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The synthesis of �-aminonitriles and their fluorinated analogs has
been carried out in high yield and purity by the Strecker reaction
from the corresponding ketones and amines with trimethylsilyl
cyanide using gallium triflate in dichloromethane. Monofluoro-,
difluro-, or trifluoromethyl groups can be incorporated into the
�-aminonitrile product by varying the nature of the fluorinated
ketones. Study with various fluorinated and nonfluorinated ke-
tones reveals that the choice of proper catalyst and the solvent
system (suitable metal triflates as a catalyst and dichloromethane
as a solvent) plays the key role in the direct Strecker reactions of
ketones.

three-component reaction � �-aminonitriles

One of the most important multicomponent reactions is the
Strecker reaction to synthesize �-amino acids via the for-

mation of �-aminonitriles (1). However, successful three com-
ponent Strecker reactions using ketones and fluorinated ketones
are rare (2–14). Fluorinated amino acids are becoming increas-
ingly important in pharmaceuticals and other biological appli-
cations (15–21), such as the development of anticancer drugs for
the control of tumor growth and drugs for the control of blood
pressure and allergies (22). They have been shown as irreversible
inhibitors of pyridoxal phosphate-dependent enzymes (23).
Also, recent studies with fluorinated amino acids have shown the
possibilities for the design and construction of hyperstable
protein folds and studies of the protein–protein interaction for
unnatural amino acids (24–30). Fluorinated amino acids are also
a valuable tool for the screening of protein dynamics by NMR
studies (24–30). Consequently, f luorinated amino acids have
become the object of intense synthetic activity in recent years.

The importance of Lewis acid catalysis in organic synthetic
reactions has been well documented (31, 32). However, most of
the strong and efficient Lewis acids such as AlCl3, AlBr3, SbF5,
etc., are prone to fast hydrolysis and consequent deactivation.
They are used in stoichiometric amounts and are not reusable in
many cases. Therefore, reactions involving these catalysts gen-
erally require water free conditions and large amounts of the
catalysts. We have found that gallium (III) trif luoromethane-
sulfonate [Ga(OTf)3, gallium trif late], acts as an effective but
mild and nonhydrolysable Lewis acid catalyst for many organic
synthetic transformations such as Friedel–Crafts alkylations,
dehydration of oximes to the corresponding nitriles, Beckman
rearrangement, etc. (33–36). This catalyst can be easily recov-
ered from the reaction mixture and reused, showing its signifi-
cant potential as a safe and environmentally benign catalyst.
Herein, we report the results of the synthesis of both fluorinated
and nonfluorinated �-aminonitriles from the corresponding
ketones and amines with trimethylsilyl cyanide (TMSCN) using
a catalytic amount (5 mol%) of gallium trif late as a catalyst in
dichloromethane. These reactions are fast and clean, with no
further purification required in most of the cases.

Results and Discussion
The Strecker reaction with aldehydes has been studied exten-
sively with a variety of catalysts (37–46) including a number of

metal trif lates (47–49). However, the reactions are not feasible
for ketones. Efficient, clean, and direct three-component
Strecker reaction using ketones is difficult. Quite often, these
reactions have to be carried out stepwise (preparation of imines
first followed by cyanide addition) (2,3) or under high pressure
conditions (6,7). Use of ammonia or ammonium salts in the
presence of cyanides has been described (8–13). As a first step,
therefore, we performed the Strecker reaction of aldehydes with
different types of amines to check the potential of gallium trif late
as a catalyst in dichloromethane as a solvent (Scheme 1). The
reaction is found to be clean and simple, giving the products in
good to excellent yields (Table 1).

Encouraged by our results of the Strecker reaction with
aldehydes, we directed our study toward ketones and performed
the Strecker reaction under similar conditions (Scheme 2). It has
been reported that the Strecker reaction of acetophenone even
with the activated amine 3,4,5-trimethylaniline using metal
trif lates and acetonitrile as the solvent gave very poor yield of the
product (47–49). We found that a similar reaction of acetophe-
none with aniline and TMSCN (cyanide source) in dichlo-
romethane using Ga(OTf)3 as a catalyst proceeds smoothly
under mild conditions (room temperature, 5 h) giving the
corresponding �-aminonitrile in excellent yield and high purity
(Table 2, entry 1), despite that the direct Strecker reaction using
aromatic ketones and aromatic amines has been repeatedly cited
in the literature as a challenge (6, 7, 37–46). We performed the
reaction with a variety of ketones and anilines at room temper-
ature in dichloromethane, and in all cases high yields of the
nitrile products were obtained emphasizing the generality of our
methodology. The results are shown in Table 2.

We also screened other metal trif late catalysts for their
catalytic activity and found them to be effective in most cases
(Table 3). However, gallium trif late was found to be the most
useful giving the highest yield of products (Table 3, entry 1). The
reaction with neodymium trif late (Table 3, entry 8) was incom-
plete, giving a mixture of the corresponding imine and the
�-aminonitrile product. These results point toward the need of
the proper catalyst and solvent system (suitable metal trif late as
a catalyst and dichloromethane as a solvent in present cases),
which play the key role for the success of the reaction. In earlier
studies (37–49), acetonitrile and toluene were used as solvents;
however, these are not suitable for the Lewis acid catalyzed
direct Strecker reaction of ketones due to their interaction with
the catalyst. The use of dichloromethane minimizes such inter-
action, resulting in enhanced catalytic activity of the catalyst
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toward ketones and providing a suitable environment for the
reaction.

For different amines and ketones, feasibility of the reaction and
selectivity of the expected product depend on various electronic as
well as steric factors. For example, reaction of benzophenone
required higher temperature and excess of TMSCN to afford the
desired �-aminonitrile (Table 2, entry 9). Reactions with aliphatic
amines under ambient conditions led to mixtures with considerable
drop in selectivity. However, benzylamine gave significant amount
of the Strecker product. Therefore, it is indicated that gallium
triflate provides the best Lewis acidity required for successful
reactions (Table 2). Any significant change in the basicity of the
amines and the steric environment of the amines/ketones results in
a significant change in the rate of the three component reaction and
the selectivity of �-aminonitriles. Encouraged by these results, we
extended our methodology to fluorinated ketones. We found that
mono-, di-, and trifluoromethylated ketones react smoothly with a
variety of amines under mild conditions to provide the correspond-
ing fluorinated �-aminonitriles in high yield and purity. One of the
significant aspects of this methodology is that we can incorporate

mono-, di-, or trifluoromethyl moiety in the �-aminonitrile product
by simply varying the nature of the fluorinated ketones (Scheme 3).
Fluorinated ketones, of course, are much more reactive than
nonfluorinated ones.

Due to the specific properties of F atom such as small size, high
electronegativity, COF bond strength, etc., the introduction of
F atom into many biologically active molecules can bring about
remarkable and profound changes in their physical, chemical,
and biological behavior (50–57). Fluorine-containing amino
acids have been widely used in biological tracers, mechanistic
probes, enzyme inhibitors, and in many medical applications.

Our method is also feasible with aliphatic f luorinated ketones.
However, it is interesting to note that, with aromatic trif luorom-
ethyl ketones such as 1,1,1-trif luoroacetophenone, instead of the
expected three-component reaction product, the trimethylsilyl-
protected fluorinated cyanohydrin derivative (TMSCN addition
product from 1,1,1-trif luoroacetophenone) was obtained.
Hence, success of the overall reaction depends on the rate of the

Scheme 2. Ga(OTf)3 catalyzed Strecker reaction using ketones and amines.

Table 1. Ga(OTf)3 catalyzed Strecker reaction using different
aldehydes and amines
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Table 2. Ga(OTf)3 catalyzed Strecker reaction using ketones
and amines
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*Heated at 50°C with 2 equivalents of TMSCN and 1.5 equivalents of aniline.

Scheme 1. Ga(OTf)3 catalyzed Strecker reaction using different aldehydes
and amines.
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two possible routes; initial aminal/imine formation and the
TMSCN addition to ketones. It is probable that, in the case of
the aliphatic f luorinated ketones, the rate of initial aminal/imine
formation is fast compared with the rate of the cyanohydrin
adduct formation and subsequently the desired products from
three-component reaction were formed predominantly. How-
ever, in the case of 1,1,1-trif luoroacetophenone and its deriva-
tives, the rate of the cyanohydrin adduct formation is higher
compared with the rate of aminal or imine formation; hence, the
TMS protected cyanohydrin adduct was observed instead of the
three-component reaction product. Table 4 shows the results of
the Strecker reaction for different fluorinated ketones and a
variety of amines. One major advantage of this procedure is that
no further purification is needed, thus avoiding tedious chro-
matography and loss of products during purification. The prod-
ucts are obtained in very high yield and purity.

In summary, the application of Ga(OTf)3 as an effective
water tolerable, reusable catalyst for the Strecker reaction has
been demonstrated. Our studies show that not only aldehydes
but also ketones and f luorinated ketones can efficiently un-
dergo the Strecker reaction under very mild conditions using
Ga(OTf)3 as the catalyst in dichloromethane. Various metal
trif lates show good catalytic activity for the Strecker reaction.
However, Ga(OTf)3 is the preferred catalyst of choice in the
series due to its nonhydrolysable and reusable nature as
additional advantages. Simple and clean reaction, high yields,
and high purity of the products are the salient features of this
methodology. Our method also provides an efficient alternate
route for the existing high pressure and stepwise methodolo-
gies for the Strecker reaction of ketones. Furthermore, it
provides a general reaction for the synthesis of mono-, di-, and
trif luoromethylated amino acids via the formation of the
corresponding aminonitrile intermediates. Further studies are
required to render the reaction stereoselective by employing
chiral ligands in conjunction with Ga(OTf)3 and related Lewis
acid catalysts.

Materials and Methods
Ga metal (99.999%) was purchased from Aldrich (Milwaukee,
WI), and trif luoromethanesulfonic acid (99.5%) was available
from 3M (St. Paul, MN). Most of the aldehydes, ketones and
amines were from Aldrich. TMSCN and the fluorinated ketones
were also available from different commercial sources.

Preparation of Ga(OTf)3. Ga(OTf)3 has been pepared following a
reported procedure (58). Gallium metal (2.45 g, 35 mmol) was
placed in a 100-ml round-bottomed flask, and trif luorometh-
anesulfonic acid (30 g, 200 mmol) was then added and stirred at
150°C for 24 h. After cooling the mixture to 0°C, the mixture was
poured into 200 g of ice, then filtered to remove any unreacted
Ga. Water and excess trif lic acid was removed by evaporation,
and the mixture was dried by heating at 200°C for 5 h using a
P2O5 trap under vacuum. Ga(OTf)3 was obtained as a white
powder (12.2 g, 67%).

General Method for the Ga(OTf)3 Catalyzed Strecker Reactions of
Aldehydes, Ketones, and Fluorinated Ketones. Adehyde or ketone (2
mmol)/f luorinated ketone (3 mmol) and amine (2 mmol) dis-
solved in 4 ml of CH2Cl2 was added to Ga(OTf)3 (52 mg, 5 mol
%) in a pressure tube. TMSCN (3 mmol) was then added to the
reaction mixture and pressure tube was closed. The mixture was
stirred at room temperature until the completion of the reaction
with monitoring at different time intervals by TLC and NMR.
The mixture was then filtered and the residue was washed withScheme 3. Ga(OTf)3 catalyzed Strecker reaction of fluorinated ketones.

Table 3. Strecker reaction of acetophenone and aniline catalyzed
by various metal triflates

Entry Catalyst Yield, %*

1 Ga(OTf)3 98
2 Yb(OTf)3 92
3 Y(OTf)3 85
4 Sc(OTf)3 89
5 Sm(OTf)3 90
6 La(OTf)3 75
7 Cu(OTf)2 80
8 Nd(OTf)3 75†

Time, 5 h; Amount of catalyst, 5 mol%.
*Isolated yield.
†Determined by NMR analysis.

Table 4. Ga(OTf)3 catalyzed Strecker reaction of mono-, di-,
and trifluoromethyl ketones
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CH2Cl2 (three times, 15 ml). The filtrate was collected, and the
solvent was removed under reduced pressure to obtain the
product. Further purification can be carried out by tituration of
the residue with excess hexane followed by evaporation of
hexane. Products were characterized by spectral analysis (1H
NMR, 13C NMR, 19F NMR, and HRMS), and the spectral data

and representative NMR images are included in the supporting
information (SI).
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