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A b s t r a c t Objective: To describe the development and evaluation of computational tools to
identify concepts within medical curricular documents, using information derived from the National
Library of Medicine’s Unified Medical Language System (UMLS). The long-term goal of the
KnowledgeMap (KM) project is to provide faculty and students with an improved ability to develop,
review, and integrate components of the medical school curriculum.

Design: The KM concept identifier uses lexical resources partially derived from the UMLS
(SPECIALIST lexicon and Metathesaurus), heuristic language processing techniques, and an empirical
scoring algorithm. KM differentiates among potentially matching Metathesaurus concepts within
a source document. The authors manually identified important ‘‘gold standard’’ biomedical concepts
within selected medical school full-content lecture documents and used these documents to compare
KM concept recognition with that of a known state-of-the-art ‘‘standard’’—the National Library of
Medicine’s MetaMap program.

Measurements: The number of ‘‘gold standard’’ concepts in each lecture document identified by either
KM or MetaMap, and the cause of each failure or relative success in a random subset of documents.

Results: For 4,281 ‘‘gold standard’’ concepts, MetaMap matched 78% and KM 82%. Precision for ‘‘gold
standard’’ concepts was 85% for MetaMap and 89% for KM. The heuristics of KM accurately matched
acronyms, concepts underspecified in the document, and ambiguous matches. The most frequent
cause of matching failures was absence of target concepts from the UMLS Metathesaurus.

Conclusion: The prototypic KM system provided an encouraging rate of concept extraction for
representative medical curricular texts. Future versions of KM should be evaluated for their ability to
allow administrators, lecturers, and students to navigate through the medical curriculum to locate
redundancies, find interrelated information, and identify omissions. In addition, the ability of KM to
meet specific, personal information needs should be assessed.
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With the advent of the Internet and widespread availability
of tools for computer-based instruction, medical schools
often provide course content materials1–3 and methods for
curricular content evaluation online.4 Such systems typi-
cally require labor-intensive data entry and substantial
manual organization.5,6 Because lecturers and course di-
rectors have limited time and resources, automated concept
‘‘mapping’’ and display of ‘‘relevant’’ segments of curricular
content are highly desirable. Mapping tools could facilitate
efficient concept-level integration of curricular components,
affording lecturers and students easy access to relevant
course documents and correlated biomedical literature.7

Concept mapping also would allow administrators and
lecturers to revise curricula by highlighting redundancies
and omissions.8 For these reasons, we have developed and
evaluated the KnowledgeMap (KM) system, a prototypic
biomedical concept identifier designed to improve access
over time to curricular content at Vanderbilt University
School of Medicine.
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Background

For decades, informatics researchers have applied Natural
Language Processing (NLP) techniques and heuristic
concept matching tools based on standard lexicons (such
as those found within the Unified Medical Language
System—UMLS9—and the Galen Knowledge representation
scheme10) to identify and extract ‘‘key’’ concepts from
a number of biomedical sources.11–16 Older reports describe
automated mapping of medical curricula using Medical
Subject Headings (MeSH)5,11 or the UMLS.12 In the latter, a
lack of concept representation in the older versions of the
standard lexicon and, possibly, imperfect algorithms led to
unacceptable recall results.12 Using more recent UMLS
versions and newer approaches, investigators have mapped
clinical free text more effectively.13–16 We developed the KM
concept identifier system to address the format and content
structure of medical curricular documents, including docu-
ment organization, sentence structure, and concept clustering.

Curricular Document Organization

Medical curricular documents often use outline formats and
include ad hoc abbreviations. Mapping tools must remove
outline headings, preventing errors such as misidentification
of ‘‘V. Cranial Nerves’’ as ‘‘fifth cranial nerve’’ while avoid-
ing the removal of ‘‘E.’’ from a line starting with ‘‘E. coli.’’
Lecturers often use parenthetically defined abbreviations for
word efficiency. Mapping tools must recognize document
defined abbreviations (as does the AbbRE [abbreviation
recognition and extraction] program) and subsequently
expand them for unambiguous concept identification.

Curricular Sentence Structure

‘‘Complex’’ noun phrases, which we define as noun phrases
connected by prepositions, coordinating conjunctions, and
linking verbs, frequently are used in medical documents.
Mapping tools must appropriately recognize across prepo-
sitional connectors18 (for example, ‘‘carcinoma of the lung’’
is the same as ‘‘lung carcinoma’’) while remaining sensitive
to irreducible concepts, such as ‘‘activities of daily living’’
and ‘‘range of motion.’’

Complex noun phrases may involve conjunctions that link
two nouns sharing a common modifier (e.g., ‘‘dissection or
aneurysm of the aorta’’), or conjunctions linking two
modifiers that share the same head noun (e.g., ‘‘abdominal
or inguinal hernia’’). Mapping tools should match the
semantic types of adjectives or nouns before distributing
them in conjunctional noun phrases.19

Many medical school documents also contain large noun
phrases that are not represented singly in the 2001 Edition of
the Metathesaurus. The term ‘‘small cell bronchogenic
carcinoma’’ is not listed as a unique concept in the
Metathesaurus, even though it contains the two over-
lapping concepts ‘‘small cell carcinoma’’ and ‘‘bronchogenic
carcinoma.’’ Mapping tools should accurately recognize
overlapping concepts by utilizing specific head noun–
modifier pair heuristics.20

Curricular Concept Clustering

Each medical school curricular document, designed as
a teaching tool, represents a circumscribed area of medical
knowledge that permits context-dependent ambiguity
resolution. ‘‘Envelope’’ indicates ‘‘viral envelope’’ in a lecture
about herpes viruses and ‘‘nuclear envelope’’ in a lecture
about eukaryote DNA. Mapping tools can use heuristic
methods to deduce the meaning of ambiguous acronyms
or abbreviations through reference to the frequency of
concepts seen with them in Medline-indexed articles. In
a clinical lecture on chest pain, Medline co-occurrence data
for candidate concepts12,21 can prioritize ‘‘coronary artery
disease’’ over ‘‘chronic actinic dermatitis’’ as an expansion of
the acronym ‘‘CAD.’’

Resources

The 2001 UMLS is composed of three main components:
the Metathesaurus, the SPECIALIST Lexicon, and the
Semantic Network. The main component of the UMLS is
the Metathesaurus, a composite of more than 50 separate
source vocabularies containing nearly 1.5 million English
strings organized into about 800,000 unique concepts. The
Metathesaurus also contains files that provide metadata,
relationships, and semantic information for each concept.
The SPECIALIST Lexicon includes lexical information
about a selected core group of biomedical terms, including
their parts of speech, inflectional forms, common acronyms,
and abbreviations. The Semantic Network is a classification
system for the concepts in the Metathesaurus, identifying
broader-than/narrower-than parent–child associations
amongdifferentconceptsandrelationshipsrepresentedwith-
in the Metathesaurus. For example, ‘‘disease or syndrome’’
is classified as a ‘‘pathologic function’’ in the semantic net-
work, and itself has ‘‘child’’ concepts including ‘‘mental or
behavioral dysfunction’’ and ‘‘neoplastic process.’’

The 2001 UMLS Metathesaurus is composed of 19 main text
files, each a table of concept and string-specific information.
This information is accessible via concept unique identifiers
(i.e., a CUI) and string unique identifiers (i.e., an SUI). All
strings (i.e., SUIs) referring to one topic are assigned to the
same CUI. For instance, the strings ‘‘hepatolenticular
degeneration’’ and ‘‘Wilson’s disease’’ both represent the
same concept and are assigned the same CUI, although they
have different SUIs. We used the following files from the
Metathesaurus to create KM:

� MRCON contains all strings for each concept, providing
the CUI and SUI for each. For each term, MRCON
identifies whether the term is a ‘‘preferred form’’ in its
source vocabulary and whether it is a ‘‘suppressible
synonym.’’ Examples of suppressible synonyms include
the abbreviated term ‘‘fet heart rate variabil’’ for ‘‘vari-
able fetal heart rate’’ and the term ‘‘bladder, unspecified’’
when used to represent ‘‘malignant neoplasm of the
bladder.’’

� MRSO provides the vocabulary (terminology) source(s)
for each string in MRCON. A particular string (e.g.,
‘‘congestive heart failure’’) may appear in multiple
sources, such as the MeSH vocabulary used to index
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Medline and the International Classification of Diseases
(ICD-9).

� MRRANK contains a hierarchy of the vocabulary
sources and string types used in composing MRCON.
Certain vocabularies, such as MeSH, have higher pre-
cedence than others. From this information, one can
determine which SUI in MRCON is the preferred term
for a given concept.

� MRSTY contains the semantic type (e.g., ‘‘disease or
syndrome’’) for each concept in MRCON. There are 134
different semantic types grouped into a hierarchy
through the UMLS Semantic Network. For example,
‘‘Human’’ is in the ‘‘Vertebrate’’ subtree.

� MRCOC provides the frequency of co-occurrence of two
concepts in the same indexed articles from databases
such as Medline (i.e., the number of articles discussing
both concepts during a given time period). For example,
MRCOC defines that the concept ‘‘myocardial infarction’’
co-occurred with the concept ‘‘electrocardiogram’’ in
1,012 Medline articles between 1992 and 1996.

Methods

We envision KM as the first in a series of concept-based tools
for curricular analysis. The tools will allow students, faculty,
and administration to view, manipulate, and improve the
curriculum. To evaluate the current prototypic version of
KM, we obtained 85% of the documents (handouts, pre-
sentations) used in the first two (preclinical) years of
Vanderbilt Medical School lectures in 2000–2001. This
resulted in a total of 571 documents. We tested the ability
of KM to recognize manually identified ‘‘gold standard’’
concepts using a subset of the collected documents. We
compared its performance to a state-of-the-art standard tool,
the National Library of Medicine’s MetaMap program.

KM System Resources

KM uses both UMLS-derived and author-developed res-
ources for word and term normalization, language pro-
cessing, and concept identification. KM currently uses the
2001 edition of the UMLS.9 We developed KM using Perl
and Microsoft Visual C11. The evaluation tested KM
running on a 1.0 GHz Pentium III Windows-based system
with 512 MB of RAM.

Lexical Tools

We derived the KM lexicon from the UMLS SPECIALIST
Lexicon,9 mapping each SPECIALIST word inflection and
lexical variant to its unique base form (for example, ‘‘needs’’
maps to both ‘‘need’’ as a third-person singular noun form
and to ‘‘need’’ as the infinitive form of a transitive verb). For
many acronyms/abbreviations contained in SPECIALIST,
we generated additional plural and period-containing
variants, using each non–period-containing form as the
base form. By this mechanism, we mapped ‘‘A.A.A.’’ to both
‘‘American Academy of Allergy’’ and ‘‘Abdominal Aortic
Aneurysm,’’ although it maps only to the former in
SPECIALIST. We created a list of ‘‘stopwords’’ (words
considered not useful for information retrieval) containing

all prepositions, pronouns, conjunctions, and determinants
along with other nonmedical common words (such as ‘‘do,’’
‘‘each,’’ and ‘‘other’’).

To recognize additional word forms not in our base lexicon
(but related to it), we utilized the SPECIALIST Neo-classical
Combining Forms (prefixes, roots, and terminals). We also
added 1,120 new prefixes, roots, and terminals using quasi-
automated algorithms that analyzed word forms in the
Metathesaurus for prefixes and suffixes that were not in
the SPECIALIST list and that recurred with more than
a threshold frequency across words in the Metathesaurus.
We validated the new, automatically derived combining
forms through manual review, using Webster’s Third New
International Dictionary, Unabridged.22

The authors manually created 156 suffix-based ‘‘form-rules’’
that allowed interconversion of lexical variants of ‘‘base’’
KM lexicon word entries. The form-rules provided map-
pings among common ending forms, based on parts of
speech, for English, Latin, Greek, and inflections (Table 1).
For example, to map noun form ‘‘appendix’’ to adjectival
form ‘‘appendiceal,’’ apply form-rule ‘‘NO–ix!AJ–iceal.’’
KM does not apply form-rules or combining forms to
‘‘discover’’ matches for unmatched words unless the root or
lexicon-matching stem is at least four letters long and not
solely an abbreviation, determinant, conjunction, or pre-
position. To insure that we had created an adequate lexicon
for normalization, we tested the normalization program on
our corpus of lectures before further development. With the
above heuristics, KM was able to match more than 97% of
the non-stopwords in our corpus of lectures. KM does not
normalize unrecognized words.

To process documents to identify concepts, KM utilizes for
its first pass a part-of-speech tagger developed by Cogilex
R & D (Montreal, Canada).23 It is a versatile rule-based
tagger that does not require frequency information and
allowed incorporation of KM lexical information and
combining forms to augment its base vocabulary.

UMLS Metathesaurus-based Resources

The Metathesaurus is a compendium of many controlled
vocabularies developed for a variety of purposes. Con-
sequently, it contains many strings that are not useful
for concept identification in free text.13,24 The authors
developed rules to filter out nonhelpful Metathesaurus
terms, eliminated stopwords (including ‘‘NOS’’), and nor-
malized each string in the UMLS Metathesaurus (MRCON)
by converting each word in each term (i.e., an SUI) to its base
canonical form while leaving nonidentified words in their

Table 1 j Example Form-rules Variant Generation

Rule Example

-ae NO ) -a NO fimbriae (NO) ) fimbria (NO)
-as NO ) -atic AJ pancreas (NO) ) pancreatic (AJ)
-nce NO ) -nt AJ absence (NO) ) absent (AJ)
-oid AJ ) oidy NO diploid (AJ) ) diploidy (NO)

NO, noun; AJ, adjective.
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original form. From the MRCON terms, we removed unique
terms (i.e., an SUI) fulfilling any of the following criteria:

� Term was a suppressible synonym.
� Term had fewer than 50% non-stopwords recognized by

KM (in a multiword string).
� Term had more than six non-stopwords (excluding

semantic type ‘‘chemical’’).
� Term began with ‘‘other,’’ or contained variants of

‘‘without mention’’ or ‘‘not elsewhere classified.’’
� Term semantic type (such as ‘‘Clinical Drug’’ from UMLS

MRSTY file) was on list of types authors chose to exclude
from concept matching.

We used heuristics, similar to previously described meth-
ods, to extract acronyms and their expansions from both
MRCON25 and lecture documents.17 To facilitate concept
identification, we augmented the processed MRCON file
(creating MRCON-PS) by adding MRCON-related strings
with abbreviations and/or their expansions. For instance,
‘‘LV failure’’ (not in MRCON) was appended to the set of
strings representing the concept ‘‘left ventricular failure’’
(present in MRCON). We created an inverted word index,
mapping normalized words to their corresponding SUI in
the MRCON-PS file. We chose a preferred name (CUI-PN)
for each concept using MRRANK and MRSO. This pro-
cessing resulted in more than 1,000,000 English strings and
nearly 600,000 concepts in MRCON-PS.

To process complex noun phrases, we created a linkage
precedence hierarchy (analogous to the order of operations
in mathematical formulae) with coordinating conjunctions
first, followed by linking verbs, and then by prepositions.
We ranked prepositions by their frequency in MRCON
strings, using only those occurring more than 70 times in
MRCON. As such, ‘‘of,’’ ‘‘to,’’ and ‘‘with,’’ respectively, re-
ceived the highest linkage priorities for prepositions.

We used the MRSTY semantic type information to assign
‘‘derived semantic types’’ (DSTY) to all one- and two-word
normalized strings (similar to Campbell and Johnson26). For
example, ‘‘concentration’’ only has semantic type ‘‘mental
process’’ in the Metathesaurus, but the algorithm extracted
‘‘laboratory or test result’’ and ‘‘quantitative concept’’ as
additional DSTYs from the strings ‘‘hemoglobin concentra-
tion’’ and ‘‘drug concentration,’’ respectively. Using patterns
to extract one- or two-word terms from multiword phrases,
we created DSTYs for about 90,000 additional entries and
for approximately 12,000 terms not listed separately in
MRCON. In addition, we manually added other DSTYs not
in MRSTY.

Document Processor

To process documents, KM first removes outline headings
by distinguishing, from position and context, among
ambiguous headers such as ‘‘IV’’ meaning ‘‘intravenous’’
versus the Roman numeral outline marker. KM next
eliminates carriage returns, tabs, and multiple spaces from
within identified sentences. KM then tags words with their
part of speech using the Cogilex part-of-speech tagger.
Using the part-of-speech information, KM identifies noun

phrases (defined as containing, as a minimum, either a
solitary adjective or a solitary noun). KM retains adverbs,
verb particles, and numbers only when they are contained
within or linked to a noun phrase. Thus, the verb participle
‘‘enlarged’’ is not further processed unless it links to a noun
phrase, acting as an adjective (Fig. 1). Noun phrases can
span parentheses and dashes, with higher precedence given
to the parentheses in the case of overlap. As seen in Figure 1,
the KM algorithm considers possessive nouns as separate
noun phrases with an implied linkage using the preposition
‘‘of.’’ Finally, KM normalizes each word.

KM Concept Identification

Before concept identification, KM searches the document
for parenthetically defined acronyms. KM then identifies
concepts in all simple noun phrases, considering all linked
simple noun phrases for combinatory matching. Finally, KM
attempts score-based ambiguity resolution for noun phrases
with multiple MRCON-PS string candidates.

KM Methodology for Simple Noun Phrase
Concept Identification

Similar to previous efforts,7,27 KM sequentially intersects,
for each normalized word in each identified noun phrase,
the list of ‘‘candidate MRCON canonical terms’’ (i.e., terms
from MRCON-PS) matching the canonical word. Unless KM
finds a common MRCON-PS candidate string for a docu-
ment-defined acronym and its expansion, KM will use the
acronym expansion to find candidate strings. KM stops
simple noun phrase processing when (1) an exact canonical
string match for a noun phrase has been identified or (2)
linked noun phrases with non-null intersections are identi-
fied. Otherwise, KM performs the following:

� Semantic and derivational variant generation: Similar
to MetaMap, KM dynamically generates word variants
for each noun phrase word, using both KM form-rules
and UMLS derivational and semantically related terms
(from the SPECIALIST database files DM.DB and
SM.DB, respectively).13

� Lexical/part-of-speech filtering: KM excludes adjectival
verb participles, provided the remaining noun phrase
matches (‘‘chronic recurring arrhythmia’’!‘‘chronic ar-
rhythmia’’). KM also eliminates words not contained in
any form in MRCON-PS.

F i g u r e 1. KM noun phrase identification for a simple
sentence. NP, noun phrase. Initially, NP1 is linked only to
NP2, but after conjunctive expansion, NP1 would be linked
to both NP2 and NP3 because ‘‘heart’’ and ‘‘liver’’ are both
DSTY ‘‘Body Part, Organ, or Organ Component.’’ Likewise,
NP2’s link_to field would also be changed to NP4.
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Matched simple noun phrases are eligible for further
matching across noun phrase linkages (‘‘combinatory
matching’’). However, for simple noun phrases still yielding
a null set, KM evaluates MRCON-PS strings containing any
combination of noun phrase component words or their
variants, allowing exact-matching candidates to overlap.
Thus, for ‘‘glomerular endothelial cell’’ (not present in
MRCON-PS), KM considers ‘‘glomerular endothelium,’’
‘‘glomerular cell,’’ and ‘‘endothelial cell’’ as well as the
words ‘‘glomerulus,’’ ‘‘endothelium,’’ and ‘‘cell.’’ If no exact
string matches exist, KM considers overmatching can-
didates (candidates with additional words, numbers, or
letters).

KM Methodology for Combinatory Matching

KM processes noun phrase linkages via the assigned
priority of the linking word (see ‘‘UMLS Metathesaurus-
based Resources’’ above). The algorithm first processes
noun phrases joined by coordinating conjunctions, per-
forming conjunctive expansion and modifier distribution.
Conjunctive expansion occurs if the noun phrases share
a DSTY and are linked to another noun phrase, as in the
example ‘‘heart and liver are enlarged’’ in Figure 1. Modifier
distribution allows distribution of adjectives or adjectival
nouns with the same DSTY to a shared head noun across
a conjunction as seen in Figure 2. As explained above, KM
then constructs ‘‘candidate MRCON canonical terms’’ by
intersecting candidate MRCON-PS strings associated with
each word in the noun phrase (generally proceeding from
left to right through the text). If the intersection process
yields a null set, KM expands possibilities by including
strings with derivational and semantic variants of the noun
phrase words.

KM Methodology for Ambiguity Resolution

The KM scoring algorithm operates on phrase, context, and
document levels. Similar to the MetaMap algorithm, KM
gives phrase-level precedence to candidate strings based on
cohesiveness, head-noun matching, derivational distance,
and number of words spanned.13 KM calculates deriva-
tional distance with exact matches receiving the highest
priority, then UMLS derivationally related terms (from
DM.DB), followed by UMLS semantically related terms
(from SM.DB), and finally form-rules. Because we found
that the word with lowest frequency in MRCON-PS often
represents the most meaningful word in the phrase (e.g.,
‘‘end-systolic’’ in ‘‘high end-systolic volume’’), KM favors
multiword candidates that include the lowest-frequency
word. KM also scores each candidate string based on its
similarity to its CUI-PN (before or after normalization).
Because the CUI-PN for an acronym usually is its ex-
pansion, KM augments scoring of document acronyms
based on number, frequency, and clustering (words often
appearing together) of CUI-PN words in the document.

For context-level scoring, KM scores candidate strings using
semantic type and the extra words in overmatches. KM
favors candidate strings based on previously described28,29

and author-derived semantic type rules. The program
applies these rules based on the words in the noun phrase,

their part of speech, and the surrounding words. For
example, if a number follows the word ‘‘protein,’’ the
KM scores the ‘‘laboratory procedure’’ higher than the
‘‘biologically active substance.’’ KM scores overmatching
strings based on the document frequency and proximity of
its extra word(s). For example, KM would prefer ‘‘cen-
tral liver hemorrhagic necrosis’’ for ‘‘central hemorrhagic
necrosis’’ if ‘‘liver’’ was in the sentence or appeared com-
monly in the document. Candidate overmatching concepts
also are favored if the extra word(s) tends to cluster with the
other words in the string. For example, ‘‘blood donor
screening’’ would be favored as an overmatch for ‘‘donor
screening’’ if ‘‘blood donor’’ occurred often in the document.

For document-level disambiguation, KM constructs, during
document phrase processing, a list of concept numbers and
associated semantic types for concepts exactly mapped
(unambiguous ‘‘exact-matched’’ concepts) to UMLS con-
cepts. KM subsequently favors those candidate concepts in
‘‘ambiguous matches’’ that are found in this set of pre-
viously seen exact-matched concepts. For example, after
KM recognizes ‘‘beta adrenergic receptor’’ in a document,
the ambiguous ‘‘beta receptor’’ will be interpreted as the
former and not as ‘‘beta C receptor.’’ Likewise, candidate
concepts with semantic types seen with high frequency
in the document also are favored, thereby favoring
‘‘gentamycin’’ as semantic type ‘‘antibiotic’’ instead of
‘‘carbohydrate’’ or ‘‘laboratory procedure’’ in a lecture about
antibiotics. KM also favors candidate concepts based on
their Medline (literature-based) frequency of co-occurrence
with exact-matched concepts from the UMLS MRCOC file.7

For instance, KM would expand ‘‘MAO’’ as ‘‘monoamine
oxidase’’ in a lecture about major depression and as
‘‘maximum acid output’’ in a lecture about Helicobacter
pylori infection.

F i g u r e 2. Example of KM semantic-based conjunctive
expansion and modifier distribution.
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KM Evaluation

We selected MetaMap as the standard state-of-the-art com-
parison metric for evaluation of the KM concept-matching
algorithm. Appealing features of MetaMap include its
long-standing development, accessibility by Web-based
submission, and robust, score-based concept-matching
algorithm for biomedical text. MetaMap also performs
intensive variant generation and does not rely on word
order, factors we believe are important to high recall
in medical curricular documents.

We compared the abilities of KM and MetaMap to identify
‘‘important’’ concepts in selected subsets of medical school
curriculum documents. In the first phase, we compared KM
with MetaMap on an initial set of five ‘‘pilot’’ curricular
documents; based on the results of this comparison, several
adjustments were made to the KM algorithm. After then
‘‘freezing’’ KM, we compared it with MetaMap on a final
‘‘definitive’’ set of ten curricular documents.

Evaluation: Identification of Study Documents and
‘‘Gold Standard’’ Concepts

We asked lecturers and their course directors to help us
manually identify the ‘‘important’’ concepts in their own
course documents. The first four ‘‘lecturer–course director’’
pairs who agreed to participate were included in the study
(two pairs taught in the first-year curriculum and two in the
second year). We provided each pair with general in-
structions, a sample highlighted document, and their re-
spective lecture notes (See Appendix A). We suggested that
they highlight all ‘‘medically relevant and important terms’’
in their curricular document in a manner similar to the
example from the training document. Participants high-
lighted terms using the Microsoft Word highlight function
or on paper using a marker. Two authors (JDS, AS) indepen-
dently highlighted the same four documents. We generated
a ‘‘consensus’’ highlighted document for each lecturer–
course director pair and for the author pair by merging
those terms highlighted by either member of the pair.

We determined interrater reliability on ‘‘pilot’’ documents by
comparing the consensus documents for each of the four
lectures. Given that the interrater agreement was high
(kappa 0.75) for the ‘‘pilot’’ documents, we elected to use
just the author pair to subsequently identify ‘‘gold standard’’
concepts from the ‘‘definitive’’ set of ten documents. For
purposes of the initial pilot study, the author pair highlighted
one additional lecture, making a total of five pilot docu-
ments. The ‘‘definitive’’ study was comprised of five author-
pair consensus documents from the first-year curriculum
and five from the second year, each from a different course.
These documents were selected randomly from each of the
major courses from which we had received lecture materials.
The authors did not view them until the evaluation.

Evaluation: Categorization of Concepts

We next categorized each highlighted concept as either
a ‘‘meaningful term’’ or a ‘‘composite phrase.’’ We defined a
meaningful term as either a meaningful word that describes

a medical concept or a meaningful phrase that, when
reduced to the word level, loses its meaning. Examples
include the term ‘‘heart’’ and the phrases ‘‘Wilson’s disease’’
and ‘‘volume of distribution.’’ A composite phrase was de-
fined as a phrase that is composed of meaningful terms. For
example, the composite phrase ‘‘elevation of blood pres-
sure’’ retains meaning as ‘‘elevation’’ of ‘‘blood pressure.’’
We categorized all highlighted concepts prior to running
KM and MetaMap on the documents.

Evaluation: Comparison of Documents

The KM document parser processed the study documents
into sentences. KM and MetaMap then performed concept
indexing on each document. MetaMap includes a rich
variety of settings allowing the user to control its concept-
identification behavior. Through experimentation prior to
this analysis and consultation of earlier work,30 we found
the optimal settings for MetaMap to be ‘‘default options’’
plus ‘‘quick composites’’ and ‘‘ignore stop phrases’’ using
the ‘‘strict model’’13 of the UMLS. Allowing ‘‘concept gaps’’
and ‘‘overmatches’’ produced worse recall and precision. A
Perl script standardized the output of KM and MetaMap
into an identical format that masked the source (KM vs.
MetaMap). This script selected only the top-scoring can-
didate concept from each algorithm. If more than two
candidates for the same concept had an equal score, the
script chose the first candidate concept. Figure 3 shows an
example of this output. The author pair previously had
identified the ‘‘gold standard’’ meaningful terms and com-
posite phrases in the study documents. Blinded to the iden-
tity of the concept indexers, the authors then determined the
number of ‘‘gold standard’’ meaningful terms and compos-
ite phrases ‘‘correctly matched’’ by MetaMap and by KM
and the false-positive rates for both, allowing recatego-
rization if both authors were in agreement.

Study definitions included: (1) MEDICAL TRUE-POSITIVE
(MTP): a correctly identified concept that is a gold standard
meaningful term (e.g., ‘‘DNA’’); (2) NONMEDICAL TRUE-
POSITIVE (NMTP): a correctly identified concept that is not
a gold standard meaningful term (e.g., adverbs such as
‘‘likely’’); (3) MEDICAL FALSE-POSITIVE (MFP): a mis-
identified concept that is a gold standard meaningful term
(e.g., selecting the element ‘‘lead’’ for the document concept
‘‘leading strand’’); (4) NONMEDICAL FALSE-POSITIVE
(NMFP): a misidentified concept that is not a gold standard
meaningful term (e.g., selecting ‘‘pocket mouse’’ for the
document concept ‘‘[pants] pocket’’); (5) RECALL for mean-
ingful terms: the number of MTPs divided by the total
number of meaningful terms; (6) MEDICAL PRECISION:
the number of MTPs divided by total meaningful term
attempts (MTP/[MTP 1 MFP]); (7) OVERALL PRECISION:
for an indexing algorithm, the ratio of the number of
correctly matched concepts to the total number of identified
(i.e., proposed) concepts ([MTP 1 NMTP]/[MTP 1 MFP 1

NMTP 1 NMFP]).

We randomly selected two study documents, one from each
curricular year, to categorize KM algorithm successes
(relative to MetaMap) and failures for matching of meaning-
ful terms. A KM ‘‘success’’ occurred when KM correctly
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matched a ‘‘gold standard’’ concept not matched by
MetaMap; a KM ‘‘failure’’ occurred when KM did not match
a ‘‘gold standard’’ concept in the study document (regardless
of MetaMap’s performance on the concept). We then deter-
mined the component of KM’s algorithm (e.g., MRCOC co-
occurrences, CUI-PN scoring) that resulted in each success
and failure. When two components contributed equally, we
assigned each component half a success or failure.

We calculated statistical significance between the indexers
with a paired, two-tailed t-test using SigmaStat (Chicago,
IL) for Microsoft Windows.

Results

Recall and Precision for KM and MetaMap

The five documents in the pilot study contained an average
(6 SD) of 3916 54 meaningful terms and 906 10 composite
phrases. The ten documents in the definitive study con-
tained an average of 4276 109 meaningful terms and
1106 27 composite phrases. Table 2 contains overall recall
and medical precision results for both studies; Table 3 shows
results for each document in the definitive study. The overall
precision was 81% for MetaMap and 86% for KM (p, 0.01).
There were no differences in recall between the pilot and
definitive studies.

Detailed KM Algorithm Analysis

We further characterized in detail KM performance relative
to MetaMap (Table 4) on a first-year biochemistry lecture on
DNA replication and a second-year pharmacology lecture
on antibiotics using the following categories and the def-
inition of relative success and failure given above:

� Heuristic disambiguation of competing candidate
terms (18 successes, 5 failures): This occurs when KM
identifies multiple canonical MRCON strings (including
the correct match) that potentially match the document
phrase. Heuristic CUI-PN scoring to select one term as
the ‘‘match,’’ the most common cause for failure (2.5
failures*), was also the most important determinant of

Table 2 j Recall and Precision by Both Concept-
indexing Algorithms

Concept Identifier
Pilot Study

(n = 5)
Definitive Study

(n = 10)

Gold standard
Meaningful termsy 1,955 4,281
Composite phrasesz 448 1,105

MetaMap
Meaningful terms 1,580 (81%) 3,325 (78%)
Medical precision 85%
Composite phrases 156 (35%) 308 (28%)

KM
Meaningful terms 1,677 (86%)* 3,510 (82%)*
Medical precision 89%*
Composite phrases 154 (34%) 382 (35%)*

KM, KnowledgeMap; n, number of documents evaluated.
*p, 0.01.
yMeaningful terms are irreducible medically significant terms, such
as ‘‘heart’’ or ‘‘Wilson’s disease.’’
zComposite phrases include multiple meaningful terms that
together represent a medical concept, such as ‘‘stenosis of the
aortic valve’’ or ‘‘elevated thyroid stimulating hormone.’’

F i g u r e 3. Standardized study document output for indexing algorithms identifying MRCON concepts. The highlighted
terms of the input sentence are the ‘‘gold standard’’ concepts. Our script also highlighted differences between the outputs of the
two algorithms (i.e., the ‘‘A’’ and ‘‘B’’ columns). In this case, A, MetaMap output; B, KnowledgeMap output.

*In these cases, there were two components of KM’s algorithm that
equally caused a success or a failure, so each was given a score of
0.5.
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KM successes (8 successes). KM’s heuristic use of
MRCOC co-occurrences and document semantic type
frequency to select ‘‘the best match’’ each caused 3.5
successes.* KM successfully identified ‘‘resistance’’ (se-
mantic type ‘‘functional concept’’), instead of ‘‘[psycho-
therapeutic] resistance,’’ selected by MetaMap. While all
chemicals and proteins in these documents were more
accurately represented as ‘‘biologically active substance,’’
MetaMap occasionally misidentified chemicals as their
‘‘laboratory procedure.’’

� KM handling of abbreviations, acronyms, and hyphens
(13 successes, 22 failures): KM correctly identified ‘‘GPC’’
as ‘‘gram-positive cocci’’ by co-occurrence scoring.
However, both indexing algorithms missed ‘‘SSB’’ (de-
fined in the document as ‘‘single-stranded DNA binding
protein’’). Because the author defined ‘‘SSB’’ with an
equal sign ( = ) rather than a parenthetical expression,
KM could not link the document definition with the
acronym. KM also did not normalize plural acronyms,
misidentifying the document-defined concept ‘‘PBPs’’
(‘‘penicillin-binding proteins’’).

� KM heuristic use of overmatches (34 successes, 7
failures): Figure 3 shows a successful KM overmatch:
‘‘gram-negative bacterial infection’’ for ‘‘gram-negative
infection.’’ KM used sentence and document context to
achieve 18 of its successes. Co-occurring concepts
accounted for another nine successes. KM incorrectly
overmatched ‘‘broad-spectrum’’ as ‘‘broad-spectrum pen-
icillin’’ due to a high document frequency of ‘‘penicillin.’’

� KM heuristic use of form-rules (11 successes, 2 failures):
Form-rules allowed KM to translate ‘‘dosing’’ into
‘‘dosage’’ and avoided some potential stemming errors
by MetaMap, such as mapping ‘‘synergistic’’ to ‘‘SYN,’’
a gene. The two failures occurred when KM mapped
‘‘organism’’ in a nonmatching multiword noun phrase to
‘‘organ.’’

� KM use of multiword phrase pairing (10 successes, 6
failures): Failures resulted when the indexer combined

the words of a composite phrase together in a way as to
produce a different meaning than the intended con-
cept(s). Because of sequential matching heuristic, KM
misinterpreted the phrase ‘‘bacterial DNA replication
fork’’ as ‘‘bacterial DNA,’’ ‘‘replication,’’ and ‘‘fork’’
instead of ‘‘bacterial’’ and ‘‘DNA replication fork.’’
However, KM correctly crossed parenthetical boundaries
to match ‘‘omega protein’’ from ‘‘omega (v) protein.’’

Table 3 j Recall and Precision for Meaningful Terms for Each Document in the Definitive Study*

MetaMap KM

Year and Lecture Topic (by Course Title) Gold Standard Concepts Recall Precision Recall Precision

First-year lectures
Biochemistry 484 297 (61%) 75% 343 (71%) 77%
Histology 357 296 (83%) 89% 313 (88%) 92%
Embryology 263 204 (78%) 85% 211 (80%) 84%
Physiology 531 425 (80%) 84% 423 (80%) 88%
Immunology 411 292 (71%) 79% 324 (79%) 87%
Total 2,046 1,514 (74%) 82% 1,614 (79%) 86%

Second-year lectures
Nutrition 324 276 (85%) 93% 282 (87%) 94%
Lab diagnosis 377 301 (80%) 83% 330 (88%) 91%
Physical diagnosis 644 530 (82%) 88% 547 (85%) 90%
Pathology 435 381 (88%) 94% 387 (89%) 95%
Pharmacology 455 323 (71%) 80% 350 (77%) 86%
Total 2,235 1,811 (81%) 88% 1,896 (85%)y 91%

All documents 4,281 3,325 (78%) 85% 3,510 (82%)** 89%**

*‘‘Precision’’ in this table is calculated as ‘‘medical precision’’ as defined in ‘‘Methods.’’
yp, 0.05.
**p, 0.01.

Table 4 j Causes of Successful and Missed Matches
by KM in Two Documents*

KM Component/Method

Causes of
Successful

KM Matches

Causes of
Failed KM

Matches

Heuristic disambiguation
of competing candidate
terms

18 (18%) 5 (2%)

Abbreviation/acronym/
hyphen handling

13 (13%) 22 (10%)

Heuristic overmatch utilization 34 (35%) 7 (3%)
Heuristic use of form-rules 11 (11%) 2 (1%)
Heuristic multiword phrase

pairing
10 (10%) 6 (3%)

KM determination of part
of speech

N/A 4 (2%)

MRCON-contained overmatches N/A 44 (19%)
Failure to correct document

misspelling
N/A 2 (1%)

Concept not present in
MRCON

N/A 141 (62%)

Other reasons for success
or failure

12 (12%) 13 (6%)

Total 98 246

*‘‘Successful KM matches’’ were those gold standard meaningful
terms matched correctly by KM but not MetaMap. The ‘‘Failed KM
matches’’ were all gold standard meaningful terms not correctly
identified by KM, irrespective of MetaMap’s performance.
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� MRCON-contained overmatches (44 failures): Both
programs often misidentified ‘‘[DNA] replication fork’’
as ‘‘[genetic] replication’’ and ‘‘[cutlery] fork.’’ Further-
more, because only one Metathesaurus string exactly
matches ‘‘replication,’’ the KM algorithm listed ‘‘[genetic]
replication’’ as an exact-matched concept, thereby favor-
ing it when evaluating ambiguous matches.

� Failures due to concepts not present in MRCON (141
failures): For 62% of KM failures, we could not find
a correct MRCON concept. These failures included the
multiword terms ‘‘30s ribosomal subunit’’ and ‘‘positive
predictive value,’’ the one-word concepts ‘‘concentra-
tion’’ (of a chemical) and ‘‘data,’’ along with compound
words, such as ‘‘semidiscontinuous.’’ MRCON failures
also affected mapping precision, causing KM to in-
correctly match ‘‘concentration’’ (of a chemical) as
‘‘concentration’’ (the mental process) and ‘‘[DNA] helix’’
as ‘‘helix [of ear].’’

� Other reasons for success or failure (10 successes, 13
failures): Five failures were due to bacterial genus name
abbreviations. For those bacteria listed with their genus
abbreviated in the Metathesaurus, KM was able to
correctly identify the organism. However, ‘‘E. faecium,’’
for example, is only listed in the Metathesaurus as
‘‘Enterococcus faecium,’’ leading to an invalid KM match.
Further, because of our MRCON processing, KM mis-
identified ‘‘GI tract’’ as ‘‘US GI tract’’ (meaning ‘‘ultra-
sound of GI tract’’) because we had considered ‘‘US’’
a stopword. The overlapping matches of KM did not cause
any mismatches in these two documents. Successful
overlaps included matching ‘‘history of penicillin allergy’’
as ‘‘history of allergy’’ and ‘‘penicillin allergy’’ along with
matching ‘‘chromosomal DNA replication’’ as ‘‘chromo-
somal replication’’ and ‘‘DNA replication.’’

Discussion

The current study results (recall rates for meaningful terms
of 78% and 82% for MetaMap and KM, respectively) are
similar to those recently reported for mapping clinical text
using the UMLS15,16 and better than previous results12

mapping medical curricular text. Recent UMLS expansion
may explain these improvements as well as better mapping
algorithms. Based on analysis of two study documents, we
estimate that the 2001 Metathesaurus represents 89% of
medically important curricular concepts. Lowe et al.31

found that the 1998 Metathesaurus represented 81% of
the important concepts in radiology imaging reports.
While UMLS provides good general coverage of concepts,
some important concepts were absent, such as ‘‘double
helix,’’ ‘‘positive predictive value,’’ ‘‘concentration’’ (of
a chemical), and ‘‘loading dose’’ (although more specific
forms such as ‘‘hemoglobin concentration’’ and ‘‘drug
loading dose’’ were sometimes present). Many of these
concepts could be added to the Metathesaurus without
adding ambiguity.

The recall of KM for second-year, clinically oriented courses
was higher than for first-year, basic science–oriented
courses (Table 3). Because major components of the
Metathesaurus, such as International Classification of

Disease (ICD-9), Physicians’ Current Procedural Terminol-
ogy (CPT), and SNOMED, are clinical reporting tools, we
expected that the indexing algorithms would perform better
for clinically oriented documents. Although nonsignificant,
KM appeared to have a higher recall in our pilot study than
in the definitive study (86% vs. 82%). (Rerunning the current
KM algorithm on the pilot documents yielded a recall of
88%.) The pilot study contained a higher proportion of
clinically oriented documents, including three second-year
documents and two first-year documents, one of which was
a clinical microbiology lecture.

Because we defined composite phrases as being accurately
represented by their component meaningful terms, our
considerably lower composite phrase recall would not
ultimately affect information retrieval. Thus, ‘‘disease of
thyroid gland’’ would be represented equally by two
concepts (‘‘thyroid gland’’ and ‘‘disease’’) or by one concept
(‘‘thyroid gland disease’’). In fact, apart from further
processing, an indexer would likely fail to retrieve ‘‘thyroid
gland disease’’ for a query containing only ‘‘thyroid gland.’’
In general, KM identified more composite phrases in the
definitive test because of conjunctive expansion (e.g., ‘‘renal
or hepatic disease’’ expanded to ‘‘renal disease’’ and
‘‘hepatic disease’’), successful overmatching (e.g., ‘‘decrease
intake’’ to ‘‘decreased PO intake’’), and improvements in
crossing prepositions (e.g., ‘‘decrease in creatinine clear-
ance’’ to ‘‘creatinine clearance decrease’’).

The KM algorithm can improve in its disambiguation of
acronyms and its identification of overmatches. A new
scoring scheme for ‘‘previously seen concepts’’ that favors
overmatches over partial matches could improve overmatch
recall. Extraction of acronyms offset by dashes and equal
signs may yield higher recall but could risk chance
matching, because those characters do not clearly demarcate
phrase end-points. The context-specific semantic type rules
of KM could also improve, particularly for disambiguating
chemical names from their corresponding ‘‘laboratory pro-
cedure,’’ a problem for both MetaMap and KM. We derived
the current weighting schemes empirically; a decision-tree
algorithm that selectively weights certain scoring elements
in certain cases may prove superior.

Limitations caution the interpretation of these study results.
We formally tested only 15 curricular documents from one
institution. We chose documents that represent a wide range
of topics and text formats. The use of a larger document set
could confirm a similar performance when the system is
scaled to the entire curriculum. Our concept indexing tech-
niques have not been applied to other texts (i.e., journal
articles, textbooks, or clinical free text). For example, the use
of document-level disambiguation techniques in KM (such
as Medline co-occurrences, concepts and semantic types
exactly matched elsewhere in the document, and acronym
discovery) may not be as effective for clinical free text. We
used the 2001 edition of the UMLS. While we designed KM
to easily accommodate newer editions of the UMLS, this
has not been tested.

We chose to index all medically important concepts in the
document; our goal was to create a system that would allow
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for exhaustive searching and comparison of documents.
Students searching lectures, administrators seeking to
identify areas of curricular overlap, and faculty preparing
lectures are often interested in all instances in which a
particular topic is taught. This task is simpler than that of
finding the set of topics that most accurately and succinctly
describes a document.

Acceptable ‘‘recall’’ rates for effective concept-based in-
formation retrieval in medical curricular documents have
not been established. Nadkarni et al.15 concluded that
higher recall rates than reported in the current study are
needed for successful concept-based information retrieval of
clinical text. This may not be true when identifying concepts
in medical curriculum. In contrast to clinical documentation
in which mention of a particular disease may occur only
once as an item in the ‘‘past medical history,’’ educational
documents typically mention important concepts many
times. A quick review of the lecture on DNA replication, for
instance, finds the concept ‘‘deoxyribonucleic acid’’ men-
tioned 29 times, ‘‘DNA helicase’’ 13 times, and ‘‘Okazaki
fragments’’ seven times. Misidentification or omission of
a concept does not carry the same significance in education
as in the clinical context. KM should be modified to include
text-based searching methods that can identify concepts not
in the Metathesaurus.15,32

Finally, this study is one of the first to report recall data for
the National Library of Medicine’s MetaMap with respect to
medical curricular documents. Overall, MetaMap per-
formed well with preprocessed curricular documents. KM
showed marginal advantages over MetaMap in successfully
selecting overmatching concepts, correctly matching
acronyms, heuristically disambiguating ‘‘best’’ candidates
from sets of ‘‘tied’’ candidate concepts, processing distrib-
uted modifiers, and expanding conjunctive phrases.

Motivation and Future Directions

Given the rapid growth of medical knowledge, instructors
must frequently revise lecture notes, and academic program
committees must regularly review and change curricular
content. Automated extraction of concepts represented in
educational texts (curricular documents) is the first step
toward developing tools to help educators locate, integrate,
evaluate, and iteratively improve medical school curricu-
lum content. The KM concept identifier’s use of the UMLS
represents important progress toward this end.

The authors plan to develop tools that build on KM concept
indexing to identify similar documents from disparate
sections of the curriculum, to create tools that can perform
relevant Medline queries to supplement curricular content
or clinical case descriptions, and to help faculty and
students correlate clinical cases with available online
educational materials.

Although effective concept recognition is an important
foundation for a course management system, the ‘‘proof of
the pudding is in the eating.’’33 Only when faculty regularly
use a designed system to accomplish their objectives can
developers contemplate success.
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Appendix A j Excerpt from the ‘‘Embryology’’ Document from the Definitive Study*

Embryology II:
Embryogenesis—Part 2
Fertilization to Gastrulation
[The First Two Weeks]
I. Fertilization:

A. Requirements:
1. Mature male and female gametes having:

* a haploid number of chromosomes (22 1 X and 22 1 Y chromosomes), and
* half the amount of DNA of a normal somatic cell as a consequence of gametogenesis

a. Ovum—a secondary oocyte which:
* is arrested in metaphase of the 2nd maturation (meiotic) division
* has ruptured from a mature tertiary or graafian follicle, leaving behind granulosa cells, which, together

with cells from the theca interna, are vascularized and develop—under the influence of luteinizing
hormone (LH)—a yellowish pigment to become a corpus luteum that secretes progesterone

* is surrounded by zona pellucida and corona radiata (rearranged cumulus oophorus cells)
* has been transported by fimbria and ciliary action into the ampulla of the uterine tube

b. Spermatazoa:
* have completed 2nd maturation division
* have (via spermiogenesis) shed most cytoplasm and acquired:

- acrosome
- head (condensed nucleus w/ DNA)
- neck, middle piece, and tail
- ability to swim straight

* have been ejaculated into the female reproductive tract and, arrival, have undergone capacitation:
- ;7-hour process
- glycoprotein coat and seminal plasma proteins removed from plasma membrane overlying acrosome,

enabling acrosome reaction
* have—within 24 hours—passed from the vagina to the ampulla of the uterine tube

B. Fertilization process
1. Phase 1: Passage through corona radiata:

* exposed acrosomes of capacitated sperm release hyaluronidase
- causes separation and sloughing of cells of corona
- thus capacitated sperm easily pass through corona

* although only one sperm is required for fertilization, it is believed that teamwork by many facilitates in
penetrating surrounding barriers.

Continued
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Appendix A j Continued

2. Phase 2: Penetration of zona pellucida
The zona pellucida is an amorphous, glygoprotein shell that:
* facilitates and maintains sperm binding (via ZP3 ligand)
* induces acrosomal reaction when sperm cell binds to zona, causing acrosome to release acrosin and trypsinlike

enzymes, allowing penetration. Once the fertilizing sperm penetrates the zona pellucida, a zona reaction occurs,
and the zona and the oocyte plasma membrane become impermeable to other sperm.

3. Phase 3: Formation of the zygote:
a. Adhesion of oocyte (integrins) & sperm (disintegrins)/fusion of plasma membranes.

* only sperm head and tail enter cytoplasm of oocyte
b. Completion of oocyte’s second meiotic division, formation of female pronucleus
c. Formation of male pronucleus

* head enlarges, tail degenerates
d. As pronuclei form, they replicate their DNA
e. Pronuclei fuse as their membranes break down, and their chromosomes intermingle and condense, becoming

arranged for a mitotic cell division

*This appendix was written by H. Wayne Lambert, PhD, and is used here with his permission.
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