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Colorectal cancer is initiated in colonic crypts. A succession of
genetic mutations or epigenetic changes can lead to homeostasis
in the crypt being overcome, and subsequent unbounded growth.
We consider the dynamics of a single colorectal crypt by using a
compartmental approach [Tomlinson IPM, Bodmer WF (1995) Proc
Natl Acad Sci USA 92:11130–11134], which accounts for popula-
tions of stem cells, differentiated cells, and transit cells. That
original model made the simplifying assumptions that each cell
population divides synchronously, but we relax these assumptions
by adopting an age-structured approach that models asynchro-
nous cell division, and by using a continuum model. We discuss two
mechanisms that could regulate the growth of cell numbers and
maintain the equilibrium that is normally observed in the crypt. The
first will always maintain an equilibrium for all parameter values,
whereas the second can allow unbounded proliferation if the net
per capita growth rates are large enough. Results show that an
increase in cell renewal, which is equivalent to a failure of pro-
grammed cell death or of differentiation, can lead to the growth of
cancers. The second model can be used to explain the long lag
phases in tumor growth, during which new, higher equilibria are
reached, before unlimited growth in cell numbers ensues.

age-structure � feedback � mutations � structural stability

The large intestine is one of the most frequent sites of
carcinogenesis due, at least in part, to its continual self-

renewal and the large numbers of daily cell divisions (1). There
are millions of invaginations in the lining of the colon, called
crypts, and it is widely believed that colorectal cancer is initiated
when mutations or relatively stable epigenetic changes occur in
the single layer of epithelial cells that line the crypt. Conse-
quently, much work has been directed toward understanding the
mechanisms involved in the dynamics of the cells in healthy and
neoplastic (abnormally growing) crypts.

Stem cells are believed to reside near the bottom of the
colorectal crypt (2), and these are capable of producing a variety
of cell types that are required for tissue renewal and regeneration
after injury (3). The stem cells divide to produce transit cells that
migrate up the crypt wall toward the luminal surface. As the cells
proceed up the crypt they differentiate into colonocytes, en-
teroendocrine cells, and Goblet cells (1). Once at the top, the
cells either undergo apoptosis and�or are shed into the lumen
and transported away (4, 5).

In the murine small intestine, the journey of the cells from the
base of the crypt to its apex has been estimated to take between
2 and 3 days (6), and all the cells in the crypt, apart from the stem
cells, will be renewed over this period. The stem cells are
assumed to have a cycle time of between 12 and 32 h with an
average of 24 h (7, 8). The transit cell population has an
estimated cycle time of �11–12 h (4, 9).

The crypt is homeostatic with an equilibrium maintained
between cell proliferation and cell loss due to death and shed-
ding. If this balance is shifted toward proliferation by, for
example, mutations that promote proliferation or inhibit apo-
ptosis, then neoplasia results (10–13). In the colon, such up-

regulated cell proliferation is the first step toward adenoma
formation and subsequent carcinogenesis (14, 15). Here we
present some simple mathematical models of the colorectal crypt
with the aim of identifying the key processes that may initiate and
accelerate tumorigenesis.

There have been a number of models that have studied cell
population dynamics in the crypt, including the computational
models by Paulus et al. (16, 17), Gerike et al. (18), and Meineke
et al. (19), and the deterministic models by Boman et al. (20) and
Hardy and Stark (21). One of the earliest and most influential
models is that of Tomlinson and Bodmer (22), which we use as
the starting point for our study. That model assumes that the cells
in the crypt can be assigned to one of three different compart-
ments: stem cells, semidifferentiated cells (transit-amplifying
cells), and fully differentiated cells (Fig. 1). At the end of each
cell cycle, stem cells and semidifferentiated cells are assumed to
die (through apoptosis), differentiate, or renew with constant
probabilities a1, a2, a3, and b1, b2, b3, respectively, where a1 �
a2 � a3 � 1 and b1 � b2 � b3 � 1. These probabilities can also
be interpreted as the proportions of each cell population dying,
differentiating, and renewing. The fully differentiated cells are
assumed to be removed from the system (through death or
shedding) with probability (or proportion) c in a given time.

To formulate equations for the population of stem cells
(denoted N0), semidifferentiated cells (denoted N1), and fully
differentiated cells (denoted N2) after each cell division, Tom-
linson and Bodmer (22) implicitly assumed that the cell divisions
in each population were synchronous, which requires the cell
cycle time of stem cells (denoted t0) to be an integer multiple of
the cell cycle time of semidifferentiated cells (denoted t1). The
equations in ref. 22 are, however, not completely accurate, as
they neglect the asynchronicity induced if t0�t1 is not an integer,
as well as the compounding effect of semidifferentiated cells
cycling more frequently than stem cells. Despite this, Tomlinson
and Bodmer were able to predict that failure of apoptosis, or of
differentiation, could lead to either exponential growth or a new
equilibrium at higher cell numbers, and that failure of these
processes was sometimes sufficient but not necessary for tumor-
igenesis, as this could also be achieved by a proliferative advan-
tage. These observations can be used to explain premalignant
growths, and the stepwise growth of tumors that occurs between
long lag phases.

Our first aim in this paper is to remove the requirement of
synchronicity from the model of Tomlinson and Bodmer, taking
careful account of the different cell cycle times of stem and
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semidifferentiated cells. This requires a more complicated set of
equations, in which we keep track not only of the number of cells
but also of their age distribution. Since we are interested in the
development of cell populations over timescales much longer
than the cell cycle time, we also formulate a much simpler model
in which growth occurs continuously rather than in discrete
multiples of cell cycles. Such a model is much easier to analyze,
and we show how the parameters in it may be related to those
in the more detailed age-structured model.

If the transition probabilities of the process described in Fig.
1 are constant [as assumed by Tomlinson and Bodmer (22)], then
the resulting equations are linear, and the model is structurally
unstable, that is, a small change in some of the parameters can
lead to a qualitative change in the solution. For example, unless
exactly half the stem cells renew (a3 � 1�2), the stem cell
population will exhibit either exponential growth (a3 � 1�2) or
exponential decay (a3 � 1�2).

To achieve homeostasis in any physical or biological system,
some degree of feedback is necessary to maintain stability in the
face of infinitesimal parameter changes. One approach to mod-
eling homeostasis in the crypt is to allow the proportions of
death, differentiation, and renewal to vary as the cell population
sizes change. A step in this direction was taken by d’Onofrio and
Tomlinson (24), who extend the model of Tomlinson and
Bodmer (22) by allowing b1 and b3, the dying and renewing
transit cell proportions, to depend on the size of the transit
population N1 and differentiated cell population N2. Our second
aim in this paper is to introduce two alternative forms of
feedback that are able to maintain homeostasis in the crypt, and
to use these to provide a possible explanation for the long lag
phases of tumor growth after successive mutations before un-
regulated cell division occurs.

Generalizing the Modeling Approach
The Age-Structured Model for Asynchronous Cell Division. To remove
the constraint of synchronous cell division, we need to keep track
of the distribution of cell age in each population, that is, we need
an age-structured model [see, for example, Murray (25)].

We denote by Ni � Ni(t, a), for i � 0, 1, 2, the age distribution
function for cells of population Ni at time t, so that there are Ni�a

cells in the age range [a, a � �a]. We assume that each cell is
committed to dying, differentiating, or renewing only at the end
of its cell cycle, and that this process is instantaneous. Recall that
we denote the cell cycle times of stem and semidifferentiated
cells by t0 and t1, respectively, and because the fully differenti-
ated cells are not progressing through the cell cycle, we follow
Tomlinson and Bodmer (22) in introducing a corresponding
reference time t2 for fully differentiated cells after which they
may die or be shed. Since cells are assumed not to die, divide, or
differentiate during their cell cycle, conservation of cell numbers
implies

�Ni

�t
�

�Ni

�a
� 0, 0 � a � ti , [1]

for i � 0, 1, 2, which has the general solution Ni(t, a) � f(t � a)
for some function f, corresponding to cells simply aging in time.
The renewal, death, or differentiation of the cells at the end of
the cell cycle gives the following conditions:

N0�t, 0� � 2a3N0�t, t0�, [2]

N1�t, 0� � 2b3N1�t, t1� � 2a2N0�t, t0�, [3]

N2�t, 0� � 2b2N1�t, t1� � �1 � c�N2�t, t2�. [4]

Taking Ni(0, a) � ni(a), 0 � a � ti, as the initial age profiles
for the cell populations Ni, for i � 0, 1, 2, we can solve for the
stem cell population immediately as

N0�t, a� � �2a3�
nn0�nt0 � a � t�, [5]

where n is the unique integer such that (n � 1) t0 � t � a � nt0,
corresponding to the number of times cells of age a have been
through the cell cycle at time t.

To solve for N1 we need to make some assumption about the
initial distribution of cell ages. The simplest case to consider is
that in which the cells all start at age zero, so that ni(a) � n̂i�(a),
where n̂i is the initial total population of cells of type i, and � is
the Dirac �-function. In this case

Fig. 1. Schematic representation of a colonic crypt. (Left) A schematic diagram of a crypt, with stem, semidifferentiated (transit-amplifying), and fully
differentiated cell populations. The dimensions given are for a human colonic crypt according to Halm and Halm (23). (Right) A diagram showing the
compartmental structure used in the model by Tomlinson and Bodmer (22). The stem cells differentiate into semidifferentiated cells, which in turn differentiate
into fully differentiated cells. Each cell population can die, and the stem cells and semidifferentiated cells can renew. The parameters for the age-structured model
are the proportions of the populations ai, bi, and c that are leaving the compartments, and the parameters for the continuous model are rates of conversion �i,
	i, and 
.

Johnston et al. PNAS � March 6, 2007 � vol. 104 � no. 10 � 4009

A
PP

LI
ED

M
A

TH
EM

A
TI

CS
M

ED
IC

A
L

SC
IE

N
CE

S



N0�t, a� � n̂0 �
n�0

	

��t � a � nt0��2a3�
n, [6]

N1�t, a� � n̂1 �
m�0

	

�2b3�
m ��t � a � mt1�

� 2a2n̂0 �
n�1

	 �
m�0

	

�2a3�
n�1�2b3�

m

� ��t � a � nt0 � mt1�, [7]

N2�t, a� � n̂2 �
p�0

	

�1 � c�p ��t � a � pt2�

� 2b2n̂1 �
m�1

	 �
p�0

	

�2b3�
m�1�1 � c�p

� ��t � a � mt1 � pt2�

� 2a2n̂0�2b2� �
n�1

	 �
m�1

	 �
p�0

	

�2a3�
n�1�2b3�

m�1�1 � c�p

� ��t � a � nt0 � mt1 � pt2�. [8]

Note that while the stem cells remain synchronous, the semi-
differentiated and fully differentiated cells become asynchro-
nous if t0 is not an integer multiple of t1.

Another relatively simple case to consider is a uniform initial
distribution of ages, so that ni(a) � n̂i�ti. A closed form solution
is possible whenever t0�t1 is rational, and is given in the
supporting information (SI) Text. In the biologically realistic case
of, for example, t0 � 2t1, the solution for N1 at the points where
t � a � 2nt1 satisfies

N1�t, a� �
n̂1

t1
�2b3�

2n �
a2n̂0�1 � 2b3�

t1
2a3 � �2b3�
2�


�2a3�
n � �2b3�

2n�.

[9]

Combining like terms in the double summation in 7 when t0 �
2t1 gives

N1�t, a� � �
n�0

	


��t � a � 2nt1� � 2b3��t � a � �2n � 1�t1��

� �n̂1�2b3�
2n �

2a2n̂0

2a3 � �2b3�
2 
�2a3�

n � �2b3�
2n��.

[10]

The similarity between expressions 9 and 10 indicates that the
distribution of cell ages, while necessary for consistency when
modeling on the time scale of the cell cycle, is not crucial in
determining the long-time behavior of the solution, and can
make the solutions overly complicated. We therefore now de-
velop a much simpler ordinary-differential equation (ODE)
model which allows for continuous cell division.

The Continuous Model. Here we assume that we are interested in
times much greater than the cell cycle time, and that the cell

populations are large enough that we can assume that they vary
continuously with time, rather than taking only integer values.

Denoting the per-capita rate of stem (respectively semidiffer-
entiated) cell proliferation by �3 (respectively 	3), differentiation
by �2 (respectively 	2), and death by �1 (respectively 	1), and the
per-capita removal rate of fully differentiated cells by 
, the
ODE model is

dN0

dt
� ��3 � �1 � �2�N0 , [11]

dN1

dt
� �	3 � 	1 � 	2�N1 � �2N0 , [12]

dN2

dt
� 	2N1 � 
N2 . [13]

Note that these rates are analogous but not equivalent to the
corresponding proportions of the cell populations in the age-
structured model; the relationship between the two sets of
parameters will be determined in the following section.

Eqs. 11–13 are much easier to solve than their age-structured
equivalents. Given initial cell populations Ni � n̂i, we find

N0�t� � n̂0e�t, [14]

N1�t� � Ae�t � �n̂1 � A�e	t, [15]

N2�t� � Be�t � Ce	t � �n̂2 � B � C�e�
t, [16]

where � � �3 � �1 � �2 and 	 � 	3 � 	1 � 	2 are the net stem
and semidifferentiated cell per-capita growth rates, respectively,
and the constants A, B, and C are given by

A �
�2n̂0

� � 	
, B �

	2A

 � �

, and C �
	2� n̂1 � A�


 � 	
.

[17]

Comparing the Age-Structured and Continuous Models. In the age-
structured model, we consider proportions of the cell popula-
tions dying, differentiating, or renewing at discrete time inter-
vals, whereas in the continuous model, we assume that these
processes occur continuously and we work with the rates at which
they occur. To compare the models, it is important to be able to
relate the two sets of parameters, which is the goal of this section.

In the age-structured model, for the case where all the cells in
each population are initially synchronous in their cell cycles, we
have the general solution 6–8. The total population of each cell
type is given by integrating over all possible ages

N̂i�t� � �
0

ti

Ni�t, a�da . [18]

It is shown in the SI Text that integrating 6–8 over all ages gives

N̂0�t� � n̂0�2a3�
t/t0, [19]

N̂1�t� � Â�2a3�
t/t0 � �n̂1 � Â��2b3�

t/t1, [20]

N̂2�t� � B̂�2a3�
t/t0 � Ĉ�2b3�

t/t1 � �n̂2 � B̂ � Ĉ��1 � c�t/t2, [21]

for constants Â, B̂, and Ĉ that can be determined. Comparing
14–16 and 19–21, we see immediately that the renewal propor-
tions and proliferation rates are related by

�2a3�
1/t0 � e�, �2b3�

1/t1 � e	, �1 � c�1/t2 � e�
. [22]
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The remaining proportions a2 and b2 can be determined from
the condition that A � Â, B � B̂ (because we have only two
constants left to determine, we cannot also impose the condition
C � Ĉ). The approximation of the age-structured model by the
continuous model assumes that the cell populations are varying
on a timescale much longer than that of the cell cycle, that is, that
the renewal proportions are close to 1�2. In this case the
relations 22 can be approximated by

a3 �
1
2

�1 � �t0�, b3 �
1
2

�1 � 	t1�, c � 
t2 , [23]

and the conditions A � Â, B � B̂ lead to

a2 �
1
2

�2t0 , b2 �
1
2

	2t1 , [24]

with b1 � 1 � b2 � b3, a1 � 1 � a2 � a3. In this case the
condition C � Ĉ is automatically satisfied.

Steady States and Structural Instability. It is clear from 14–16 and
19–21 that both the age-structured and continuous models are very
sensitive to the cell population renewal proportions a3 and b3 or net
proliferation rates � and 	. A nontrivial steady state can occur only
if a3 � 1�2, corresponding to � � 0. If a3 � 1�2 (� � 0), the model
exhibits exponential growth, whereas if a3 � 1�2 (� � 0), the model
exhibits exponential decay. When a model requires a parameter to
take a particular value for its solutions to have the required
behavior, the model is said to be structurally unstable. In biological
systems, we expect there to be noise, and so such a model will be
unrealistic. There is a similar but less stringent requirement on b3
and 	. For b3 � 1�2 (	 � 0), there is a nontrivial steady state,
whereas for b3 � 1�2 (	 � 0), there is exponential growth. We will
modify the model to include feedback in the following section,
which will stabilize the model structurally.

First, we briefly examine the steady state of the continuum
model. With � � 0, 	 � 0 (and of course 
 � 0), the solution
14–16 approaches the steady state

N*0 � n̂0 , N*1 � �
�2n̂0

	
, N*2 � �

�2	2n̂0

	

, [25]

as t 3 	, where the stem cell population is equal to its (undeter-
mined) initial value, n̂0, and the other populations are determined
in terms of this. The results of Tomlinson and Bodmer (22)
essentially correspond in this model to observing that altering the
value of 	 (or indeed �2, 	2, or 
) while keeping � � 0 can lead to
a new steady state in the size of the populations, without necessarily
leading immediately to exponential growth so long as 	 stays
negative.

Modeling Homeostasis in the Crypt
We discussed above the need for some form of feedback to
stabilize the model to infinitesimal changes in the parameters.
This has been recognized by d’Onofrio and Tomlinson (24), who
extended the difference equation model by Tomlinson and
Bodmer (22), by allowing density dependence in the proportion
parameters to model homeostasis in the crypt.

Here we present two possible feedback mechanisms that could
maintain the equilibrium in the crypt. With the first mechanism,
we find that the feedback is strong enough to preclude unlimited
growth whenever it is present, so that cancerous growth can only
occur if the feedback is assumed to have been knocked out by a
genetic alteration. With the second mechanism, we find that
unlimited growth in cell numbers can occur even in the presence
of feedback if changes in the other parameters in the model drive
the net growth rates above a critical value.

Feedback Model 1: Linear Feedback. One way in which the cells
could act to maintain homeostasis is by altering the proportion
of cells differentiating in response to changes in the cell popu-
lation sizes. We assume that when the population of stem or
semidifferentiated cells increases the (per-capita) rate at which
they differentiate increases in proportion. Thus we replace �2
and 	2 in Eqs. 11–13 by, respectively, �2 � k0N0 and 	2 � k1N1,
where ki � 0 are constants, giving

dN0

dt
� ��3 � �1�N0 � N0��2 � k0N0�, [26]

dN1

dt
� �	3 � 	1�N1 � N1�	2 � k1N1� � N0��2 � k0N0�, [27]

dN2

dt
� �
N2 � N1�	2 � k1N1� . [28]

Thus the stem cells exhibit logistic growth, with a carrying
capacity of N*0 � ��k0, where, as before, � � �3 � �1 � �2. If
� � 0 all solutions of 26 are attracted to this stable steady state;
if � � 0 all solutions are attracted to N0 � 0. We see that there
are no values of the parameters (providing k0 � 0) that allow
unbounded growth in N0.

For the semidifferentiated cells, there is one positive, stable,
steady state given by

N*1 �
1

2k1
�	 � �	2 � 4k1N*0��2 � k0N*0��, [29]

where, as before, 	 � 	3 � 	1 � 	2, which exists for all values
of the parameters. Again, no value of the parameters leads to
exponential growth.

Thus this model predicts that, providing the renewal rate of
stem cells, �3, is bigger than some critical size �1 � �2, the stem
cell population is able to sustain itself and reaches a nonzero
steady state. A change in the parameters of the model (corre-
sponding to a genetic hit) will change the value of the steady state
cell populations, but only a genetic hit which removes the
feedback in the model will lead to unbounded growth.

Feedback Model 2: Saturating Feedback. Here we again assume that
when the population of stem or semidifferentiated cells increases,
the rate at which they differentiate increases, but instead of
assuming a linear dependence of per-capita rate on population
size, we assume that there is a maximum per-capita rate of
differentiation. Thus we replace �2 and 	2 in Eqs. 11–13 by,
respectively, �2 � k0N0�(1 � m0N0) and 	2 � k1N1�(1 �
m1N1), where mi � 0 are constants. This gives

dN0

dt
� ��3 � �1 � �2�N0 �

k0N0
2

1 � m0N0
, [30]

dN1

dt
� �	3 � 	1 � 	2�N1 �

k1N1
2

1 � m1N1

� �2N0 �
k0N0

2

1 � m0N0
, [31]

dN2

dt
� �
N2 � 	2N1 �

k1N1
2

1 � m1N1
. [32]

Denoting � � �3 � �1 � �2 as usual, we find that the extinct state
N0 � 0 is unstable for � � 0 and globally attracting for � � 0; thus
we require � � 0 for the crypt to be viable. A further steady state
of stem cells, corresponding to homeostasis, exists when � lies in the
range 0 � � � k0�m0, and is given by N*0 � ��(k0 � m0�). If
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� � k0�m0, then no steady state exists, and the cell population grows
unboundedly. Thus we see the possibility of successive genetic hits
increasing � (either by increasing the proliferation rate, or decreas-
ing the differentiation or death rates) moving the crypt through
increasing steady state cell populations, until finally � exceeds the
critical value and unbounded growth occurs.

When the stem cell population is steady, the behavior of the
semidifferentiated cell population depends on whether 	 � 	3 �
	1 � 	2 is greater or less than the critical value k1�m1. If 	 �
k1�m1, there is a single, real, positive steady state for the
semidifferentiated cell population given by

N*1 �
1

2�k1 � 	m1�
�	 � m1D � ��	 � m1D�2 � 4Dk1�, [33]

where D � �2N*0 � k0N*02�(1 � m0N*0) � (�3 � �1)N*0 is the
stem-cell differentiation rate. If 	 � k1�m1, then the transit cells
exhibit unbounded growth. Here again we have the possibility of
successive genetic hits increasing 	 (either by increasing the
proliferation rate, or decreasing the differentiation or death
rates) moving the crypt through increasing steady state cell
populations, until finally 	 exceeds the critical value and un-
bounded growth occurs.

We demonstrate this process with the following example,
illustrated in Fig. 2. Consider the initial parameter set � � 0.286,
	 � 0.432, 
 � 0.323, �2 � 0.3, 	2 � 0.3, k0 � 0.1, m0 � 0.1,
k1 � 0.01, and m1 � 0.01. This produces critical threshold values
� � k0�m0 � 1 and 	 � k1�m1 � 1; the population is therefore
stable, with N*0 � 4, N*1 � 85, N*2 � 200. Suppose a first
mutation (in either 	1 or 	3) raises 	 to 0.512; then N*0 is
unchanged, but N*1 � 114, N*2 � 294. A second mutation making
� � 0.5 produces a new steady state of N*0 � 10, N*1 � 134, N*2 �
361. A third mutation making 	 � 0.697 produces a steady state
of N*0 � 10, N*1 � 266, N*2 � 847. If a fourth mutation causes
	 � 1.1, there is no steady state for the semidifferentiated cell
population, and consequently both it and the fully differentiated
cell population grow exponentially.

This process simulates the widely assumed multistage process
of carcinogenesis. Successive mutations could cause parameter

changes which incrementally raise the size of the steady state.
However, once the mutations have accumulated to a certain
degree, and the parameters are raised above a certain threshold,
unregulated cell population growth occurs and the tumor grows
exponentially.

We conclude this section by summarizing the behavior of the
three different models in different regions of the (�, 	)-
parameter space. For the model without feedback, the line
� � 0, 	 � 0 corresponds to finite crypt size, the region � � 0
and 	 � 0 corresponds to crypt extinction, and the regions � � 0
and 	 � 0 correspond to unbounded growth. For the model with
linear feedback, the region � � 0 corresponds to finite crypt size,
and the region � � 0 corresponds to crypt extinction. Finally, for
the model with saturating feedback, the region � � 0 corre-
sponds to crypt extinction, the region 0 � � � k0�m0 and
	 � k1�m1 corresponds to finite crypt size, and the regions
� � k0�m0 and 	 � k1�m1 correspond to unbounded growth.
These regions are illustrated in Fig. 3.

Discussion
We have presented some mathematical models that try to
capture the behavior of the cell populations in a healthy crypt in
the colon. We have corrected and extended the Tomlinson and
Bodmer model (22) by producing two different types of models
to capture the asynchronous division of cells. The age-structured
model is able to keep track of all cells regardless of when they
are generated in their cell cycles, and the continuous model is
easier to analyze mathematically. We have shown that the
continuous model is a good approximation to the age-structured
model when the cell populations vary on a timescale that is much
longer than that of a cell cycle.

Both of these models are very sensitive to small changes in the
parameters, so we introduced two different types of feedback to
make the continuous model structurally stable and to capture the
regulation of cell numbers that occurs in the crypt. The first

Fig. 2. An illustrative sequence of mutations (occurring every 100 days) in the
saturating feedback model (feedback model 2). The initial parameters are
taken to be � � 0.286, �2 � 0.3, 	 � 0.432, 	2 � 0.3, 
 � 0.323, k0 � 0.1, m0 �

0.1, k1 � 0.01, and m1 � 0.01. The mutations cause, successively, 	 � 0.512,
� � 0.5, 	 � 0.697, 	 � 1.1. For 	 � 1.1 there is no steady state and unbounded
growth occurs.

Fig. 3. Plots of the regions of stability of the cell population models for no
feedback (i), linear feedback (ii), and saturating feedback (iii). In the case of no
feedback, there are only stable solutions on the line � � 0, 	 � 0; otherwise,
there is either extinction or unbounded growth. In the case of the linear
feedback, there is never unbounded growth in cell numbers, and there is a
steady state if � � 0, and extinction if � � 0. For the saturating feedback, there
is a strip of the parameter space that permits stable solutions, when 0 � � �
k0�m0 and 	 � k1�m1, and outside this region there is either extinction or
unbounded growth. The crosses correspond to the five states in the (�,
	)-parameter space from Fig. 2.
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feedback controlled the system growth so that there was always
a stable equilibrium and exponential growth in cell numbers
could not occur unless mutations were able to knock out the
feedback. The second form of feedback allowed stable equilibria
in a certain range of parameters but also permitted uncontrolled
growth in the cell populations if the parameters were pushed
above a critical threshold. These different ranges of stability are
illustrated in Fig. 3.

The key parameters are the net per-capita growth rates of the
stem and transit cell populations, which represent renewal minus
death and differentiation. So, in particular, the failure of pro-
grammed cell death or differentiation could lead to tumor
growth, as concluded from the model by Tomlinson and Bodmer
(22), as well as an increased proliferation rate.

The second form of feedback could help explain the observed
lag phases after mutations occur, and thus the existence of
benign tumors or adenomas before carcinogenesis takes over.
Early mutations in the adenoma-carcinoma sequence could raise
the net per-capita growth rates but keep them below their critical
values, which will create new, higher steady states. Later stage

mutations could push the net per-capita growth rates above their
critical values, ensuring that unregulated cell population growth
occurs. However, if no genetic changes occur that take a tumor
out of the range corresponding to finite size in Fig. 3, then it
remains benign. Although the evidence supports the view that
essentially all colorectal cancers go through an adenoma, or
benign phase, by no means do all adenomas develop into
carcinomas.

In conclusion, mutations in any of the key parameters (death,
differentiation, or renewal rates for the stem cells or transit cells)
can initiate tumorigenesis, and eventually exponential growth in
cell numbers leading to a carcinoma, but it is only changes in the
net per-capita growth rates that are important, and then only
with a suitable feedback model.
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