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The Role of Domain Knowledge in Automating Medical Text
Report Classification

ADAM B. WILCOX, PHD, GEORGE HRIPCSAK, MD, MS

A b s t r a c t Objective: To analyze the effect of expert knowledge on the inductive learning
process in creating classifiers for medical text reports.

Design: The authors converted medical text reports to a structured form through natural language
processing. They then inductively created classifiers for medical text reports using varying degrees
and types of expert knowledge and different inductive learning algorithms. The authors measured
performance of the different classifiers as well as the costs to induce classifiers and acquire expert
knowledge.

Measurements: The measurements used were classifier performance, training-set size efficiency, and
classifier creation cost.

Results: Expert knowledge was shown to be the most significant factor affecting inductive learning
performance, outweighing differences in learning algorithms. The use of expert knowledge can affect
comparisons between learning algorithms. This expert knowledge may be obtained and represented
separately as knowledge about the clinical task or about the data representation used. The benefit
of the expert knowledge is more than that of inductive learning itself, with less cost to obtain.

Conclusion: For medical text report classification, expert knowledge acquisition is more significant to
performance and more cost-effective to obtain than knowledge discovery. Building classifiers should
therefore focus more on acquiring knowledge from experts than trying to learn this knowledge
inductively.

j J Am Med Inform Assoc. 2003;10:330–338. DOI 10.1197/jamia.M1157.

Health care is an information-intensive industry, and health
care delivery is dependent on accurate and detailed clinical
data.1 An important goal of medical informatics is to
facilitate access to and improve the quality of this infor-
mation, thereby enhancing clinical outcomes. Data that are
not available routinely in an easily accessible form represent
a major challenge to this goal.

A prominent example of this challenge is accessing data
contained in medical text reports. Medical text reports
contain substantial and essential clinical data.2,3 For ex-
ample, a recent study distinguishing between planned and
unplanned readmissions found that information available
in structured, coded format alone was not sufficient for
classifying admissions and that information in text reports
significantly improved this task.4 Although narrative text
reports can be stored and retrieved electronically, clinical
information represented in text reports often is not available
in coded form and not easily used for automated decision
support, analysis of patient outcomes, or clinical research.
For computer analysis of patient data to effectively include
clinical information from text reports, the data must be
extracted from the reports and converted to a structured,
coded form.5

One approach that may be used to convert this information
to structured form is classification. Medical text reports can
be classified according to the clinical conditions that are
described in the reports (e.g., whether the report indicates
the patient has pneumonia). Classifiers can be created to
detect clinical conditions indicated in narrative text and to
represent these indicated conditions as standardized codes
or terms.5–11 However, manual creation of these classifiers
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(often represented as expert rules) is a difficult and ex-
pensive process, requiring the coordinated effort of both
medical experts and knowledge engineers.8,12 Researchers
therefore have investigated the use of inductive learning
algorithms to automatically generate classifiers for medical
documents.11,13,14

Studies of inductive learning and medical text reports
typically have focused only on standard components of
inductive learning, such as algorithm type or training set
size.8,9,15,16 However, there is substantial variation in data
preparation of medical text for inductive learning, de-
pendent on the use of expert knowledge in the inductive
learning process.14 Little is known about the effect of this
expert knowledge. This study evaluated how expert
knowledge affects the inductive learning process in creating
classifiers for medical text reports.

Background

The preparation phase of inductive learning involves
converting the original data, such as narrative text, to a form
usable by inductive learning algorithms, such as a set of
reports with attributes representing observations from the
reports. Often, natural language processing (NLP) is used to
convert unstructured text into a structured form that then is
further modified for use with learning algorithms.8,9,15 NLP
systems have been used to structure narrative clinical data
by extracting observations and descriptive modifiers from
free-text reports.

Expert knowledge can be used in the data preparation. An
important task of data preparation is to determine the
subset of attributes or features that are relevant to the
classification task. This is done through feature selection
or feature extraction. Domain experts can select specific
attributes or features that are relevant to the classification
task (feature selection). Using domain knowledge for fea-
ture selection has been suggested previously as a way to
enhance the performance of machine learning algorithms.16

Gaines17 showed this effect of using expert knowledge to
select relevant attributes. Clark and Matwin18 showed
improved performance when using domain knowledge to
restrict an algorithm’s search space, but they also discussed
the increased cost that can arise from using this knowledge.
Domain knowledge can be used also to combine multiple
features together, to create a new feature or variable (feature
extraction). For example, variables assigned values in-
dicating their presence or absence in a report could be
extracted to new variables indicating their presence or
absence as clinical conditions for a patient. Feature extrac-
tion not only changes the representation of the data, but
may also reduce the number of variables used.

The types of domain knowledge used in data preparation
also can vary between task-specific and representation-
specific knowledge. Task-specific knowledge is conceptual
knowledge about the general classification task. For the
domain of classifying clinical reports, it is medical knowl-
edge specific to the conditions being identified. In the
context of feature selection, task-specific knowledge is the

knowledge of which features or attributes are medically
relevant to the clinical condition. Representation-specific
knowledge is the knowledge about the specific data used. It
involves understanding of the report representation, such as
the different available values for features, or the meaning of
those values. For example, representation-specific knowl-
edge is the understanding of whether a value of ‘‘positive’’
for a feature indicates the feature is a word or phrase in the
report, is a current condition for the patient, or was a pre-
vious diagnosis for the patient. In applications of machine
learning, task-specific and representation-specific knowl-
edge for feature selection is often used implicitly in the setup
of the data, often in determining how data are represented.
Manually selecting relevant parameters from original data
sources, using predefined phrase lists, and modifying only
relevant data are ways that researchers have used task-
specific knowledge.8,9,11,19 Studies that used representation-
specific knowledge have specifically designated negated
phrases as separate concepts indicating the negation or only
represented status information for observations.8,9,11 These
studies used domain knowledge for feature selection or
extraction but did not evaluate its impact on classifier
performance.

In text classification, in which a large number of features is
a major difficulty to machine learning, the potential of using
domain knowledge is especially promising but somewhat
unexplored. Whereas there are studies evaluating different
automatic selection methods in text categorization,20 studies
evaluating the effect of using domain knowledge for
selection are limited. Therefore, the extent to which it can
affect inductive learning performance is unknown.

Methods

We evaluated the effect of different methods for using expert
knowledge in preparing medical text data for inductive
learning. We evaluated the effect of expert knowledge in
terms of learning algorithm performance, training set size
efficiency, and creation costs. The classification tasks were to
identify clinical observations indicated in chest radiograph
reports and discharge summaries.

Data

The chest radiograph data were obtained from a data set
used in an evaluation study of NLP.5 The set contained 200
randomly selected reports that had been classified by physi-
cians for six clinical conditions: congestive heart failure,
chronic obstructive pulmonary disease, acute bacterial
pneumonia, neoplasm, pleural effusion, and pneumothorax.
The reference standard for correct classification of a report
for a conditionwasmajority physician opinion. In that study,
rules written by a physician and knowledge engineer were
used to query the processor output and classify the reports.

Discharge summary data also came from a data set used to
evaluate a natural language processor.21 The study auto-
mated a prediction rule for the prognosis of community-
acquired pneumonia. Observations were extracted from
sections of reports processed by a natural language pro-
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cessor, and these observations then were used by the
prediction rule to assign patients with community-acquired
pneumonia to one of five risk categories. The extracted
observations included neoplastic disease, liver disease,
congestive heart failure, cerebrovascular disease, renal
disease, changes in mental status, cough, dyspnea, sputum
production, fever, and pneumonia. The data set contained
79 discharge summaries, and a physician read the reports to
establish a reference standard for that study.

Learning Algorithms

For this study, we used five algorithms from three different
algorithm classes for comparison. These include rule-based
(decision trees and rule induction), instance-based (nearest
neighbor and decision tables), and probabilistic (naı̈ve-
Bayes) algorithms. The three types of algorithms were
chosen because (1) the algorithm types are well known and
studied both in machine learning and in applications of
machine learning to medical data, and (2) the three algo-
rithm types represent different approaches to learning.

The decision tree algorithm used was MC4, which is the
same algorithm as C4.523 but with different default
parameter settings. CN2, the rule induction algorithm, is
a modification of the original AQ algorithm.24 The naı̈ve-
Bayes algorithm, also called ‘‘simple-Bayes,’’ is a common
algorithm using predictive probabilities of attribute
values.25 The nearest neighbor algorithm used was IB,
developed by Albert and Aha,26 and we used the decision
tables algorithm developed by Kohavi.27 These algorithms
were used from the MLC++ machine learning library from
Silicon Graphics.28 This library interfaces with many
different machine learning algorithms, allowing different
algorithms to be applied to the same data set for comparison
using only one data format. To avoid biasing performance
toward our expertise with particular algorithms,29 we used
the default parameters already set for each algorithm.

Data Representations

We created report representations from the output of
a natural language processor, specifically, the Medical

Language Extraction and Encoding system (MedLEE)
developed by Friedman at Columbia University.2 MedLEE
is a semantic parser that takes narrative text as input and
uses a clinical vocabulary to map words and phrases to
standard terms. It has been trained to process many dif-
ferent types of clinical reports, including radiology reports
and discharge summaries. MedLEE converts each report to
a set of clinical observations, each of which is associated
with descriptive modifiers. The processor attempts to
encode all clinical information included in a report.

For example, the text ‘‘no evidence of infiltrate, but exam
indicates slight cardiomegaly’’ occurring in a radiology
report would produce the coded observations shown in
Figure 1. To convert this hierarchical structure of MedLEE
output to an attribute-value representation usable by
learning algorithms, we first converted each occurring
observation to a separate attribute with allowed values
of ‘‘instantiated’’ or ‘‘not instantiated’’ (meaning whether
the observation was instantiated in the report).8 Modifiers,
or secondary attributes, were converted to individual
primary attributes by combining them with their asso-
ciated observations. Thus, the ‘‘certainty’’ modifier of
‘‘infiltrate’’ was represented by a new attribute, ‘‘infil-
trate^certainty.’’ Rather than the binary values of ‘‘in-
stantiated’’ and ‘‘not instantiated,’’ these attributes had the
values that were originally assigned to the modifiers by the
processor. Figure 2 shows the hierarchical structure of
Figure 1 in this attribute-value representation.

Each report was flattened to an attribute-value representa-
tion, creating a document vector representing the original
report. The document vectors then were combined into
a tabular structure representing each vector in terms of all
attributes available in the data set. For each document
vector, those attributes that did not occur in the original
vector were assigned values of ‘‘not present,’’ indicating
they were not instantiated in the report. Figure 3 shows
how the document vectors were expanded. It shows the
original document vector from Figure 2, which contains
only four attributes. Other attributes, such as ‘‘fracture’’ and
‘‘fracture & bodyloc’’ may be present in another report of the
training set, although they are not present in this specific
case. The resulting table of vectors can contain many
attributes that are very sparsely populated for individual

F i g u r e 3. Example of a document vector obtained from
the flattened output of a parsed report. Variables not in the
report, but in other reports in the data set, must be included
in the document vector.

F i g u r e 1. Example of MedLEE output in hierarchical
structure.

F i g u r e 2. Example of MedLEE output in flattened
representation for use with inductive learning algorithms.
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cases. For example, the flattened vectors created from raw
text or NLP output of the 200 chest radiograph reports
contained more than 1,000 attributes.

Attribute Limiting

To prevent overfitting of any classification model to the
data,30 we limited attributes either by their predictive value
within the training set or by their relevance to the clas-
sification task as determined by domain knowledge.

The first limiting method (predictive) calculated the pre-
dictive values for each attribute value, assuming the attri-
bute was conditionally independent from other features.
The predictive values were the proportions of positive (or
negative) instances in the training set correctly classified by
a test using only a specific attribute value. These predictive
values, for both positive and negative classifications, were
then added together to create a predictive score for each
attribute value. Higher scores indicated values that more
strongly predict a positive classification when present in
a report and a negative classification when they do not
occur. We ranked attributes by the highest predictive score
of their associated values and selected the top attributes for
use by the machine learning algorithms. This method was
efficient, because it searched only one feature subset and
scaled up easily for many attributes. In addition, it allowed
limiting without requiring user interaction; i.e., it worked
‘‘outside of the box’’ without having to be tuned to the
specific learning task.

The other limiting methods (medical, negated,med&neg) used
task-specific and representation-specific domain knowledge
for feature selection and extraction. We limited attributes
using task-specific domain knowledge by selecting only
relevant observations or concepts. To establish relevance,
we analyzed the expert queries from the original studies
evaluating MedLEE.5,21 These studies used the same chest
radiograph and discharge summary reports used here. The
queries were part of expert rules that classified the medical
reports. We selected the observations and concepts used in
those expert queries as relevant concepts. Because a medical
expert originally determined which concepts to use in these
queries, selecting them from the queries was similar to
having a medical expert manually select the relevant con-
cepts. We limited using representation-specific knowledge
by first manually analyzing examples of MedLEE output

and determining how the observation status was represen-
ted in MedLEE output and text. We then represented each
observation only by its state in the report and ignored other
modifiers. For processed reports, we selected, from all pos-
sible values for the ‘‘certainty’’ and ‘‘status’’ modifiers, those
values that represented a negated observation state. For
example, ‘‘certainty ¼ negative’’ or ‘‘status ¼ resolved’’ in-
dicates a negated state for observations.

Figure 4 gives an example showing how task-specific and
representation-specific attribute limiting was performed.
The attributes from Figure 2, which were created by flat-
tening the NLP output, are based on two observations:
‘‘infiltrate’’ and ‘‘cardiomegaly.’’ The medical representation
uses task-specific knowledge to limit attributes. If the clas-
sification task was to identify reports that indicated pneu-
monia, only the ‘‘infiltrate’’ observation is relevant, and
attributes based on nonrelevant observations would be
removed. The negated representation uses representation-
specific information to limit attributes. Attributes based on
modifiers are removed. However, the modifier-value pair
‘‘certainty ¼ no’’ indicates that ‘‘infiltrate,’’ although instan-
tiated in the report, is not present in the patient. Therefore,
the value of the ‘‘infiltrate’’ attribute is changed to ‘‘not
present.’’ (Values of ‘‘instantiated’’ are also changed to
‘‘present,’’ indicating the observation is present as a
condition, rather than just instantiated in the report.)
The med&neg representation combines both task-specific
and representation-specific knowledge to further limit the
data.

The negated representation was also limited by the predictive
values, as used in the predictive method. This was done
because even with the representation-specific limiting, there
were still many more features than cases in the data set. We
limited the number of attributes for the predictive and
negated data set to one tenth of the number of reports in the
data set, consistent with a standard recommendation for
feature selection.31–33 With the task-specific limiting met-
hods (medical and med&neg), no secondary limiting was
done. The task-specific limiting already had reduced the
number of features to nearly a tenth of the data set size. In
addition, feature selection methods are intended to discover
which variables may be relevant to the classification task.
Limiting task-specific features further would delete features
that already have been determined to be important to
classification.

F i g u r e 4. Feature selection and extraction
methods (limiting) using different types of
expert knowledge to detect pneumonia.
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Algorithm Performance

To evaluate the effect of expert knowledge on inductive
learning performance, we compared the performance of five
machine-learning algorithms, using different degrees of
domain knowledge for feature selection/extraction (pre-
dictive, medical, negated, med&neg). These algorithms, as
described above, wereMC4, CN2, naı̈ve-Bayes (NB), IB, and
decision tables (DT). We measured performance in classify-
ing six clinical conditions for radiology reports and 11
clinical conditions for discharge summaries. We processed
each report using MedLEE, flattened the MedLEE output
of these reports, and applied the four feature selection
methods. We used 200 chest radiograph reports and 79
discharge summaries that had been classified previously by
experts and used leave-one-out cross-validation to maxi-
mize the training set sizes while avoiding bias from testing
on the training set. Each algorithm also was trained sep-
arately for each of the clinical conditions and represen-
tations and thus generated different classifiers for each
disease and representation to determine whether the
condition was present or absent. Performance was mea-
sured in terms of sensitivity and specificity, from which A9,
an estimate of receiver operating characteristic curve (ROC)
area, was computed.34 Finally, we used bootstrapping to
compute estimates of variance.35

Training Set Size Efficiency

In addition to testing classifier performance, we evaluated
the effect of expert knowledge on classifiers at different
training set sizes. We used learning curves, which show
how the performance of an algorithm improves as the
number of training examples increases. We computed
learning curves of the four different feature selection/
extraction methods using a separate set of 300 radiograph
reports, classified according to the six clinical conditions by
a single physician. For the test set, we used the same 200
cases used in the evaluation of algorithm performance
described above. A learning curve was generated by build-
ing separate classifiers created by training on different
subsets of the training set. We computed classifier perfor-
mance when using training set sizes ranging from 30 to 300
cases, in increments of 30. Five training sets were built at
each size for each disease and each algorithm, and the
performance of A’ was averaged among the five classifiers.

Classifier Creation Cost

We also evaluated expert knowledge and inductive learning
in terms of costs for creating classifiers for chest radio-
graphs. We measured this cost in terms of the human time
component necessary to perform a task. Using the learning
curves, we extrapolated the number of cases necessary for
each method to reach expert-level performance or the
performance of an expert manually classifying reports. We
also used estimates of the time necessary to collect different
types of expert knowledge based on experience in writing
rules and creating training sets. We estimated costs for four
components of building a classifier for medical text reports:
manually classifying one report for use in a training set,

writing manual rules, specifying relevant observations, and
determining negation criteria.

We used MC4 as the machine learning algorithm for this
cost analysis, because it is implemented easily and its
performance was consistently high in all the studies. For
each method, we measured the cost to obtain equivalent
performance with expert rules, which were not different
from manual physician review. To determine this cost when
methods previously never reached the rules performance
level, we either extrapolated the number of training cases
that would be needed from the learning curves or inferred
from existing data the costs of creating domain knowledge.

The cost of classifying chest x-ray reports was determined
from the original evaluation of MedLEE.5 That study
reported that it took a physician about two hours to analyze
100 reports. These reports were analyzed to detect six
clinical conditions, although the bulk of the time probably
was spent reading the report. Therefore, we estimated the
cost of manually classifying one report by one physician for
one condition (represented by CASE) to be about 1 minute.
The time required to write rules for seven clinical conditions
has been reported as one week.12 The average cost of
writing rules for one condition (RULES) is between six and
20 hours. This includes the time to specify task-specific and
representation-specific knowledge as rules, and to debug/
test the rules.

To determine the cost of specifying task-specific ob-
servations (TASK), we measured the time it took a physician
to select relevant observations for one disease from a list.
Initially, we limited the list of all possible observations to
those that were more likely to be relevant to a disease using
automated methods. First, a physician selected ICD-9 codes
that were relevant to congestive heart failure (CHF). Using
these codes, we compiled a set of 10,000 chest radiographs
from New York-Presbyterian Hospital where the discharge
diagnosis code of the inpatient visit associated with a report
was relevant to CHF. We used a large set of reports here,

F i g u r e 5. Comparison of machine learning algorithms
and feature selection methods using natural language
processing (NLP) output from radiology reports. ROC =
receiver operating characteristic [curve]; MC4, CN2, NB, IB,
and DT are algorithms.
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rather than the 200 chest radiograph reports used above, to
ensure a more comprehensive list of possible relevant
observations. We processed these reports using MedLEE
and compiled a list of all observations occurring in these
reports. We then selected those observations occurring in at
least 1% of all the reports, resulting in a list of about 200
observations. Finally, we measured the time a physician
took to manually select from this list those findings that
would be strongly relevant to identifying CHF in a chest x-
ray report. It took between 5 and 15 minutes to determine
discharge diagnoses of CHF and 5 to 15 minutes to select
relevant observations from this list. Thus, we estimated that
it took between 10 and 30 physician minutes to select
relevant observations from NLP output.

Determining negation criteria was done by a nonphysician
medical informatics researcher (ABW), with the assistance
of a physician (not a coauthor). The researcher examined the
list of possible MedLEE modifiers, selected those relevant to
negation, and reviewed the list of possible values for these
modifiers. There were 103 modifier values considered,
which took between 10 and 30 minutes, with less than 15
minutes of physician time to answer questions. Thus, we
estimated the time to determine negation criteria (NEG) to
be about 45 minutes.

Results

Figure 5 shows the performance of machine learning
algorithms classifying chest radiograph reports when using
limiting methods that use different types of domain
knowledge (predictive, medical, negated, med&neg) for NLP
output. The predictive method, which limits by the char-
acteristics of the training set data without domain knowl-
edge, performed significantly worse than the other methods
(p, 0.001). The med&neg method, however, performed sig-

nificantly better than all other methods (p, 0.001). There
was no difference between the methods using one type of
domain knowledge exclusively (i.e., medical and negated).
These findings were consistent for individual algorithms, as
well as for averaged performance across algorithms.

Figure 6 shows the sensitivity and specificity of the various
learning algorithms using the best-performing limiting
method (med&neg) in receiver operating characteristic
(ROC) space. In addition, it shows the average performance
of expert rules and physicians in classifying the reports, as
reported by Hripcsak et al.5 All algorithms performed
worse than these expert rules or physicians.

Figure 7 shows machine learning algorithm and limiting
method performance when applied to NLP output from
discharge summaries. No algorithm was superior to any
other algorithm for all limiting methods, although decision
tables were better than all other algorithms when using
task-specific limiting. There was no difference in average
performance between medical and med&neg, although there
were significant differences between the average perfor-
mances of the other limiting methods.

The learning curves for the feature selection methods,
averaged over all five learning algorithms, are shown in
Figure 8. The solid line indicates the best performance level
reached by the predictive method on the learning curve. The
point at which a learning curve for a limiting method
intercepts this line indicates the number of training cases
needed, along with the expert knowledge of the limiting
method, to get equivalent performance to the predictive
method on the curve. Themed&negmethod outperforms the
300-case predictive method at all training set sizes above
30, whereas medical and negated outperforms predictive at
60 cases and 210 cases, respectively.

Table 1 lists the estimated costs in terms of physician hours
for building classifiers using different approaches, including
manually writing rules. We determined an optimistically
small number of training cases needed for the inductive

F i g u r e 6. Receiver operating characteristic (ROC) plot of
algorithm performance using med&neg feature selection.
MC4, CN2, NB, IB, and DT are algorithms; rules is
a classifier; and MDs refers to physicians.

F i g u r e 7. Comparison of machine learning algorithms
and feature selection methods using natural language
processing (NLP) output from discharge summaries.
ROC = receiver operating characteristic [curve]; MC4, CN2,
NB, IB, and DT are algorithms.
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learning algorithms, assuming linear increase in perfor-
mance. We also determined the number of training cases
assuming a logarithmic curve, which is similar in curvature
to standard learning curves. The rules classifier was 50% less
in cost than the most optimistic estimates for inductive
learning-based classifiers.

Discussion

The most significant factor in improving performance and
decreasing costs of classifiers, or the performance of
learning algorithms that create the classifiers, is the use of
expert knowledge. Improved performance because of
expert knowledge was much more significant than im-
provement because of differences in learning algorithms, as
shown in Figure 5. The use of expert knowledge also
affected comparisons betweenmachine learning algorithms.
For example, the predictive and negated limitingmethods had
significantly better performance with MC4 than decision
trees. However, there was no performance difference
between the algorithms using the med&neg method. This
result was similar to that in previous work, which found
that the actual data representation and the knowledge used
to build it could even reverse conclusions drawn from
comparisons between algorithms.14 Conclusions from com-
parisons between inductive learning algorithms must
therefore take into account the domain knowledge and
data representation used in preparing data for the learning
task. In machine learning research, it has been shown that

comparisons between learning algorithms are not inher-
ently generalizable to other tasks. This research shows that
the comparisons may not even be generalized to other
approaches of the same task.

The analysis of learning curves (Fig. 8) found that the
characteristics of the curves were sensitive to the use of
expert knowledge for feature selection. There are noticeable
differences in the slopes of the learning curves for different
limiting methods, indicating that the addition of training
cases affects some methods more than others. A conclusion
would seem to be that the effect of additional training cases
is less for themed&negmethod than for others. However, the
differences in slope may also be caused by the asymptotic
quality of the learning curves. As performance approaches
that of the reference standard (the physicians), we would
expect the curves to flatten. Differing slopes seen here may
be caused more by the actual performance level than by the
type of limiting method.

A characteristic of a curve that may be more interesting
than the slope is where the performance of another
method surpasses the best performance of the predictive
method. This point indicates the real value of the domain
knowledge in terms of the training set size.When one type of
knowledge (task-specific or representation-specific) is used,
the number of training cases needed for equivalent perfor-
mance decreases by about half. When both types of knowl-
edge are used, the number of cases is less than one tenth.

Expert knowledge needed for constructing classifiers can be
obtained separately as task-specific and representation-
specific components. We represented expert knowledge in
two separate forms: task-specific knowledge and represen-
tation-specific knowledge. Task-specific knowledge con-
sisted of clinically relevant observations or features for
a specific classification task. Representation-specific knowl-
edge included state information (presence or absence in the
patient) of observations. Both methods were used specifi-
cally in the feature selection stage of inductive learning.
Task-specific and representation-specific knowledge signif-
icantly improved learning algorithm performance and
could also be combined to further improve performance.

An important observation is that no inductive learning
performed as well as physicians or expert-written rules
(Fig. 6). Although we were able to show significant im-
provement over other inductive learning methods, the
performance was not sufficient to justify using inductive
learning instead of expert rules to create classifiers. Part
of this problem could be due to the small training set size
used, and good performance might be obtained if larger
training sets were used. Still, creating such training sets is
expensive and requires a domain expert to classify the
training cases. In fact, the cost–benefit analysis of expert
knowledge also showed that with a limited training set, it is
more efficient to have experts write rules than to create a
new training set (Table 1).

Another conclusion that could be drawn from these results
is that creating rules may be more a process of knowledge
acquisition than knowledge discovery. Inductive learning,

F i g u r e 8. Comparison of machine learning algorithms
and feature selection methods with different training set
sizes. The solid horizontal line indicates the best perfor-
mance level reached by the predictive method on the
learning curve. ROC = receiver operating characteristic
[curve].

Table 1 j Costs and Cost Components for Different
Classifiers

Classifier Cost Components Cost

rules Rules 6 hours
negated Neg 1 (510 to 2,200) Case 9 hours to 1 week
predictive (670 to 7,700) Case 11 hours to 3 weeks
medical Task 1 (800 to 12,300) Case 14 hours to 5 weeks
med&neg Task 1 Neg 1 (800 to 16,500)

Case
15 hours to 2 months
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a knowledge discovery process, must incorporate expert
knowledge to be even reasonably efficient. Otherwise, a lot
of effort is wasted relearning what is already known.
Therefore, efforts should focus on obtaining and repre-
senting that expert knowledge in the rule-generation pro-
cess. Here we show that expert knowledge could be
separated into components effectively. Other approaches
could focus on efficiently collecting the different types of
knowledge from experts, or incorporating information from
other knowledge sources. Such efforts would be more
effective at improving classifier performance than more in-
depth analysis of inductive learning.

This research was performed on tasks in which expert-
written rules had already been shown to be effective. Thus,
the expert knowledge already existed in some form. There
may be other tasks in which such information is not avail-
able and must be discovered. The cost analysis showed how
expensive it could be to create a large-enough training set
to discover knowledge. In such cases, efforts should be
made to maximize the efficiency of collecting a training set.
For example, some cases in a training set would add more
information than others, especially when many examples
are redundant. Maximizing the value added by each case
classified by an expert for a training set would improve the
efficiency of the inductive learning process.

Conclusion

We analyzed the effect of expert knowledge on the inductive
learning process in terms of data representation, classifier
performance, and costs. This analysis showed expert
knowledge to be the most significant factor affecting
inductive learning performance, outweighing differences
in learning algorithms. In addition, we found that the use of
expert knowledge can affect comparisons between learning
algorithms. This expert knowledge may be obtained and
represented separately as knowledge about the clinical task
or about the data representation used. The benefit of the
expert knowledge is more than that of inductive learning,
with less cost to obtain. For this task, building classifiers
should focus, therefore, more on acquiring knowledge from
experts than trying to learn this knowledge inductively.
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