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Abstract
Background: Designing appropriate machine learning methods for identifying genes that have a
significant discriminating power for disease outcomes has become more and more important for
our understanding of diseases at genomic level. Although many machine learning methods have
been developed and applied to the area of microarray gene expression data analysis, the majority
of them are based on linear models, which however are not necessarily appropriate for the
underlying connection between the target disease and its associated explanatory genes. Linear
model based methods usually also bring in false positive significant features more easily.
Furthermore, linear model based algorithms often involve calculating the inverse of a matrix that
is possibly singular when the number of potentially important genes is relatively large. This leads to
problems of numerical instability. To overcome these limitations, a few non-linear methods have
recently been introduced to the area. Many of the existing non-linear methods have a couple of
critical problems, the model selection problem and the model parameter tuning problem, that
remain unsolved or even untouched. In general, a unified framework that allows model parameters
of both linear and non-linear models to be easily tuned is always preferred in real-world
applications. Kernel-induced learning methods form a class of approaches that show promising
potentials to achieve this goal.

Results: A hierarchical statistical model named kernel-imbedded Gaussian process (KIGP) is
developed under a unified Bayesian framework for binary disease classification problems using
microarray gene expression data. In particular, based on a probit regression setting, an adaptive
algorithm with a cascading structure is designed to find the appropriate kernel, to discover the
potentially significant genes, and to make the optimal class prediction accordingly. A Gibbs sampler
is built as the core of the algorithm to make Bayesian inferences. Simulation studies showed that,
even without any knowledge of the underlying generative model, the KIGP performed very close
to the theoretical Bayesian bound not only in the case with a linear Bayesian classifier but also in
the case with a very non-linear Bayesian classifier. This sheds light on its broader usability to
microarray data analysis problems, especially to those that linear methods work awkwardly. The
KIGP was also applied to four published microarray datasets, and the results showed that the KIGP
performed better than or at least as well as any of the referred state-of-the-art methods did in all
of these cases.
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Conclusion: Mathematically built on the kernel-induced feature space concept under a Bayesian
framework, the KIGP method presented in this paper provides a unified machine learning approach
to explore both the linear and the possibly non-linear underlying relationship between the target
features of a given binary disease classification problem and the related explanatory gene
expression data. More importantly, it incorporates the model parameter tuning into the
framework. The model selection problem is addressed in the form of selecting a proper kernel
type. The KIGP method also gives Bayesian probabilistic predictions for disease classification. These
properties and features are beneficial to most real-world applications. The algorithm is naturally
robust in numerical computation. The simulation studies and the published data studies
demonstrated that the proposed KIGP performs satisfactorily and consistently.

Background
DNA microarray technology provides researchers a high-
throughput means to measure expression levels for thou-
sands of genes in an experiment. Careful analyses of
microarray gene expression data can help better under-
stand human health and disease and have very important
implications in basic sciences as well as pharmaceutical
and clinical research. Some existing methodologies for
microarray gene expression data analysis, such as intro-
duced in [1-3] and [4], have demonstrated their useful-
ness for a variety of class discovery or class prediction
problems in biomedical applications. In a microarray
study, we typically face a problem of analyzing thousands
of genes from a relatively small number of available sam-
ples. This nature gives rise to a very high likelihood of
finding lots of "false positives" with conventional statisti-
cal methods. Therefore, properly selecting the group of
genes that are significantly related to a target disease has
created one of the key challenges in microarray data anal-
ysis.

Gene selection problem basically can be viewed as a vari-
able selection problem associated with linear regression
models. An incomplete list of those classical variable
selection methods/criteria includes the ratio of error sum
of squares for the model with p variables to the error
mean square of the full model and adjusted with a penalty
for the number of variables or the Cp Criterion [5], the
Akaike Information Criterion or AIC [6], and the Bayesian
Information Criterion or BIC [7]. George and Foster [8]
later suggested that these criteria corresponded to a hierar-
chical Bayesian variable selection procedure under a par-
ticular class of priors. Following the similar setting with a
slightly different prior specification, Yuan and Lin [9] pro-
vided another approach to solve this problem and they
showed that their algorithm was significantly faster and
could be potentially used even when the predictor dimen-
sion is larger than the training sample size. Although both
of these algorithms have been shown to favorably
enhance the selection performance comparing to the clas-
sical methods such as Cp, AIC or BIC, they share a com-
mon disadvantage. That is, even after the hyperparameters

are estimated, the variable selection criteria need to be
evaluated on each candidate variable for optimality. Usu-
ally, the number of candidate models grows in an expo-
nential rate with the increase of the number of variables,
whereas the typical number of the investigated genes in a
microarray data analysis problem is in thousands. This
motivates the development of the class of the Markov
Chain Monte Carlo (MCMC) algorithms under a Bayesian
framework to attack the problem. One of the most widely
used MCMC algorithms is the Gibbs sampler. For the
microarray analysis problem, Lee et al. [10] suggested a
Bayesian model based on a linear probit regression setting
and proposed a Gibbs Sampler to solve it. An extension to
this method based on a multinomial probit regression set-
ting has also been proposed [11]. Similarly, Zhou et al.
([12,13]) developed another Bayesian approach built
upon a linear logistic regression model to the gene selec-
tion problem.

The linear model based methods mentioned above have
been shown with various levels of effectiveness in finding
the set of significant genes in a wide range of real micro-
array experiments. However, they all share some common
limitations: the first also the most important one is that, a
linear model is not necessarily always a good approxima-
tion for the underlying physical model; second, linear
model based methods are more likely to bring in false
positives; third, the computations of these linear model
based algorithms usually involve calculating the inverse of
a matrix that is possibly singular when the number of
potentially important genes is relatively large. To over-
come these disadvantages, Zhou et al. [14] introduced a
non-linear term into the basic linear probit regression
model and applied a bootstrapping procedure to enlarge
the sample size. A technique called sequential Monte
Carlo was adopted in the numerical Bayesian computa-
tion in their work. Some other models were also devel-
oped for tumor classification problems with gene
expression profiling. For instance, based on the simple
nearest centroid classifier and via a shrinking strategy, Tib-
shirani et al. [15] offered the so-called "nearest shrunken
centroids" (also known as "Prediction Analysis for Micro-
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arrays" or PAM) algorithm. By combining two ensemble
schemes, i.e. bagging and boosting, Dettling [16] intro-
duced the method "BagBoosting" as an enhanced version
of the regular boosting algorithm. Both of these methods
were shown being very effective when applied to a few
published datasets.

The kernel-induced machine learning is one of the most
promising approaches for exploring the potential non-lin-
earity for a given classification or regression problem
through the feature space concept. For example, kernel-
induced support vector machines (SVMs) have been suc-
cessfully applied to a number of learning tasks and are
generally accepted as one of the state-of-the-art learning
methods. Theoretically, Lin et al. ([17,18]) proved that a
SVM with an appropriately chosen kernel and model
parameters can approach the Bayesian bound of a given
problem when the training sample size is large enough.
For the gene-selection problem, Guyon et al. [19] pro-
posed the method "Recursive Feature Elimination" (RFE)
to rank the genes with respect to a provided SVM, thus the
SVM can be utilized for microarray data analysis. RFE was
shown to be very effective with a linear kernel. However,
when the number of genes is large (in hundreds), RFE
doesn't function well with a non-linear kernel. This limits
the applications of SVMs to the analysis of microarray
data. Zhu and Hastie ([20,21]) later proposed a frame-
work called kernel logistic regression and suggested a
method called "Import Vector Machine" to solve it. How-
ever, they also chose the RFE as the strategy to select the
significant genes.

As Bayesian probability theory can help construct a uni-
fied framework for modeling data and facilitate tuning of
the involved parameter and/or hyperparameter, develop-
ing a proper Bayesian probabilistic model is usually ben-
eficial for a machine learning method. MacKay [22]
introduced a probabilistic evidence framework as a Baye-
sian learning paradigm for neural networks. With the
close relationship between neural network methods and
kernel-induced learning methods, Kwok [23] and Gestel
et al. [24] developed a Bayesian framework for SVMs and
least square support vector machines (LSSVMs) respec-
tively, with guidance of the principle of the evidence
framework. Neal [25] also showed that, as the number of
hidden units increases in a Bayesian neural network, the
prior over the network output converges to a Gaussian
process (GP) if independent Gaussian distributions are
used as the priors for network weights and bias. LSSVMs
conceptually are close to SVMs, except that they use equal-
ity constraints instead of inequality constraints and they
use a squared error penalty function. Getting solution of
an LSSVM therefore only involves solving a set of linear
equations, which though loses the sparseness featured in
an SVM, it makes an LSSVM much easier for an on-line

implementation. If we consider the characteristic similar-
ity between the mapping from input nodes/data to hid-
den units in a neural network and the mapping from
input data to a feature space conceptually embedded in an
LSSVM, it's not surprising that under the Gaussian noise
assumption, the mean of the posterior prediction made
by a GP coincides with the optimum decision function
made by an LSSVM, whereas a GP offers a more approach-
able probabilistic model. This fact motivated us to
develop a new Bayesian learning method named kernel-
imbedded Gaussian process (KIGP) for microarray gene
expression data analysis based on the Gaussian process
theory.

The general framework of the KIGP method is sketched in
Fig. 1, where the box bounded by the dotted lines repre-
sents the proposed learning component of the method.
Conceptually, via a gene-selection procedure, a small
group of the gene data is selected. Through a feature map-
ping function Ψ(·), the selected gene data are mapped
into a feature space where the optimal classification pro-
cedure is processed. With the theory of kernel-induced
feature space [26], we do not really do the feature map-
ping computationally. Instead, we train the data via a ker-
nel-imbedded Gaussian Process by using a kernel
function. In the output end, there are basically three con-
secutive phases, the "kernel parameter fitting phase", the
"gene selection phase", and the "prediction phase". Given
a kernel type, the KIGP algorithm finds the fitted kernel
parameter(s) in the "kernel parameter fitting phase". After
fixing the kernel parameter(s) at the fitted value(s), it con-
tinues with the "gene selection phase" and yields a group
of significant genes under some given confidence level.
Based on the fitted kernel parameter(s) and the selected
significant gene data, the algorithm makes a probabilistic
prediction for each testing sample in the "prediction
phase". The details of the algorithm are discussed in the
"Methods" section.

The rest of this paper is organized as follows: we show the
results from applying the proposed KIGP method to sim-
ulated datasets as well as real published microarray data-
sets in the "Results" section. The conclusions and the
further research discussions are summarized in the "Dis-
cussions and Conclusions" section. In the "Methods" sec-
tion, we provide the mathematical content of the
methodology followed by a detailed description of the
algorithm.

Results
Some terms and acronyms defined in the "Methods" sec-
tion are used in this section. They include "gene-selection
vector (γ)", "linear kernel (LK)", "polynomial kernel
(PK)", "Gaussian kernel (GK)", "Normalized Log-Fre-
quency (NLF)", "false discovery rate (fdr)", "kernel
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parameter fitting phase", "gene selection phase", "predic-
tion phase", "misclassification rate (MR)", "average pre-
dictive probability (APP)", "leave-one-out cross-
validation (LOOCV)" and "3-fold cross-validation (3-fold
CV)". One can refer to the "Methods" section for the
details.

Simulation studies
Example 1
This example was designed to illustrate all the key con-
cepts, elements and procedures of the KIGP framework
introduced in the "Methods" section. It consists of two
cases. In the first case, the Bayesian classifier of the under-
lying generative model is linear; while in the second case,
the Bayesian classifier takes a very non-linear form. We set
the number of the significant/explanatory genes as two, so
we can better graphically display the Bayesian classifier
and the relative performance of the KIGP method. In both
of these cases, the number of training samples is twenty.
Ten training samples were generated from the class "1"

and the other ten samples were generated from the class "-
1". The number of testing samples is 5000. For each sam-
ple, the number of investigated genes is 200; the indices
of the two underlying explanatory genes were preset as
[23,57]. For each case, we independently generated 10 sets
of training samples from the generative model and ran the
simulation on each of them.

(a) Case with a Linear Bayesian Classifier

In this linear case, the two preset significant genes were
generated from the bivariate Gaussian distribution

 for the class "1" and from the bivariate

Gaussian distribution  for the class "-

1". For those insignificant genes, each of them was inde-
pendently generated from the standard normal distribu-
tion N(0,1). The probabilities for the class "1" and the
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Schematic plot for the general framework of the proposed KIGP methodFigure 1
Schematic plot for the general framework of the proposed KIGP method.
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class "-1" were equal. With this generative model, the
Bayesian classifier for the two classes is a mathematical
linear combination of the two prescribed significant
genes.

The KIGP method with an PK, or with an GK, or with an
LK was applied to each of the 10 training sets respectively.
The prior probability for γj = 1 for all j in the Gibbs sam-
pling simulations was set at 0.01. For all the Gibbs sam-
pling simulations in this example, we ran 5000 iterations
in both the "kernel parameter fitting phase" and the "gene
selection phase" and treated the first 1000 iterations as the
burn-in period. In the "prediction phase", we ran 2000
iterations and treated the first 500 iterations as the burn-
in period. The threshold for "fdr" in the "gene selection
phase" was set at 0.05.

For all of the 10 simulated training sets, when an PK was
the kernel type for the KIGP method, the algorithm chose
the PK(1) after the "kernel parameter fitting phase" and
found both the prescribed significant genes at the end of
the "gene selection phase" (i.e. with no "false negative").
However, KIGP with an PK(1) resulted with one "false
positive" gene in 2 of the 10 sets. In the prediction phase,
the average testing MR for the 8 sets correctly found the 2
preset significant genes with no "false positive" was 0.018.
It was very close to the Bayesian bound (i.e. 0.013). How-
ever, the average testing MR for the 2 sets with one "false
positive" was significantly worse. It was only 0.107. The
average testing MR for all 10 sets was 0.036.

The results of the simulation studies with an LK were very
similar to that of the simulations with the PK(1). In all the
simulations, the KIGP found the 2 preset significant genes
(i.e. with no false "negative"), but in 2 of the 10 sets, the
algorithm resulted with one "false positive" as well. This
result was exactly same as that from the simulations with
the PK(1). The average testing MR for the 10 sets with an
LK was 0.037, almost the same as to that with an PK.

For the results of the stimulation studies with an GK, the
algorithm perfectly found the only 2 prescribed signifi-
cant genes in 6 of the 10 sets (i.e. no false "negative" and
no false "positive"). In other 3 sets, the KIGP identified
the 2 prescribed significant genes as well as one "false pos-
itive". In one other set, the KIGP resulted only one of the
two prescribed genes (i.e. with one "false negative") and
one "false positive". The mean and the standard deviation
for the fitted width of an GK for these 10 simulations were
1.95 and 0.31 respectively. The average testing MR for the
10 simulations with an GK was only 0.104. Based on the
testing MR measure, we should use the KIGP with either a
polynomial kernel or a linear kernel to make any further
analysis for this problem.

As an illustration, we specifically display the results from
applying the KIGP to one of the training sets, in which
both an PK and an GK worked very well. For the simula-
tion with the GK, the posterior probability density func-
tion (PDF) of the width parameter "r" is plotted in Fig. 2a,
in which its mode was found at around 1.61. After the
"kernel parameter fitting phase", the kernel was fixed as
the GK(1.61). With the posterior samples obtained in the
"gene selection phase", the NLF for each gene was calcu-
lated (Fig. 3c). Following the procedure described in the
"Gene selection phase" subsection, the local fdr with
respect to the NLF value was estimated (Fig. 2b). With the
threshold for fdr set at 0.05, the cutoff value for NLF was
3.83 and we found that only the two prescribed genes
(indices: 23, 57) were found significant. The contours of
the posterior predictive probabilities for the class "1" are
plotted in Fig. 3d, where the X-axis is the value of the gene
23 and the Y-axis represents the value of the gene 57. In
Fig. 3d, the numbers associated with the contour curves
are probabilities; the asterisks denote the positive training
samples and the circles present the negative training sam-
ples; the dotted line shows the Bayesian classifier. The MR
of the independent testing set for this simulation was
0.028. For the simulation with an PK, after the "kernel
parameter fitting phase", the estimated posterior proba-
bility masses for the discrete degree parameter "d" were
Prob(d = 1) = 0.797 and Prob(d = 2) = 0.203 respectively.
With the highest estimated posterior mass at d = 1, we
accordingly fixed the kernel as the PK(1). With the same
gene-selection procedure described in the simulation with
the GK, the two prescribed genes again were found as the
only two significant genes (Fig. 3e). The contour plot of
the posterior predictive probability for the class "1" is
drawn in Fig. 3f. The testing MR was 0.017 for this simu-
lation. The performance of the KIGP with the PK(1) was
very similar to that of the KIGP with an LK (Fig. 3a and
3b). Both of them behaved like the linear Bayesian classi-
fier. As a benchmark comparison, we further applied a reg-
ular SVM/RFE (SVM with RFE [19] as the gene selection
strategy) to each of the 10 simulated training sets. In fact,
rather than using a cross-validation procedure, there is no
effective way for a SVM/RFE to set the model parameter
(such as the box constraint) and to select the number of
significant genes. Technically, it is also important to men-
tion that the SVM/RFE is not proper for microarray data
analysis with a kernel type having variable parameter(s)
such as a Gaussian kernel. Nevertheless, for this linear
example, we applied a SVM/RFE with an LK to the datasets
and preset the box constraint as 1. The obtained results
were similar to those of the KIGP with an LK case. In 8 out
of the 10 sets, the gene 23 and the gene 57 were ranked as
the top 2 genes in the significance gene list. However, in
the remaining 2 of the 10 sets, the gene 23 was ranked as
the top significant gene but the gene 57 was ranked in the
3rd place and in the 5th place respectively. For the predic-
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tion with RFE, we used the top genes including the gene
23 and the gene 57. The resulted average testing MR for all
10 sets was 0.058. Even in this linear case, the KIGP with
an LK or the PK(1) outperformed the SVM/RFE with an LK
in an automatic fashion. More importantly, the SVM/RFE
only made a binary prediction of the class for each testing
sample, while the KIGP gave a probabilistic prediction on
the certainty of the decision. Furthermore, the proposed
KIGP framework offered the posterior distribution for
each model parameter as well as a universal significance
measure (NLF) for each investigated gene at the end.

In the majority of the simulations, the KIGPs found the
two preset significant genes in this linear case. They all
performed very close to the Bayesian bound when the two
preset genes were perfectly found. Since the KIGP with the
PK(1) gave the best average testing MR, we should use it
for any further analysis.

(b) Case with a Non-linear Bayesian Classifier
In this non-linear case, the two preset significant genes
were generated from a mixture Gaussian distribution with
equal probability on N(12, I2 *0.16) and N(-12, I2 *0.16)
for the class "1" and from an independent normal distri-
bution N(0,0.16) for the class "-1". 12 and I2 denote the
one-vector and the identity matrix respectively (defined in
(7) of the "Methods" section). For those insignificant
genes, each of them was independently drawn from the
standard normal distribution N(0,1). The probabilities
for the two classes were equal. The Bayesian classifier
given the two significant genes looks like two parallel
lines (Fig. 4) and the Bayesian bound for the MR is 0.055.
We applied both the linear probit regression method pro-
posed by Lee et al. [10] and an KIGP with an LK (such as
in Fig. 4a) to the 10 training sets. Unsurprisingly, both of
them failed badly in terms of finding the correct signifi-
cant genes and making optimal class predictions for this
non-linear case.

For the 10 simulated training sets, when an PK was the
kernel type for the KIGP method, the algorithm chose the
PK(1) for 5 sets and the PK(2) for the other 5 sets after the
"kernel parameter fitting phase". Only in 2 of the 5 sets,
the KIGP with the PK(2) perfectly found the two pre-
scribed genes as the only significant genes. The average
testing MR for these 10 sets was horrendous. However, for
those two sets correctly found the two preset significant
genes, the testing MRs were both fairly close to the Baye-
sian bound.

The results of the simulations with an GK were much bet-
ter. For all of the 10 sets, the KIGP successfully found the
2 preset significant genes (i.e. with no "false negative").
The KIGP also resulted with one "false positive" for 2 sets
as well. The mean and the standard deviation of the fitted

width of an GK for these 10 sets were 0.71 and 0.08
respectively. In the "prediction phase", the average testing
MR was 0.065 for the 8 sets correctly found the 2 preset
significant genes. It was very close to the Bayesian bound
(i.e. 0.055). The average testing MR was 0.171 for the 2
sets with one "false positive". The average testing MR for
all 10 sets was 0.086.

As an illustration, we depict the results from applying the
KIGP to one of the training sets, in which both an PK and
an GK worked well. The procedure and all settings of the
simulations and the legends of the figures were same as
described in the linear case. We first applied an KIGP with
an GK to the training set. The mode of the posterior PDF
of the width parameter was found at around 0.81 after the
"kernel parameter fitting phase" (Fig. 2c). With the
GK(0.81), the cutoff value of 3.68 for NLF was obtained at
the end of the "gene selection phase". Based on the NLF
statistic, the two prescribed genes were successfully
retrieved (Fig. 4c) and the KIGP performed well with MR
= 0.063 (Fig. 4d). It was very close to the Bayesian bound.
For the simulation with an PK, the posterior probability
masses of the degree parameter were Prob(d = 1) = 0.229
and Prob(d = 2) = 0.771 respectively. The NLF plot for
each gene and the relative cutoff line for the NLF are both
displayed in Fig. 4e. The two prescribed genes were discov-
ered. The performance of the KIGP with the PK(2) was
very well with MR = 0.060 (Fig. 4f). It was very close to the
Bayesian bound too.

We tried to apply the regular SVM with RFE to this exam-
ple as we did in the linear case, but SVM/RFE failed to
work with an LK, nor an GK (with any width), nor an PK.
The key problem might be due to the large dimension (i.e.
200) of this example. Comparing the KIGP method to the
SVM/RFE in this non-linear case, besides those beneficial
properties of the KIGP that we already observed in the lin-
ear case, the KIGP method particularly shows its better
adaptability for non-linear problems. In summary, owing
to the non-linear setting of this case, all linear methods
were not applicable. The regular SVM/RFE approach also
did not work. On the contrary, in terms of the testing MR
measure, the KIGP with an GK provided a performance
very close to the Bayesian bound. Comparatively, the
KIGP with an PK seems to be less robust and consistent
than the KIGP with an GK for a non-linear problem in
general.

As a side note, it's worth pointing out that the posterior
PDF of the width parameter seems to disclose some spe-
cial nature of a dataset for a classification problem when
one applies the KIGP with an GK. For instance, we
observed that if the underlying Bayesian classifier can be
well approximated by a linear function, the mode (peak)
of the PDF of the width parameter significantly moves to
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the right side of the value 1 (Fig. 2a); whereas if the Baye-
sian classifier is very non-linear, it moves to the left side of
the value 1 (Fig. 2c).

Example 2
We further designed this example to demonstrate the
effectiveness of the proposed KIGP method when the
number of investigated genes is large, especially for a
problem with a very non-linear Bayesian classifier. A total
of 1000 genes in a simulated microarray experiment and
10 of them were preset as the significant genes with indi-
ces [64,237,243,449,512,573,783,818,890,961]. These

10 significant genes were generated from the mixture
Gaussian distribution with equal probability on N(110, I10
*0.1) and N(-110, I10 *0.1) for the class "1" and from the
Gaussian distribution N(010, I10 *0.1) for the class "-1",
where 010 denotes a vector with 10 "0" elements. The
probabilities for the two classes were equal. The rest of
other insignificant genes were independently generated
from the standard normal distribution N(0,1). Similar to
the first example, the number of training samples is 20, 10
of which were generated from the class "1" and the other
10 samples were generated from the class "-1"; the
number of testing samples is 5000; we independently gen-

The results from applying the KIGP with an GK to one of the training sets of the simulated example 1, where (a) and (b) are for the linear case; (c) and (d) are for the non-liner caseFigure 2
The results from applying the KIGP with an GK to one of the training sets of the simulated example 1, where (a) and (b) are for 
the linear case; (c) and (d) are for the non-liner case. (a) The estimated marginal posterior PDF of the width parameter of the 
GK (solid line) versus its prior PDF (dotted line). The mode of the posterior PDF is at around 1.61. (b) The local fdr with the 
GK(1.61) (with the standard normal as the density of NLF under null hypothesis); the horizontal dotted line represents the 
threshold of the fdr (0.05); the vertical dotted line shows the resulted cutoff value for NLF (3.83). (c) The estimated marginal 
posterior PDF of the width parameter of the GK (solid line) versus its prior PDF (dotted line). The mode of the posterior PDF 
is at around 0.81. (d) The local fdr with the GK(0.81) (with standard normal as the density of NLF under null hypothesis); the 
horizontal dotted line represents the threshold of the fdr (0.05); the vertical dotted line shows the resulted cutoff value for 
NLF (3.68).
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erated 10 sets of training samples from the model and ran
the simulation on each of them.

The procedure for this example is same as in the non-lin-
ear case of the first example. The prior probability for γj =
1 was set at 0.01. For both the "kernel parameter fitting
phase" and the "gene selection phase", we ran 20000 iter-
ations and treated the first 10000 as the burn-in period,

and for the "prediction phase", we ran 5000 iterations and
treated the first 1000 as the burn-in period.

For the 10 simulated training sets, when an PK was the
kernel type for the KIGP method, the algorithm chose the
PK(2) in 7 out of 10 sets. Only in 2 of these 7 sets with the
PK(2), the algorithm found all 10 significant genes. How-
ever, for the 10 sets with an GK, the 10 prescribed genes

The results from applying the KIGP to one of the training sets of the linear case in the simulated example 1, where (a) and (b) are for the simulation with an LK; (c) and (d) are for the one with an GK; (e) and (f) for the one with an PKFigure 3
The results from applying the KIGP to one of the training sets of the linear case in the simulated example 1, where (a) and (b) 
are for the simulation with an LK; (c) and (d) are for the one with an GK; (e) and (f) for the one with an PK. (a) The NLF plot 
of each gene for the simulation with an LK; with the cutoff value for NLF (dotted line), two genes were found significant (the 
circles mark the preset significant genes). (b) The contours of the posterior predictive probability of the class "1" for the simu-
lation with an LK, where X-axis is for the value of the gene 23 and Y-axis represents the value of the gene 57; the numbers 
associated with contours are the probabilities; the asterisks denote the training samples from the class "1"; the circles demon-
strate the training samples from the class "-1"; the dotted line shows the Bayesian classifier. For this set of training samples, the 
testing MR is 0.022 (the Bayesian bound for MR is 0.013). (c) Same as (a) except it is for the simulation with an GK. (d) Same as 
(b) except it is for the simulation with an GK. The testing MR is 0.028. (e) Same as (a) except it is for the simulation with an PK. 
(f) Same as (b) except it is for the simulation with an PK. The testing MR is 0.017.
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were all found in each of the 10 sets. There was one "false
positive" being brought into the significant group in one
set. There was almost no error for the testing samples and
extremely close to the Bayesian bound.

In Fig. 5, we show the simulation results from applying
the KIGP method to one of the training sets. Fig. 5a and
5b are for the simulation with an PK, whereas Fig. 5c and
5d are for the simulation with an GK. Based on Fig. 5a, the
PK(2) was chosen after the "kernel parameter fitting
phase". After the "gene selection phase", with the yielded

cutoff line for the NLF, the KIGP found all 10 prescribed
significant genes and one "false positive" (Fig. 5b). The
MR of the testing set was 0.991. In the simulation with an
GK, the mode of the posterior PDF for the width was
found at around 0.64 (Fig. 5c). With the GK(0.64), after
the "gene selection phase", all 10 prescribed genes were
correctly found with no "false positive". With the found
significant genes, we did not find any testing error in the
"prediction phase". Based on the testing MR, we should
choose the GK for further analysis. This example not only
illustrates the usefulness of the proposed algorithm for

The results from applying the KIGP to one of the training sets for the non-linear case in the simulated example 1, where (a) and (b) are for the simulation with an LK; (c) and (d) are for the simulation with an GK; (e) and (f) for the simulation with an PKFigure 4
The results from applying the KIGP to one of the training sets for the non-linear case in the simulated example 1, where (a) and 
(b) are for the simulation with an LK; (c) and (d) are for the simulation with an GK; (e) and (f) for the simulation with an PK. All 
the legends are same as those in Fig. 3. (a) The NLF plot of each gene for the simulation with an LK; with the cutoff value for 
NLF (dotted line), none of the true preset significant genes was found (2 false negatives). Three false positive genes were mis-
classified as significant. (b) The contours of the posterior predictive probability of the class "1" for the simulation with an LK 
(given the two true preset significant genes). For this set of training samples, the testing MR is 0.5 (the Bayesian bound is 
0.055). (c) Same as (a) except it is for the simulation with an GK. (d) Same as (b) except it is for the simulation with an GK. The 
testing MR is 0.063. (e) Same as (a) except it is for the simulation with an PK. (f) Same as (b) except it is for the simulation with 
an PK. The testing MR is 0.060.
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problems with very large number of investigated genes,
but also reinforces all the arguments we have made for the
Bayesian KIGP framework in the last example.

Real data studies
Following the similar procedure executed in the simulated
studies, the KIGP was applied to four published micro-
array gene expression datasets. A brief summary of these
datasets is provided in Table 1 and the experimental
details are extracted and described below.

Acute leukemia data
The leukemia dataset was originally published by Golub
et al. [1], in which the bone marrow or peripheral blood
samples were taken from 72 patients with either acute
myeloid leukemia (AML) or acute lymphoblastic leuke-
mia (ALL). The data was divided into two independent
sets: a training set and a testing set. The training set con-
sists of 38 samples, of which 27 are ALL and 11 are AML.
The testing set consists of 34 samples, of which 20 are ALL
and 14 are AML. This dataset contains expression levels
for 7129 human genes produced by Affymetrix high-den-
sity oligonucleotide micorarrays. The scores in the dataset
represent the intensity of gene expression after being
rescaled. By using a weighted voting scheme, Golub et al.
made predictions for all the 34 testing samples and 5 of
them were reported being misclassified.

The KIGP with an GK, an PK, and an LK was applied to the
training dataset (including all investigated genes) respec-
tively. The prior parameter πj for all j was uniformly set at
0.001. In both the "kernel parameter fitting phase" and
the "gene selection phase", we ran 30000 iterations and
treated the first 15000 iterations as the burn-in period;
and in the "prediction phase", we ran 5000 iterations and
treated the first 1000 iterations as the burn-in period.

For the simulation with an PK, the resulted posterior
probability masses of the degree parameter d are Prob(d =
1) = 0.985 and Prob(d = 2) = 0.015. With the PK(1), 20
genes were identified as "significant" at 0.05 significance
level (Table 3). Using the PK(1) and the found significant
genes, we made predictions for the 34 testing samples. We
then ran a leave-one-out cross-validation (LOOCV) for
the 38 training samples. This "loose" LOOCV procedure
was however only involved in the "prediction phase".
Since the fitted kernel parameter and the significant genes
chosen from the first two phases had already contained
the most information of the whole training dataset, it was
not a proper validation measure for kernel type competi-
tion. More properly, we further did a rigorous 3-fold cross-
validation (3-fold CV) that included all 3 phases of the
proposed algorithm (the details are described in the "Ker-
nel type competition" subsection). This whole procedure
was then repeated for the simulation with an GK and with

an LK respectively. All the results are summarized in Table
2.

In Table 2, the KIGP with an LK gave the best testing per-
formance: only 1 error was found. We found that many
publications (e.g. [10,12] and [21]) reported the same
testing error for this dataset as well. Only Zhou et al. [14]
reported 0 testing error. However, based on the results of
[14], the testing APP was only 0.83, which is much worse
than that of the KIGP with an LK (i.e. the testing APP =
0.923). We suspect that this misclassified testing sample
by KIGP/LK may be phenotyped incorrectly.

The significant genes found by the KIGP with an LK are
reported in Table 3 and the NLF plot is plotted in Fig. 8a.
In Table 3, the genes with asterisks (gene indices 4499,
1799, 1829 and 1924) are those not reported by the orig-
inal paper [1]. The heat map of the found significant genes
for all the samples (Fig. 6) exhibits a very good consist-
ency between the training set and the testing set (includ-
ing the genes with asterisks). We realize that the posterior
PDF of the width parameter of an GK can disclose some
special nature of the feature space for a given dataset and
problem. Fig. 9a illustrates the dominant linearity of this
case. Another issue that needs to be addressed is that, if
the number of the available samples is small (often true
for a typical microarray application), the measure of "the
number of testing errors" may have noticeable bias.
Instead using "the number of testing errors", the measure
of APP is more reliable under this scenario. In this case, it's
easy to see in Table 2 that, the APP of the rigorous 3-fold
CV is very consistent to that of the independent testing,
whereas the "loose" LOOCV is not. This gives a good
example on how a "loose" LOOCV brings in the so-called
"gene-selection bias".

Small round blue-cell tumor (SRBCT) data
The SRBCT data was originally published by Khan et al.
[27]. The tumor types include Ewing family of tumors
(EWS), rhabdomyosarcoma (RMS), neuroblastoma (NB)
and non-Hodgkin lymphoma (NHL). The dataset of the
four tumor types is composed of 2308 genes and 63 sam-
ples, while 25 blinded testing samples are available. In
this study, we only focused on two classes, EWS and NB.
Thus, there are only 35 training sample (23 EWS and 12
NB) and 12 testing samples (6 EWS and 6 NB).

We applied the same procedure as we did in the leukemia
data case to this dataset. The computational settings were
also almost the same except that πj for all j was set at
0.003. The overall performance report is given in Table 4.
The KIGP with the PK(1) performed best with respect to
both the independent testing and the rigorous 3-fold CV.
The 15 significant genes found by the KIGP with the PK(1)
are listed in Table 5. The NLF plot is shown in Fig. 8b. The
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Table 1: Summary of the real dataset studied in this paper

Dataset Publication p n M Response

Leukemia Golub et al. (1999) [1] 7129 38 34 ALL/AML
SRBCT Khan et al. (2001) [27] 2308 35 12 EWS/NB
Breast Cancer Hedenfalk et al. (2001) [28] 3226 22 0 BRCA1/BRCA2 or sporadic
Colon Alon et al. (1999) [30] 2000 62 0 Tumor/Normal tissue

The results from applying the KIGP to one of the training sets of the simulated example 2, where (a) and (b) are for the simu-lation with an PK; (c) and (d) are for the simulation with an GKFigure 5
The results from applying the KIGP to one of the training sets of the simulated example 2, where (a) and (b) are for the simu-
lation with an PK; (c) and (d) are for the simulation with an GK. (a) The estimated marginal posterior PMF of the degree 
parameter d. (b) The NLF plot of each gene for the simulation with the PK(2); the dots mark the prescribed significant genes. 
For this training set, all 10 preset significant genes and 1 false positive gene were found. (c) The estimated marginal posterior 
PDF of the width parameter r (solid line) versus its prior PDF (dotted line). The mode of the posterior PDF is at around 0.64. 
(d) The NLF plot for each gene for the simulation with the GK(0.64). The legends are same as those in (b). For this training set, 
all 10 preset significant genes were found with no false positive result.
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heat map of the significant genes for all samples is drawn
in Fig. 7. The posterior PDF of the width parameter of the
GK is depicted in Fig. 9b. In Table 5, the genes with aster-
isks (gene indices 976, 823, 842, 437 and 1700) are those
not reported by the original paper [27]. Based on the heat
map plot (Fig. 7), except the gene 823, the other 4 genes
(gene indices 976, 842, 437, and 1700) are consistent
through the training samples to the testing samples.

Similar to the Leukemia data case, the APP of the rigorous
3-fold CV is very consistent to that of the independent
testing while the "loose" LOOCV is rather biased. We also
found that the KIGP with the PK(1) outperformed the
Artificial Neural Network (ANN, [27]) method in terms of
APP (and both methods gave 0 testing errors).

Breast cancer data
The hereditary breast cancer data used in this example was
published by Hedenfalk et al. [28], in which cDNA micro-
arrays were used in conjunction with classification algo-

rithms to show the feasibility of using the differences in
global gene expression profiles to separate BRCA1 and
BRCA2/sporadic. 22 breast cancer tumors were examined:
7 with BRCA1, 8 with BRCA2 and 7 considered sporadic.
3226 genes were investigated for each sample. We labeled
the samples with BRCA1 as the class "1" and others as the
class "-1".

The computational procedure and settings of this example
are same as those in the SRBCT case except that there is no
independent testing. In order to highlight the "gene-selec-
tion bias" problem, besides running a rigorous 3-fold CV
procedure to measure the performance of a kernel type,
we further added a "loose" 3-fold CV procedure (like the
"loose" LOOCV, the CV was only run in the "prediction
phase"). The overall performance report is provided in
Table 6. Based on the rigorous 3-fold CV, we selected the
GK(3.19) as the fitted kernel for this dataset. The posterior
PDF of the width parameter is shown in Fig. 9c. We list the
9 significant genes found by the GK(3.19) in Table 7.

Table 3: Summary of the genes found by applying the KIGP with the LK to the leukemia dataset

Index NLF Accession # Gene Description

4847 11.47 X95735 Zyxin
3320 10.36 U50136 Leukotriene C4 synthase (LTC4S) gene
2020 9.79 M55150 FAH Fumarylacetoacetate
5039 9.63 Y12670 LEPR Leptin receptor
1834 9.22 M23197 CD33 CD33 antigen (differentiation antigen)
4499* 6.79 X70297 CHRNA7 Cholinergic receptor, nicotinic, alpha polypeptide 7
1745 6.46 M16038 LYN V-yes-1 Yamaguchi sarcoma viral related oncogene homolog
3847 5.32 U82759 GB DEF = Homeodomain protein HoxA9 mRNA
4196 5.21 X17042 PRG1 Proteoglycan 1, secretory granule
1779* 5.08 M19507 MPO Myeloperoxidase
6539 4.98 X85116 Epb72 gene exon 1
6376 4.80 M83652 PFC Properdin P factor, complement
3258 4.73 U46751 Phosphotyrosine independent ligand p62 for the Lck SH2 domain mRNA
2111 4.64 M62762 ATP6C Vacuolar H+ ATPase proton channel subunit
1882 4.64 M27891 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)
1829* 4.59 M22960 PPGB Protective protein for beta-galactosidase (galactosialidosis)
1249 4.49 L08246 INDUCED MYELOID LEUKEMIA CELL DIFFERENTIATION PROTEIN MCL1
2121 4.41 M63138 CTSD Cathepsin D (lysosomal aspartyl protease)
2288 4.28 M84526 DF D component of complement (adipsin)
1924* 4.28 M31158 PRKAR2B Protein kinase, cAMP-dependent, regulatory, type II, beta

*: Index of the Genes not reported in [1].

Table 2: Summary of the results from applying the proposed KIGP to the leukemia dataset.

Performance Measure Test CV (3-fold) LOOCV (fixed genes)

PK GK LK PK GK LK PK GK LK

ERR # 2/34 1/34 1/34 2/38 1/38 1/38 0/38 0/38 0/38
APP 0.858 0.835 0.923 0.844 0.819 0.875 0.995 0.928 0.993

The columns labeled by "Test" are for the independent tests.
The columns labeled by "CV (3-fold)" are for the rigorous 3-fold CVs (each CV involves all three phases of an KIGP).
The columns labeled by "LOOCV (fixed genes)" are for the loose LOOCVs (each CV only involves the "prediction phase" of an KIGP).
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There are two genes (gene 1851 and gene 2893 marked
with asterisks in Table 7) that were not reported by the
original paper [28]. The NLF plot is shown in Fig. 8c.

It's not surprising to find that the general performance of
the KIGP with an LK or the PK(1) was not good since we
notice that there is an unusual local peak on the left side

of the posterior PDF of the width parameter r (Fig. 9c).
This local peak usually implies the existence of non-line-
arity in the data for the given problem. A fairly logical rea-
son for this phenomena can be found in [29], in which
Efron showed that the empirical null of this dataset was
significantly different from its theoretical null based on a
large-scale simultaneous 2-sample t-test and he argued

Table 4: Summary of the results from applying the proposed KIGP to the SRBCT dataset

Performance Measure Test CV (3-fold) LOOCV (fixed genes)

ANN PK GK LK PK GK LK PK GK LK

ERR # 0/12 0/12 0/12 0/12 0/35 2/35 0/35 0/35 0/35 0/35
APP 0.923 0.945 0.781 0.865 0.875 0.794 0.823 0.998 0.909 0.997

All the captions are same as in Table 2.
"ANN" stands for the "artificial neural network" method used by the paper [27]

The heat map of the gene expression levels of the 20 found significant genes for the acute leukemia datasetFigure 6
The heat map of the gene expression levels of the 20 found significant genes for the acute leukemia dataset. The panel on the 
left (to the solid line) represents the training samples and that on the right shows the testing samples. The two dotted lines are 
used to separate the two classes (ALL and AML).
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that this was probably due to the fact that the experimen-
tal methodology used in the original paper had induced
substantial correlations among the various microarrays.

This example is also a good case to show the "gene-selec-
tion bias" problem. In Table 6, with the selected signifi-
cant genes found by training all the available samples, the
performance of the KIGP with an LK from the "loose" 3-
fold CV was much better than that of the KIGP with a GK.
However, from the results of the rigorous 3-fold CV, the
KIGP with an LK gave very poor predictive performance,
while the KIGP with an GK still worked reasonably well.

Colon data
This dataset was originally published by Alon et al. [30]
and we noticed that Dettling [16] has reported the per-
formances of many state-of-the-art learning methods that
had been applied to this dataset. We applied the KIGP
method to this dataset so as to have a more side-by-side
performance comparison with other methods. [16] did a
pre-filtering of genes based on the Wilcoxon test statistic
and only ran all the simulations within a 200-gene pool.
However, based on the reported procedure, it should not
bring in much gene-selection bias. Therefore, it forms a
good dataset for comparing different microarray data
analysis methods.

The NLF plots for all 4 real data studies with found kernelsFigure 8
The NLF plots for all 4 real data studies with found kernels. The legends are same for all four plots. (a) The NLF plot of each 
gene with the LK for the leukemia dataset and the dots mark the 20 found significant genes, the details of which are listed in 
Table 3. (b) The NLF plot of each gene with the PK(1) for the SRBCT dataset and the details of the 15 found significant genes 
are listed in Table 5. (c) The NLF plot of each gene with the GK(3.19) for the breast cancer dataset and the details of the 9 
found significant genes are listed in Table 7. (d) The NLF plot of each gene with the GK(2.38) for the colon dataset and the 
details of the 8 found significant genes are listed in Table 9.
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Table 6: Summary of the results from applying the KIGP to the breast cancer dataset

Performance Measure CV (3-fold) CV (3-fold, fixed genes) LOOCV (fixed genes)

PK GK LK PK GK LK PK GK LK

ERR # 4/22 3/22 5/22 0/22 0/22 0/22 0/22 0/22 0/22
APP 0.685 0.739 0.662 0.855 0.878 0.929 0.903 0.889 0.995

All the captions are same as in Table 2, except that there is no independent testing.
The columns labeled by "CV (3-fold, fixed genes)" are for the loose 3-fold CVs (each CV only involves the "prediction phase" of an KIGP).

The estimated marginal posterior PDF of the width parameter of an GK for each real data study case (dotted lines present the prior PDF)Figure 9
The estimated marginal posterior PDF of the width parameter of an GK for each real data study case (dotted lines present the 
prior PDF). (a) For the leukemia dataset, the mode of the posterior PDF is at around 2.79. (b) For the SRBCT dataset, the 
mode of the posterior PDF is at around 2.36. (c) For the breast cancer dataset, the mode of the posterior PDF is at around 
3.19. (We also noticed that there was a local peak on the left, which was at around 0.56). (d) For the colon dataset, the mode 
of the posterior PDF is at around 2.38.
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We applied the proposed KIGP to the whole dataset with-
out any pre-filtering to preclude any possible gene-selec-
tion bias. The computational procedure and settings of
this example are very similar to those in the SRBCT case
except that there is no independent testing. As for the
cross validation procedure, we ran 5 independent simula-
tions and reported the average of the results to decrease
the possible data split bias. The procedure for the data
splitting is described in the "Kernel type competition"
subsection. We did this with each kernel type: PK, GK and
LK, respectively. The resulted performance and the per-
formances of other methods (reported by [16]) are sum-
marized in Table 8. We found that the MR of the KIGP
with an GK is very close to that of the best classifier (PAM
in this case) shown in the list. It is worth mentioning that
PAM's performances were ranked as average to signifi-
cantly worse than 6 other methods, especially comparing
to kernel-induced methods such as the SVM for other pub-
lished real datasets (such as the leukemia dataset, the
prostate dataset and the lymphoma dataset [16]). The
KIGP method with an appropriate kernel is at least not
worse than the SVM.

Based on the MR of the rigorous 3-fold CV, we selected the
GK as the winning kernel type. We then ran KIGP with a
GK to all the available samples. After the "kernel parame-
ter fitting phase", with the posterior PDF of the width
parameter (Fig. 9d), we fixed the kernel as the GK(2.38).
The resulted NLF plot with the GK(2.38) after the "gene
selection phase" is depicted in Fig. 8d. The indices of the
8 identified significant genes are provided in Table 9.

Another interesting finding of this experiment is that,
based on the results of the "loose" CV, the KIGP/LK per-
formed better than the KIGP/GK for this dataset. How-
ever, with a multiple rigorous 3-fold CV, it turned out that
KIGP/GK was the more reliable kernel type for this prob-
lem. When we checked the heat map of the significant
gene set identified by the KIGP/GK (Table 9), we found
that a few samples, particularly including the sample #18,
#20, #45, #49 and #56, are significantly different from
other samples in their labeled class. However, they are
very consistent to those samples in their opposite class. In
fact, these samples were also almost always misclassified
by the KIGP in the multiple rigorous 3-fold CV tests. We

Table 7: Summary of the genes found by applying the KIGP with GK(3.19) to the breast cancer dataset

Index NLF Clone ID Gene Description

1999 4.44 247818 ESTs
2734 4.21 46019 minichromosome maintenance deficient (S. cerevisiae) 7
1851* 4.06 293977 ESTs
585 3.89 293104 phytanoyl-CoA hydroxylase (Refsum disease)
2423 3.85 26082 very low density lipoprotein receptor
1443 3.85 566887 chromobox homolog 3 (Drosophila HP1 gamma)
2893* 3.81 32790 mutS (E. coli) homolog 2 (colon cancer, nonpolyposis type 1)
1068 3.81 840702 SELENOPHOSPHATE SYNTHETASE ; Human selenium donor protein
1008 3.81 897781 keratin 8

*: Index of the Genes not reported in[28].

Table 5: Summary of the genes found by applying the KIGP with PK(1) to the SRBCT dataset

Index NLF Image ID Gene Description

255 11.36 325182 cadherin 2, N-cadherin (neuronal)
976* 10.88 786084 chromobox homolog 1 (Drosophila HP1 beta)
1389 10.19 770394 Fc fragment of IgG, receptor, transporter, alpha
742 9.28 812105 transmembrane protein
2144 8.12 308231 Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh-1c
823* 7.53 134748 glycine cleavage system protein H (aminomethyl carrier)
2050 6.61 295985 ESTs
842* 6.08 810057 cold shock domain protein A
545 5.27 1435862 antigen identified by monoclonal antibodies 12E7, F21 and O13
867 5.22 784593 ESTs
481 5.15 825411 N-acetylglucosamine receptor 1 (thyroid)
1662 4.82 377048 Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh-1c
1601 4.81 629896 microtubule-associated protein 1B
437* 4.42 448386
1700* 4.20 796475 ESTs, Moderately similar to skeletal muscle LIM-protein FHL3 [H. sapiens]

*: Index of the Genes not reported in[27].
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therefore suspect that these samples are mistakenly phe-
notyped. We think that this is probably the reason why all
other learning methods referred in Table 8 do not perform
well for this colon dataset. This also supports the nature of
a KIGP/GK being less sensitive to the mislabeled training
samples than a KIGP/LK.

Discussions and Conclusion
This work was motivated by the data analysis challenges
posed by microarray gene expression experiments and the
mathematical beauty of the kernel-imbedding approach
in their ability to solve a non-linear classification problem
in the feature space rather than in the observation space.
We have presented a unified supervised learning model
named kernel-imbedded Gaussian process (KIGP) under
a hierarchical Bayesian framework. This model was specif-
ically designed for automatic learning and profiling of
microarray gene expression patterns. In the simulated

examples, without knowing anything of the underlying
generative model, the proposed KIGP method has been
shown to perform very close to the Bayesian bound not
only in the linear case, but also in the non-linear case.

With a probit regression setting and the introduction of
latent variables, the KIGP model was set for a binary dis-
ease classification problem. An algorithm with a cascad-
ing structure was proposed to solve this problem and a
Gibbs sampler was built as the mechanical core to do the
Bayesian inferences. Given a kernel type such as a Gaus-
sian kernel or a polynomial kernel, with the training data
as input, the fitted parameter(s) of the kernel type and a
set of significant genes will be the output of the algorithm.
The algorithm also offers a probabilistic class prediction
for each sample. The proposed KIGP can explore not only
the linear but also the potential non-linear relationship
between the target disease and its associated explanatory

The heat map of the gene expression levels of the 15 found significant genes for the SRBCT datasetFigure 7
The heat map of the gene expression levels of the 15 found significant genes for the SRBCT dataset. All the legends are same as 
those in Fig. 6 except that the two classes are EWS and NB.
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genes. Comparing to the regular SVM (a very popular ker-
nel-induced learning method), the proposed KIGP has
two advantages. First, the probabilistic class prediction
from the KIGP could be insightful for borderline cases in
real-world applications. Second, the KIGP method has
implemented specific procedure for tuning the kernel
parameter(s) (such as the width parameter of a Gaussian
kernel or the degree parameter of a polynomial kernel)
and the model parameters (such as the variance of the
noise term). Tuning parameters has always been one of
the key issues for non-linear parametric learning methods.
The results of the simulated examples show that the KIGP
significantly outperformed the regular SVM method with
RFE as a gene selection strategy in a non-linear case and it
provided more useful information, such as the posterior
PDF of the parameters, for further prediction and analysis
as well. Computationally, KIGP is also proven to be
robust, therefore it's very amenable to be adopted to a
Gibbs sampling system. Both the simulated examples and
the real data studies have demonstrated the effectiveness
of the proposed method.

There are still a few interesting problems left for future
research. For example, although the KIGP in this study is
developed to only solve a binary classification problem, it
can easily be extended to a multi-class classification prob-
lem based on a multinomial probit regression setting. On
the other hand, some other problems are not only chal-
lenging but also critical. First, the kernel type competing
problem is still a tough issue. The use of the predictive fit
measure method discussed in the "Methods" section is
simple to formulate, but it may be problematic when the
independent testing set is not available and/or there are
many candidate kernel types. We are currently working on
addressing this issue by implementing a reversible jump

Markov Chain Monte Carlo (RJMCMC) algorithm as a
simultaneous integrative approach for kernel type selec-
tion within the KIGP framework. Another important
problem is the independent prior assumption on ele-
ments of the gene-selection vector γ and the "component-
wise drawing" strategy to sample it. Although this will
eventually lead to convergence based on the MCMC the-
ory, it may take a very long time if the true underlying
explanatory genes are highly correlated with each other.
Therefore, a proper kernel-induced clustering algorithm
under some proper generative model will definitely be
helpful on this regard. Furthermore, if a more appropriate
prior for γ can be found, the dependency between genes
can be simply taken into account to the whole framework
by sampling γ not in a component-wise fashion but in a
block-wise fashion instead. This will then dramatically
increase the speed for reaching convergence.

Interestingly, building a kernel based on the feature of the
given data and the classification problem is the ideal way
to take full advantage of the kernel-induced learning algo-
rithm. For example, if an appropriate generative model is
available for the given dataset, a class of kernels named
"natural kernels" is applicable in this context. This prob-
lem and the pre-clustering problem mentioned above
seemingly share many fundamental elements. However,
the further investigation of this is beyond the scope of this
paper.

Methods
Problem formulation
We consider a binary classification problem. Suppose
there are n training samples and let y = [y1, y2,...,yn]' denote
the class labels, where yi = 1 indicates the sample i being
in the class "I" and yi = -1 indicates it being in the other

Table 8: Summary of the performance comparison on applying different classifiers to the colon dataset

Classifier MR

KIGP(PK) 0.166
KIGP(GK) 0.129
KIGP(LK) 0.198
BagBoost 0.161
Boosting 0.191
RF 0.149
SVM 0.151
PAM 0.119
DLDA 0.129
kNN 0.164

For the KIGP with each of the three different kernel types (PK, GK, LK), we took 5 independent rigorous 3-fold CVs to 62 samples (each CV 
involves all 3 phases of an KIGP) and reported the average MR. For the 7 referred classifiers, the results and the experimental details were originally 
reported by[16].
RF: "Random Forests"
PAM: "Nearest shrunken centroids"
DLDA: "diagonal linear discriminant analysis"
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class (i.e. not class "I"), for i = 1,2,...,n. For each sample,
there are p genes being investigated and we define the
gene expression matrix X as

The data matrix X usually should be normalized for each
gene (each column of X). In order to handle the gene
selection problem, we further define the gene-selection
vector γ as:

Xγ is defined as the gene expression matrix corresponding
to the selected genes in accordance to the gene-selection
vector γ. I.e.

where the j th column of Xγ is the i th column of the matrix
X while the index of the j th non-zero element in the vec-
tor γ is i. In formula (3), there are q genes being selected
out from the total p genes; and q <<p in a typical gene
selection problem. Formulating the problem in a regres-
sion setting, we introduce n latent variables z1, z2,..., zn,
such that

zi = g(Xγi) + b + ei = ti + b + ei, and

where xγi denotes the i th row of the matrix Xγ; ei presents
the independent noise term, which is assumed to be Guas-
sian distributed with zero mean, σ2 variance; b is the inter-

cept term; and the link function g(·) is assumed to be
chosen from a class of real-valued functions and the out-
put of which is a Gaussian process. In the vector form, we
define z = [z1, z2,..., zn]', t = [t1, t2,..., tn]' and e = [e1, e2,...,
en]'. Note that, if g(·) is restricted to a linear function and
σ2 is fixed at 1, model (4) is very similar to a linear probit
regression setting.

Kernel-Imbedded Gaussian Processes (KIGPs)
In general, a continuous stochastic process is a collection
of random variables, and each of these random variables
takes on real values from a probability distribution func-
tion. If we consider the outputs of a learning function
g(·), where g is chosen according to some distribution D
defined over a class of real-valued functions, then the col-
lection of these outputs is also a stochastic process and the
distribution D presents the prior belief in the likelihood.

A Gaussian process is a continuous stochastic process such
that the marginal distribution for any finite subset of the
collection of its outputs is a zero mean Gaussian distribu-
tion. In this paper, as defined in formula (4), ti = g(xγi),
where xγi = [xγ,i1, xγ,i2,..., xγ,iq], i = 1,2,..., n; and in the for-
mula, we assume

Pg~D([g(xγ1), g(xγ2),..., g(xγn)] = [t1, t2,..., tn]) ∝

, where

Kij = K(xγi, xγj), i, j = 1,2,..., n.  (5)

In (5), K(xγi, xγj) is a function defined in the observation
space and it conceptually represents the inner product for
sample vectors xγi and xγj in the feature space, �Ψ(xγi),
Ψ(xγj)� (assuming Ψ(·) is the mapping function from the
observation space to the feature space). K is a kernel
matrix called the Mercer kernel. Formula (5) formulates
our prior belief for the learning model and the kernel
function K(·,·) uniquely decides the properties of our
learning functions. Some of the most commonly used ker-
nel functions include:

Linear kernel: K(xγi, xγj) = �xγi, xγj �  (6a)

Polynomial kernel: K(xγi, xγj) = (�xγi, xγj� + 1)d, where d =
1,2,.. is the degree parameter.  (6b)

Gaussian kernel: K(xγi, xγj) = , where r

> 0 is the width parameter.  (6c)

In (6a) and (6b), the term �xγi, xγj� presents the inner prod-
uct between the vectors xγi and xγj. When one uses the lin-
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Table 9: Summary of the genes found by applying the KIGP with 
GK(2.38) to the colon dataset

Index NLF

377 6.54
493 6.25
249 5.48
267 4.51
245 4.34
765 4.29
513 3.94
14 3.88
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ear kernel, the feature space is the same as the observation
space. In this paper, we refer the linear kernel as the LK,
the polynomial kernel with degree "d" as the PK(d) and
the Gaussian kernel with width "r" as the GK(r). We pri-
marily focus on the KIGP method with the Gaussian ker-
nel and the polynomial kernel, and discuss them in
parallel.

In model (4), we have the latent vector z = t + e + b1n,
where e ~ N(0, σ2In), In denotes the n × n identity matrix,
and 1n presents the n × 1 vector with all the elements
being equal to 1; N(·,·) denotes the multivariate normal
distribution. Hence,

P(z|t) ∝ exp(- (z - t - b1n)'Ω-1(z - t - b1n)), where Ω =

σ2In.  (7)

With the Bayes rule, we have

where γ is the new predictor associated with the given

gene-selection vector γ and  is the posterior output

(without intercept b) with respect to γ, provided the

matrix Xγ and the latent output z. With a kernel such as

defined by (6) and assuming an intercept b and a variance

of noise σ2 are both given, plugging (5) and (7) into (8)

and integrating out t, the marginal distribution of  given

γ, Xγ and z yields a Gaussian distribution as follow [26]:

| γ, Xγ, z ~ N(f( γ, Xγ, z), V( γ, Xγ, z)), where

f( γ, Xγ, z) = (z - bln)' (Kγ + σ2I)-1 kγ, V( γ, Xγ, z) = K( γ,

γ) - kγ'(Kγ + σ2I)-1kγ,

Kγ,ij = K(xγi, xγj), kγi = K( γ, xγi), i, j = 1,2,..., n.  (9)

Supervised Microarray Data Analysis using KIGP
Prior specification
(1) γj is assumed to be a priori independent for all j, and

Pr(γj = 1) = πj, for j = 1, 2,..., p,  (10)

where the prior probability πj reflects prior knowledge of
the importance of the jth gene.

(2) A non-informative prior is applied for the intercept b:

P(b) ∝ 1.  (11a)

This is not a proper probability distribution function
(PDF), but it leads to a proper posterior PDF.

(3) The inverted gamma (IG) distribution is applied as the
prior for the variance of noise σ2. Specifically, we assume:

P(σ2) ~ IG(1,1)  (11b)

(4) For the width of a Gaussian kernel (i.e. a scaling
parameter), an inverted gamma distribution is also a rea-
sonable choice as a prior. To preclude too small or too big
r (which will make the system to be numerically unsta-
ble), we apply IG(1,1) as the prior for r2, that is

P(r2) ~ IG(1,1)  (11c)

(5) For the degree of a polynomial kernel, we assume a
uniform distribution. In this paper, we only consider the
PK(1) and the PK(2) to avoid the issue of overfitting for
most practical cases. Therefore, we have P(d = 1) = P(d =
2) = 0.5.

(6) We assume that γ and b are a priori independent from
each other, that is P(γ, b) = P(γ)P(b).

Bayesian inferences for model parameters
Based on model (4), label y only depends on z, therefore,
all other model parameters are conditionally independent
from y if z is given. For convenience, we drop the notation
of the training set X in the following derivation and drop
y as well when z is given. We also assume the kernel type
is given and the associated kernel parameter is termed by
θ.

(I) Sampling from γ|z, b, σ2, θ

Here, we drop the notation of the given parameters b, σ2

and θ. With the model described in (2), (5) and (7), we
have

Kγ,ij = K(xγi + xγj), i, j = 1,2,..., n; Ω = σ2In, In and 1n are
defined in (7).  (12)

The detailed derivation for (12) is provided in Appendix.
After inserting the prior given by (10), we have

In practice, rather than sampling γ as a vector, we sample
it component-wise from
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In both (13) and (14), Kγ is defined in (12).

(II) Sampling from t|γ, b, z, σ2, θ

As shown by Eq. (A6) in the Appendix, the conditional
distribution P(t|z, b) is Gaussian:

t|z, b ~ N((In - Ω(Ω + Kγ)-1)(z - bln), Ω - Ω(Ω + Kγ)-1Ω),

where Kγ and Ω are defined in Eq. (12).  (15)

We thus can draw t given z accordingly.

(III) Sampling from z|t, b, σ2, y

Given the class label vector y, the conditional distribution
of z given t is a truncated Gaussian distribution, and we
have the following formula for i = 1,2,..., n:

zi|ti, b, σ2, yi = 1 ∝ N(ti + b, σ2) truncated at the left by 0,

zi|ti, b, σ2, yi = -1 ∝ N(ti + b, σ2) truncated at the right by 0.
 (16)

(IV) Sampling from b|z, t, σ2

When z and t are both given, this is a simple ordinary lin-
ear regression setting with only an intercept term. Under
the non-informative prior assumption given by (11a), it
yields

b|z, t, σ2 ~ N(μ, σ2/n), where .  (17a)

(V) Sampling from σ2|z, t, b

With IG(α, β), α > 0, β > 0, as the prior, the conditional
posterior distribution for σ2 is also an inverted gamma
distribution. That is

σ2|z, t, b ~ IG(α + n/2, β + ns2/2), where

.  (17b)

Kernel parameters tuning
One of the major advantages of kernel-induced learning
methods is that one can explore the non-linearity feature
of the underlying model for a given learning problem by
applying different kernels. It is therefore necessary to dis-

cuss the issue of kernel parameter tuning. With the KIGP
framework constructed above, this turns out to be rather
straightforward.

As in the last section, we denote the kernel parameter(s)
as θ, which can be either a scalar (e.g. the width parameter
of an GK or the degree parameter of an PK) or a vector. For
algorithmic convenience, we work with the logarithm of
the conditional likelihood for the parameter θ:

With a proper prior distribution for θ, P(θ), we have:

P(θ|z, γ, b, σ2) ∝ exp (L(θ))* P(θ),  (19)

where L(θ) is defined in (18). In this paper, we specifically
focus on two kernel types: the polynomial kernel and the
Gaussian kernel, as defined in (6b) and (6c) respectively.
For an GK, with the prior for the width parameter given in
the "Prior specification" subsection, the resulted posterior
distribution given by (19) is non-regular. We apply the
Metropolis-Hasting algorithm (the details can be found in
[31]) to draw the sample. For an PK, we simply calculate
the likelihood with respect to each d by (18) and sample
d accordingly. Sometimes, one may need to calculate the
gradient of L(θ) with respect to θ (assume θ = [θ1,..., θJ]')
when adopting other plausible algorithms:

where Ωγ(θ) = Kγ (θ) + σ2In, i = 1,..., J.  (20)

Theoretically, the proposed KIGP with the linear kernel
performs very close to most other classical linear meth-
ods. As the width parameter of a Gaussian kernel increases
(bigger and bigger than 1), within a reasonable range, the
KIGP with such an GK performs fairly close to the KIGP
with a linear kernel. On the contrary, when the width
decreases (smaller and smaller than 1), the performance
of the KIGP in the observation space behaves very non-
linear. When the degree of a polynomial kernel of an
KIGP increases, the non-linearity of the KIGP also
increases. When the degree is equal to 1, the only differ-
ence between the PK(1) and the linear kernel is a constant.
In short, within a kernel class, different values of the ker-
nel parameter represent different feature spaces. For cer-
tain specific kernel parameter values, the performance of
the KIGP with an GK or with an PK will be close to the
KIGP with a linear kernel or a classical linear model in
general. Therefore, the posterior distribution of the kernel
parameter will provide some clues on what kind of a fea-
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ture space is more appropriate to the target problem with
the given training samples.

Proposed Gibbs sampler
With the derivation above and a given kernel type, we pro-
pose our Gibbs sampling algorithm as follows:

1. Start with proper initial value [γ[0], b[0], t[0], z[0], σ2[0],
θ[0]]; then set i = 1.

2. Sample z [i] from z|t[i-1], b[i-1], σ2[i-1] via (16).

3. Sample t[i] from t|γ[i-1], b[i-1], z[i], σ2[i-1], θ[i-1] via (15).

4. Sample b[i] from b|z[i], t[i], σ2[i-1] via (17a).

5. Sample σ2[i] from σ2|z[i], t[i], b[i] via (17b).

6. Sample γ[i] from γ|z[i], b[i], σ2[i], θ[i-1] via (14) compo-
nent-wise.

7. Sample θ[i] from θ|z[i], b[i], σ2[i], γ[i].

8. Set i = i + 1 and go back to the step 2 until the required
number of iterations.

9. Stop.  (21)

In the above procedure, the kernel parameter θ denotes
the degree parameter "d" of a polynomial kernel or the
width parameter "r" of a Gaussian kernel. In step 2, we fol-
low the optimal exponential accept-reject algorithm sug-
gested by Robert [32] to draw from a truncated Gaussian
distribution. After a suitable burn-in period, we can
obtain the posterior samples of [z[i], t[i], b[i], σ2[i], γ[i], θ[i]]
at the i th iteration with the procedure described in (21).
The core calculation of the proposed Gibbs sampler
involves calculating the inverse of the matrix Kγ + σ2I.
Since the kernel matrix Kγ is symmetric and non-negative
definite, Kγ + σ2I is symmetric and positive definite. There-
fore, the algorithm is theoretically robust and the
Cholesky decomposition can be applied in the numerical
computation. The total computation complexity of the
proposed Gibbs sampler within each iteration is O(pn3).

Overall algorithm
In Fig. 1, we epitomize the general framework of the pro-
posed KIGP method. The box bounded by the dotted lines
represents the KIGP learning algorithm. A kernel type is
supposed to be given a priori. The algorithm basically has
a cascading structure and is composed of three consecu-
tive phases: the "kernel parameter fitting phase", the
"gene selection phase" and the "prediction phase".
Although in the Bayesian sense one can involve all the
parameters into the proposed Gibbs sampler for all three

phases, we suggest to fix the kernel parameter(s) after the
"kernel parameter fitting phase" and fix the gene-selection
vector after the "gene selection phase" for practicality.
Very often, we are only interested in the area around the
peak of the posterior PDF (or probability mass function
(PMF)) of a parameter, especially for the kernel parame-
ter(s) and the gene-selection vector. This strategy will lead
to a much faster convergence of the proposed Gibbs sam-
pler as long as the posterior PDF or PMF of the kernel
parameter(s) is unimodal. For all three phases, we need to
discard some proper number of iterations as their burn-in
periods. Some dynamic monitoring strategies to track the
convergence of a MCMC simulation can be used (e.g. in
[31]).

A practical issue needs to be addressed here. It's better to
fix the variance parameter σ2 at a proper constant during
the "kernel parameter fitting phase" and the "gene selec-
tion phase" because this will help the proposed algorithm
be more numerically stable and converge faster. For all the
simulations of this paper, as in a regular probit regression
model, we set σ2 equal to 1 (step 5 in (21)) in the first two
phases and only involve it into the Gibbs sampler in the
"prediction phase". More details of each phase are
described as follows.

Kernel Parameter Fitting Phase
In the kernel parameter fitting phase, our primary interest
is to find the appropriate value(s) for the kernel parame-
ter(s) of the given kernel type. In this study, we focus on
two kernel types, the polynomial kernel and the Gaussian
kernel. With the knowledge of the training set X and y, we
firstly involve all model parameters (except σ2), the gene
selection vector and the kernel parameter into the simula-
tion of the algorithm given by (21). After convergence, the
samples obtained from (21) within each iteration are
drawn from the joint posterior distribution of all the
parameters. For a PK, since the degree parameter is a dis-
crete number, we simply take the degree value with the
highest posterior probability. For a GK, we calculate the
histogram of the sample values of the width parameter
with some proper number of bins. Then we use a Gaus-
sian smoother to smooth over the histogram bars (similar
to a Gaussian kernel density estimation). Finally, we take
the center of the bin with the highest histogram counts as
the best fitted value of the width parameter.

Gene Selection Phase
After the "kernel parameter fitting phase", we fix the ker-
nel parameter(s) at the fitted value(s) and then continue
to run the proposed Gibbs sampler. In this subsection, we
present an empirical approach to determining whether a
gene is potentially significant based on the posterior sam-
ples and a given threshold.
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Efron [29] thoroughly discussed an empirical Bayes
approach for estimating the null hypothesis based on a
large-scale simultaneous t-test. In this paper, we essen-
tially follow the key concept therein to assess whether or
not a gene is of significant importance for the given classi-
fication problem. We first define a statistic named by
"Normalized Log-Frequency" (NLF) to measure the rela-
tive potential significance for a gene. By denoting Fj as the
appearing frequency of the j th gene appeared in the pos-
terior samples, the definition of NLF is formulated as:

In practice, if Fj is 0, we simply set it as 1/2 divided by the
total number of iterations. Our use of the NLF as the key
statistic is based on the fact that the logarithm of a gamma
distribution can be well approximated by a normal distri-
bution, while a gamma distribution is empirically a
proper distribution for the appearing frequency of any of
the genes from a homogenous group in the posterior sam-
ples.

Suppose that the p NLF-values fall into two classes, "insig-
nificant" or "significant", corresponding to whether or not
NLFj, for j = 1, 2,..., p, is generated according to the null
hypothesis, with prior probabilities Pb0 and Pb1 = 1 - Pb0,
for the two classes respectively; and that NLFj has the con-
ditional prior density either f0 (NLF) or f1(NLF) depend-
ing on its class. I.e.

Pb0 = Pr{Insignificant}, Pr(NLF|Insignificant) = f0(NLF)

Pb1 = Pr{Significant}, Pr(NLF|Significant) = f1(NLF)  (23)

The marginal distribution for NLFj is thus

Pr(NLF) = f0(NLF)*Pb0 + f1(NLF) * Pb1 = f (NLF)  (24)

By using the Bayes' formula, the posterior probability for
"insignificant" class given the NLF therefore yields

Pr(Insignificant)|NLF) = f0(NLF) * Pb0/f(NLF)  (25)

Abiding to [29], we further define a term, the local "false
discovery rate (fdr)", by

fdr(NLF) = f0(NLF)/f(NLF)  (26)

Since in a typical microarray study, Pb0 generally is very
close to 1 (say Pb0 > 0.99), so fdr(NLF) is a fairly precise
estimator for the posterior probability of the null hypo-
thesis (insignificant class) given the statistic NLF. With

fdr(NLF), we can decide whether or not a target gene is
"significant" at some confidence level accordingly. For all
the examples, we report all the genes with fdr smaller than
0.05.

To calculate fdr(NLF), one needs to estimate f(NLF) and to
choose f0(NLF) properly. For estimating f(NLF), one can
resort to the ensemble values of the NLFs, {NLFj, j = 1,
2,..., p}. We divide the target range of NLF into M equal
length bins with the center of each bin at xi for i = 1,2,...,
M. A heuristic choice of M is the roundup of the maxi-
mum NLF value multiplied by 10. Then we calculate the
histogram for the given NLF set with respect to each of
these bins followed by fitting a Gaussian smoother. The
output divided by the product of the width of the bin and
the number of genes (i.e. p) will be a proper estimation for
f(NLF) on the center of each bin.

The more critical part is the choice of the density of NLF
under null hypothesis, i.e. f0(NLF). The basic assumption
we impose here is that the statistic NLF under null hypo-
thesis follows a normal distribution. Since Pb1 is much
smaller than Pb0 (say Pb0 > 0.99) in most real microarray
analysis problems, it is very safe to choose the standard
normal (zero mean, unit variance) as f0(NLF) based on
the definition (22). Throughout this paper, we always
choose the standard normal as the density of NLF under
null hypothesis. (In case Pb0 > 0.99, some more elabo-
rated schemes are needed and an easy approach can be
found in [29].) After both f(NLF) and f0(NLF) are
obtained, the local fdr for each gene can be calculated by
(26) consequently. Based on the local fdr, one can select
the "significant" class of genes and fix the gene-selection
vector at some given confidence level thereafter.

Prediction Phase

After the "gene selection phase", both the kernel parame-
ter(s) and the gene-selection vector have been fixed. We
continue to run the proposed Gibbs sampler (21) and the
computational complexity of the Gibbs sampler dramati-
cally decreases to O(n3). After a new proper burn-in

period, we can draw samples of z, b and σ2 within each
iteration in the "prediction phase". Following (9), the

posterior PDF for the output  given the testing data  in
the l-th iteration is Gaussian:

[l]| γ, Xγ, z[l], b[l], σ2[l] ~ N(f( γ, Xγ, z[l], b[l], σ2[l]), V( γ,

Xγ, z[l], b[l], σ2[l])) = N(f[l], V[l])

where f[l] = (z[l] - b[l]ln)' (Kγ + σ2[l]In)-1kγ, V[l] = K( γ, γ) -

kγ'(Kγ + σ2[l]In)-1kγ,
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Kγ,ij, = K(xγ,i, xγ,j), kγ,i = K( γ, xγ,i), for i, j = 1,..., n ; l = 1,...,

L.  (27a)

Then, the predictive probability for the output label 

given  can be estimated by using the Monte Carlo inte-
gration:

Kernel type competition
Another important issue needs to be addressed is how to
properly select a kernel type. If an independent set of test-
ing samples is available, one approach is to calculate its
predictive fit measure such as the misclassification rate
(MR) or average predictive probability (APP) of the true
class label. If the number of the available testing samples
is sufficiently large, this approach is very reliable.

Assuming that there are M testing samples {( 1,

1),...,( M, M)}, where i denotes the microarray data

and i is its class label for i = 1,2,..., M, the MR for the test-

ing set can be estimated by

The smaller the MR a kernel type has, the better general
performance it should have. If the number of the available
testing samples is small, the APP of the true class label is a
more consistent measure. Throughout this paper, we
always refer APP to the APP of the true class label and it is
defined as:

In both (28a) and (28b), the probability P( i|X, y, i, K)

is evaluated by (27a) and (27b). Obviously, a better
model should have a higher APP. The APP usually pro-
vides a less biased predictive fit measure when the number
of testing samples is limited.

After running the simulations under each candidate ker-
nel type, one can simply choose the kernel type with the
least MR or with the largest APP for the testing set. How-
ever, the independent testing samples are not always
available. To use the predictive fit approach, one may
resort to a rigorous cross-validation (CV) procedure.

Sometimes, a "leave-one-out" cross-validation (LOOCV)
is proper. That is, one treats one of the training samples as
the testing sample and applies the proposed KIGP, includ-
ing all three phases, to the rest n-1 samples and obtains
the predictive measure for this sample. One does this pro-
cedure for each training sample and the average of the pre-
dictive measures should give a consistent evaluation to
the target kernel type.

A more unbiased approach is to use a multiple independ-
ent 3-fold CVs. For each round of CV, one first randomly
partitions the training set into three sets with a balanced
ratio of the class labels. Then for each of the three sets, one
treats it as the testing set and applies the KIGP (including
all three phases) to the remaining two sets as the training
set and gets the predictive fit measure for this testing set.
After running this procedure for all three sets, one gets the
predictive measure of all available samples for this round.
One does multiple rounds of independent 3-fold CVs
(through different random partitioning) and the average
of the predictive measure for the whole set will deliver an
unbiased assessment of the given kernel type.

The predictive fit approach through a multiple 3-fold CVs
works very well. Throughout this study, we always use it
to select the proper kernel type for a given problem if the
independent testing set is not available. As the nature of
the MCMC-based methods however, the KIGP method is
extremely computationally intensive, especially when the
number of the candidate kernel types is large. A more inte-
grative implementation for kernel or model selection,
such as making use of a reversible jump MCMC approach,
would help further streamline the current KIGP.
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KIGP kernel-imbedded Gaussian process

AIC Akaike information criterion

BIC Bayesian information criterion

MCMC Markov chain Monte Carlo

PAM prediction analysis for Microarrays

SVM support vector machine
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LSSVM least square support vector machine
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PK polynomial kernel

PK(d) polynomial kernel with degree "d"

GK Gaussian kernel

GK(r) Gaussian kernel with width "r"

NLF normalized log-frequency

fdr false discovery rate

MR misclassification rate

APP average predictive probability

LOOCV leave-one-out cross-validation

3-fold CV 3-fold cross-validation

PDF probability density function

AML acute myeloid leukemia

ALL acute lymphoblastic leukemia

SRBCT small round blue-cell tumor

EWS Ewing family of tumors

RMS rhabdomyosarcoma

NB neuroblastoma

NHL non-Hodgkin lymphoma

ANN artificial neural network

RJMCMC reversible jump Markov chain Monte Carlo

IG inverted gamma

PMF probability mass function

RF random forests

DLDA diagonal linear discriminant analysis
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Appendix: Inference for P(t|z, b, Kγ)
First of all, for convenience, we drop the notation of b and
Kγ in the following derivations. Under an KIGP model, we
have

t ~ N (0, Kγ), z|t ~ N(t + bln, Ω), where Kγ, ln and Ω are
defined in Eq. (12).  (A1)

The joint distribution of z and t is still Gaussian, which
can be formulated as:

where μt = (Ω-1 + )-1Ω-1(z - bln).  (A2)

In principle, if z and t form a joint Gaussian distribution,
both the marginal distribution of z and the conditional
distribution of t given z are also Gaussian. Making use of
the following equation from [33]:

(A + C)-1 = A-1 - A-1(A-1 + C-1)-1A-1,  (A3)

it consequently yields

and

where μt = (In - Ω(Ω + Kγ)-1(z - bln).  (A5)

z ~ N(bln, Kγ + Ω)

Or strictly,

t|z ~ N((In - Ω(Ω + Kγ)-1)(z - bln), Ω - Ω(Ω + Kγ)-1Ω)
(A6)

NOTE: The matrix Ω - Ω(Ω + Kγ)-1Ω is non-negative defi-
nite.
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