their

capacity to produce the colony-stimulating factors G-CSF, macroph-

age colony-stimulating factor (M-CSF) and GM-CSF in response to

zymosan and/or GM-CSF. Only M-CSF was detected after stimulation

with zymosan (Zy; 0�16 mg/ml) and zymosan + GM-CSF (GM + Zy;

10 U/ml + 0�16 mg/ml), respectively (*P < 0�001 versus control).

GM-CSF as a stimulus alone did not induce M-CSF production, yet

in combination with zymosan, it increased the amount of secreted M-

CSF significantly, even compared with zymosan alone (#P < 0�001

versus zymosan). n ¼ 5 experiments are shown.
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of PMN, longer incubation times are not appropriate for

investigating intracellular cytokines.

Neutrophilic progenitors display the same
anti-inflammatory cytokine profile as mature PMN

To exclude an enrichment of an anti-inflammatory PMN

subpopulation by our purification method, CD34+ hae-

matopoietic progenitor cells from human cord blood were

isolated and differentiated in vitro into granulocytic cells

and also into monocytic cells. As progenitor cells of the

same donor were differentiated into both cell types, the

detection of different cytokines must result from a switch

in the cytokine profile during commitment to either

monocytic or granulocytic lineage. Differentiation of the

cells was examined by May–Gruenwald–Giemsa staining

and by flow cytometric analysis of characteristic surface

markers (Fig. 6a). Undifferentiated cells did not express

CD14 or CD66b. Granulocytic cells, however, expressed

low levels of CD14 and CD66b, and monocytic cells

expressed high levels of CD14 only after 14/7 days of cul-

ture. The undifferentiated source cells, and both the gran-

ulocytic and the monocytic cells, were incubated with or

without LPS for 3 hr. Again, the cytokines were detected

from the lysates by western blotting (Fig. 6b). Production

of IL-1b and IL-6 were seen only in the LPS-stimulated

monocytic cells. No expression of IL-1b or IL-6 was

observed in either the undifferentiated source cells or the

granulocytic cells, not even after stimulation with LPS

for 3 hr. Successful differentiation, however, could be

assumed for the granulocytic cells, because, in contrast to

the undifferentiated cells, expression was found of IL-1ra

and IL-8. Down to the same two IL-1ra variants [intracel-

lular IL-1 receptor antagonist (icIL-1ra) 16 000 MW and

soluble IL-1 receptor antagonist (sIL-1ra)], the differenti-

ated granulocytic cells showed the same cytokine profile

as PMN isolated from peripheral blood (see Fig. 5). As
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Figure 3. Interleukin-1 receptor antagonist (IL-1ra) production of

polymorphonuclear leucocytes (PMN). (a) PMN (3 · 106/ml) were

incubated with zymosan (Zy; 0�16 mg/ml) and lipopolysaccharide

(LPS) (250 ng/ml) for 24 hr, control cultures remained unstimu-

lated. Cytokines in supernatants were measured by enzyme-linked

immunosorbent assay (ELISA). IL-1ra was released constitutively;

however, there was a significant increase upon stimulation with

either zymosan or LPS compared with control conditions (Ctrl)

(*P < 0�001 versus control). Interestingly, LPS induced a much

higher production of IL-1ra than zymosan (#P < 0�001 versus zymo-

san). A minimum of n ¼ 9 experiments are shown. (b) PMN were

stimulated with granulocyte–macrophage colony-stimulating factor

(GM-CSF) (GM; 10 U/ml) and GM-CSF + zymosan (Zy + GM;

0�16 mg/ml and 10 U/ml, respectively) for 24 hr. Control cultures

remained unstimulated. IL-1ra in supernatants was measured by

ELISA. Upon stimulation with GM-CSF, as well as the combination

of zymosan and GM-CSF, the increase of IL-1ra production was sig-

nificant (*P < 0�034 for GM-CSF, and *P < 0�001 for zymosan +

GM-CSF, both versus the control). A total of n ¼ 5 experiments are

shown.

Table 1. Comparison of cytokine production of polymorphonuclear

leucocytes (PMN) described in the literature and in highly purified

preparations

Cytokine

Detected/not detected

in highly purified PMN1 Reference

IL-1b – 1,2

IL-1ra + 6, 35

IL-3 – 11

IL-6 – 1,2

IL-8 + 1,2,4,5

IL-12 – 12,7

TNF-a – 1,2,12

G-CSF – 1

GM-CSF – 11

M-CSF + 1

IFN-a – 13

GRO-a + 10

MIP-1a + 7,8,9

MIP-1b + 7,9

TGF-b1 – 14,15

TGF-b2 – 16

1–, absent; +, present.

G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulo-

cyte–macrophage colony-stimulating factor; GRO-a, growth-related

oncogene-a; IFN-a, interferon-a; IL, interleukin; M-CSF, macroph-

age colony-stimulating factor; MIP, macrophage inflammatory pro-

tein; TNF-a, tumour necrosis factor-a; TGF, transforming growth

factor.
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described for monocytes,36 the differentiated monocytic

cells additionally expressed the 18 000 MW icIL-1ra. The

differentiation experiment therefore supports our previous

results that PMN do not produce the pro-inflammatory

cytokines IL-1b and IL-6, but instead produce IL-8 and

two variants of IL-1ra.

Anti-inflammatory influence of PMN on PBMC

Isolated PMN do not show any production of IL-1b after

stimulation in vitro, but in coculture with other blood

cells they might react differently. Consequently, the IL-1b
production in the previous experiment could as well be

attributed to the PMN fraction of the coculture. To deter-

mine the origin of the detected IL-1b, we measured IL-1b
in the supernatant of pure PMN, in pure PBMC and in a

coculture of both, at a ratio that resembles in vivo condi-

tions (2 · 106 PMN and 1 · 106 PBMC per ml). As

expected, pure PMN showed no production of IL-1b after

stimulation with LPS for 4, 8, 12 or 24 hr. The level of

IL-1b production of PMN and PBMC in coculture was

not elevated compared with IL-1b production of pure

PBMC, indicating that the total amount of IL-1b is

indeed secreted by PBMC exclusively, and not by PMN

(Fig. 7a).

Because PMN produce IL-1ra in the absence of

IL-1b, the capability of neutrophils to inhibit the pro-

inflammatory effect of IL-1b was investigated. In a sim-

ilar experiment, we measured the production of the

pro-inflammatory TNF-a in a coculture of PMN and

PBMC. The TNF-a level was significantly reduced in the

coculture compared with PBMC alone. As shown previ-

ously, pure PMN did not secrete any TNF-a (Fig. 7b).

Discussion

In our hands, peripheral blood PMN produced IL-8,

along with other chemokines such as GRO-a, MIP-1a
and MIP-1b. Additionally, PMN produced the anti-

inflammatory antagonist of IL-1b, IL-1ra. In contrast to

earlier publications, we were not able to detect the pro-

inflammatory cytokines IL-1b and IL-6. Table 1 summar-

izes all the cytokines measured by our group from the

highly purified PMN of seven to 21 individuals, regard-

Ctrl LPS

3 hr 24 hr 1 hr 2 hr 3 hr 24 hr

IL-1β

sIL-1ra

icIL-1ra

IL-6

IL-8

rec.
Ctrl

Figure 5. Detection of cytokines in polymorphonuclear leucocyte

(PMN) lysate. PMN were stimulated with lipopolysaccharide (LPS;

250 ng/ml) for 1, 2, 3 and 24 hr. Control cultures (Ctrl) remained

unstimulated for 3 and 24 hr. Lysates were separated on a 15%

sodium dodecyl sulphate (SDS) polyacrylamide gel, blotted onto

nitrocellulose membrane and detected with appropriate antibodies.

Recombinant controls (rec.) were included. Production of the

pro-inflammatory cytokines, interleukin (IL)-1b and IL-6, was not

established. Instead, production of IL-8 and two different isoforms

of IL-1ra were detected. Production of the 16 000 molecular weight

(MW) isoform of intracellular IL-1 receptor antagonist (icIL-1ra)

(identified by comparison with the 17 000 MW recombinant con-

trol) was constitutive. The glycosylated secreted form [soluble IL-1

receptor antagonist (sIL-1ra), c. 23 000 MW] was induced upon

stimulation with lipopolysaccharide (LPS). In each case, one out of

n ¼ 3 independent experiments is shown.
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Figure 4. Production of interleukin (IL)-1b (a) and IL-6 (b) in a

coculture of polymorphonuclear leucocytes (PMN) and peripheral

blood mononuclear cells (PBMC). Pure PMN were contaminated by

adherent PBMC of the same donor in concentrations from 0�1% up

to 5% (3 · 106 cells/ml). Cocultures were incubated with lipopoly-

saccharide (LPS) (1 lg/ml) for 24 hr and cytokines in supernatants

were measured by enzyme-linked immunosorbent assay (ELISA).

The level of IL-1b was significantly increased at a contaminating

level of 1% PBMC (*P < 0�04 versus pure PMN). For IL-6, a con-

tamination of 0�5% was sufficient to cause a significant increase

[*P < 0�02 (for 0�5% PBMC) and *P < 0�04 (for 1% PBMC) versus

pure PMN].
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ing each cytokine in different experimental set ups as

opposed to reported cytokines in the literature.

While it is relatively easy to detect low levels of cyto-

kines, it is rather difficult to determine the real cytokine

profile of a purified population, excluding any influence

of contaminating cells. In highly purified PMN, we found

no production of the pro-inflammatory IL-1b or IL-6, yet

by adding increasing amounts of PBMC, we were able to

detect significant levels of IL-1b and IL-6, which occur-

red at a very low percentage of PBMC contamination

(Fig. 4). Varying results observed in different studies, and

difficulties in measuring the actual cytokine pattern of

neutrophils, may therefore be explained by low levels

of contaminating cells. These cells may be responsible

for pro-inflammatory cytokine production, especially in

response to LPS. Recently, the ability of neutrophils to

internalize IL-1b rapidly via the IL-1 decoy receptor has

been reported.38 This ‘scavenging’ endocytosis of IL-1b in

a pro-inflammatory milieu may present another explan-

ation for the presence of IL-1b in neutrophils.

The production of IL-8, which acts as a chemoattract-

ant on T cells and also on PMN,39,40 provides an auto-

crine mechanism to recruit more neutrophils to the site

of an infection. GRO-a, a member of the CXC subfamily

of chemokines, like IL-8, is a neutrophil-activating factor

that attracts neutrophils and causes degranulation and

enzyme release.40 MIP-1a and MIP-1b, members of the

C-C subfamily of chemokines, are also secreted by neu-

trophils. They act as a chemoattractant on monocytes and

natural killer cells, leading additional cells to the site of

an infection. With this wide spectrum of chemoattractant

cytokines, neutrophils are therefore well equipped, and

being the first cells that migrate into infected tissue,
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Figure 7. Interleukin (IL)-1b production from peripheral blood

mononuclear cells (PBMC) is not directly influenced by polymor-

phonuclear leucocytes (PMN). (a) PMN (2 · 106 cells/ml) alone

show no production of IL-1b after stimulation with lipopolysaccha-

ride (LPS). The level of IL-1b produced by PBMC (106 cells/ml)

after stimulation with LPS is constant with or without PMN. The

mean values of n ¼ 5 experiments are shown. (b) Tumour necrosis

factor-a (TNF-a) production of PBMC is reduced in coculture with

PMN. Adding PMN to PBMC (both 106 cells/ml) decreases the

TNF-a level produced by PBMC after stimulation with LPS. A signi-

ficant difference is reached after 12 and 24 hr of incubation

(*P < 0�05). Mean values of n ¼ 5 experiments are shown. As des-

cribed before, PMN alone fail to produce TNF-a.

Figure 6. Cytokine profile of cells differentiated from hematopoietic

progenitors. (a) CD34+ cells were isolated from cord blood and differ-

entiated in vitro into granulocytic (G-CSF) and monocytic (M-CSF)

cells. Successful differentiation compared with undifferentiated cells

(Ctrl) was analysed by May–Gruenwald–Giemsa staining and flow cyto-

metric analysis. (b) The differentiated cells and the undifferentiated

source cells were stimulated with lipopolysaccharide (LPS) (250 ng/

ml) for 3 hr. Control cultures remained unstimulated. Lysates were

separated on a 15% sodium dodecyl sulphate (SDS) polyacrylamide

gel, blotted onto nitrocellulose membrane and detected with appropri-

ate antibodies. Production of interleukin-1 receptor antagonist

(IL-1ra) and interleukin (IL)-8 by granulocytic and monocytic cells

was established. Production of the pro-inflammatory cytokines IL-1b
and IL-6 was detectable in stimulated monocytic cells only. One repre-

sentative out of n ¼ 3 independent experiments is shown.

FITC, fluorescein isothiocyanate; icIL-1ra, intracellular IL-1 receptor

antagonist; sIL-1ra, soluble IL-1 receptor antagonist; PE, phyco-

erythrin.
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they are thus able to induce and regulate the following

events of an immune response. This is in concordance

with Hayashi et al., who implied that neutrophils partici-

pate in the recruitment of innate immune cells to sites of

infection.41

Just as important as the fast induction of an immune

response, however, is its tight control. A dysregulated

inflammation results not only in damage to the surround-

ing tissue, but septic patients die of the effects of overpro-

duced pro-inflammatory cytokines.42,43 An imbalance in

the IL-1b/IL-1ra system, resulting in an elevated IL1b/IL-

1ra ratio, assumingly contributes to tissue damage.44 In a

coculture of PBMC and different concentrations of PMN,

Kolling et al. found a dose-dependent increase of anti-

inflammatory cytokines.45 A study by Rupp et al. indica-

ted that cells of healthy controls have a greater capacity

to compensate for the activity of IL-1b by increased

production of IL-1ra than those of patients suffering

from chronic obstructive pulmonary disease (COPD).46

This, and our findings, that PMN produce IL-1ra and do

not secrete pro-inflammatory cytokines, such as IL-1b
and TNF-a, indicate an anti-inflammatory capacity of

neutrophils.

Also, gene expression profiling of PMN from patients

with x-linked chronic granulomatous disease (XCGD)

showed an up-regulation of pro-inflammatory capacity

compared with healthy PMN.47 Studies have demonstra-

ted that the cell redox status regulates the expression

of chemokines and receptors for inflammatory media-

tors,48,49 and PMN from XCGD-patients are defective in

their ability to produce reactive oxygen species. These

patients aquire life-threatening bacterial and fungal infec-

tions and develop granulomas, which are indicative of a

chronic inflammatory response.50–53 Interestingly, Conti

et al. were able to decrease significantly the size and

weight of induced granulomas in mice by treatment with

rIL-1ra.54 Together, these findings underline the import-

ance of anti-inflammatory mediators in the course of an

inflammatory response. In concordance with our results,

the secretion of IL-1ra by healthy PMN seems to be an

essential factor to prevent dysregulation of the immune

response.

Currently, PMN seem to be the only cells with this

rather unusual constellation of producing the antagonist

of IL-1b in the absence of IL-1b itself. While IL-1ra com-

petes with IL-1b for the same receptor, it does not acti-

vate the cells,55 and the secreted isoform (sIL-1ra)

released by PMN can therefore influence the pro-inflam-

matory signals triggered by the IL-1b secretion of other

cells. In combination with the ‘scavenging’ of IL-1b
by the type II IL-1 receptor on PMN,38 this indicates a

new, anti-inflammatory role in immune regulation for the

phagocyte.

Our experiments clearly demonstrate an anti-inflamma-

tory effect that neutrophils exert on TNF-a production

(Fig. 7b). TNF-a has been reported to induce endothelial

cell dysfunction in the lung and to inhibit gene transcrip-

tion of surfactant protein C.56 By decreasing the TNF-a
level, PMN might even play a role in preventing or limit-

ing tissue damage.

An anti-inflammatory effect has also been discussed in

conjunction with the application of recombinant human

G-CSF, which induces the maturation and mobilization

of PMN.57–59

Our anti-inflammatory cytokine profile of PMN has

been established using peripheral blood neutrophils. A

reasonable point of criticism may therefore be that these

circulating PMN might be resting cells and that only fully

activated PMN still produce pro-inflammatory cytokines.

However, we have applied several stimulants, none of

which were able to induce pro-inflammatory cytokines in

PMN, yet which resulted in the production of IL-1ra,

IL-8 and other chemokines. Additionally, considering the

short half-life and low capacity of neutrophils to synthes-

ize proteins, it seems unlikely that the observed reactions

to the stimulants represent only a status of pre-activation.

The cytokine profile of granulocytic cells that were differ-

entiated from CD34+ haematopoietic progenitors is sim-

ilar to that of peripheral blood neutrophils because these

cells produce IL-1ra and IL-8, but not IL-1b or IL-6

(Fig. 6b). In contrast, monocytic cells differentiated from

the same donor were found to produce the pro-inflam-

matory IL-1b and IL-6, in addition to IL-1ra and IL-6.

Commitment to the granulocytic lineage therefore implies

an anti-inflammatory cytokine profile, which is in line

with the observations described recently.60

In summary, we hypothesize a central regulatory role

for the neutrophil in the early stages of infection: extra-

vasating PMN recruit more neutrophils and activate

themselves using the autocrine mechanisms of IL-8 and

GRO-a secretion. Production of MIP-1a and MIP-1b
then attracts other cells, such as monocytes, to the site of

infection. GM-CSF secreted by activated monocytes inhib-

its neutrophil apoptosis.61 Additionally, it stimulates neu-

trophils to release large amounts of IL-1ra (Fig. 3b).

IL-1ra regulates the cytokine environment by interfering

with the pro-inflammatory IL-1 system. The secretion of

IL-1ra by PMN in tissue and also in the circulation there-

fore keeps inflammation under control, prevents chronic

progression and assists in turning the inflammatory

response off after clearance of an infection. Interestingly,

IL-1ra is the only cytokine examined that is significantly

up-regulated upon stimulation with GM-CSF alone

(Fig. 3b). Yet, PMN themselves do not produce GM-CSF

(Table 1), and it is therefore possible that the secretion of

GM-CSF by activated monocytes thus serves as a regula-

tory mechanism. The secreted GM-CSF induces IL-1ra

production of neutrophils which, in turn, down-regulates

the production of pro-inflammatory cytokines in the

inflamed area.
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Beyond this, it is quite possible that neutrophils – as

the first cells at the site of an infection – might be able to

clear a minor infection before monocytes arrive. We

therefore suggest the clearance of an infection by neu-

trophils without the classical symptoms of inflammation.

Symptoms like reddening, swelling, pain and potential tis-

sue damage are all induced by pro-inflammatory cyto-

kines that are secreted by the later arriving monocytes.
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