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The magnitude of an adaptive immune response is controlled by the
interplay of lymphocyte quiescence, proliferation, and apoptosis.
How lymphocytes integrate receptor-mediated signals influencing
these cell fates is a fundamental question for understanding this
complex system. We examined how lymphocytes interleave times to
divide and die to develop a mathematical model of lymphocyte
growth regulation. This model provides a powerful method for fitting
and analyzing fluorescent division tracking data and reveals how
summing receptor-mediated kinetic changes can modify the immune
response progressively from rapid tolerance induction to strong
immunity. An important consequence of our results is that intrinsic
variability in otherwise identical cells, usually dismissed as noise, may
have evolved to be an essential feature of immune regulation.

Intermitotic times of yeast, protozoan, and mammalian cells can
vary broadly, with little, if any, inheritance of division time from

parent cells (1–6) [Note 1 in supporting information (SI) Text]. The
bulk of this variability is observed in the G1 phase of cell cycle (2).
We have also noted broad variation in times to first division by
resting murine and human lymphocytes (7, 8) stimulated in vitro.
This variation conforms to a lognormal distribution consistent with
a stochastic process affecting times to divide. It is not clear as yet
whether variability arises internally within identical cells or as the
result of a history of variable exposure of identical cells to external
influences. Irrespective of its genesis, this variability in time to first
division is the primary source of cell division heterogeneity in
populations, as revealed by fluorescent division tracking methods
(7, 9). T and B lymphocytes typically take between 30 and 50 h to
enter their first division and then take �9 h to passage through each
subsequent division round (9). As a consequence of variation in the
first division time, the dividing cells are found spread over three to
five consecutive division numbers as they progress (9). Relatively
simple models of growth developed within this framework have
been used to extract division and death rates from time series data
and provide novel insights into how receptor-delivered signals
regulate lymphocyte growth (7, 9). Furthermore, mathematical
models based on the Smith–Martin concept of two phases of the cell
cycle have been successfully applied to division tracking data
(10–14). Despite this success, we are interested in developing more
accurate models that include experimentally validated rules for how
cells interleave times to division and times to die and how they are
inherited from one generation to the next. To explore these
questions, we used B lymphocytes as our experimental model
because of their sensitivity to signals affecting both growth and
survival in vitro. Here, we propose a general model of cell growth
regulation that is suitable for robustly fitting division tracking data.
Furthermore, we use our model to illustrate that variability in times
to divide and die can be an essential property of lymphocytes that
enables exquisite quantitative regulation of the strength of the
immune response.

Results
Times to Die and Divide: First Division. When naive T or B lympho-
cytes are purified from lymphoid tissue and placed in tissue culture
without stimulation, they progressively die by apoptosis, apparently
because of removal from homeostatic survival signals in vivo (9, 15).

When first examined, cell loss seemed to follow an exponential
decay function consistent with a constant probability of dying over
time (Fig. 1A and refs. 7, 9, and 15). However, we noted deviations
from the exponential when more time points were measured (Fig.
1 A and B). These deviations fell into two classes. In many
experiments there was a rapid loss of cells over the first 6 h, before
viability stabilized. This loss was affected by the manner of prepar-
ing cells; B cells prepared quickly showed little initial loss (Fig. 1B).
The second pattern of death is seen clearly in Fig. 1B where a lag
is followed by a gradual loss of cells over time. A similar pattern of
cell loss is seen in Fig. 1A once the rapid, early death is considered.
Because we have frequently observed lognormal distributions in
relation to times taken for cells to divide (7, 8), we hypothesized a
lognormal time to die curve, as shown in Fig. 1B. This hypothesis
fit the data for cell loss extremely well (Fig. 1A). Other density
functions with similar long-tail characteristics were fitted. Typically
the two-parameter skew distributions, lognormal, gamma, and
Weibull all gave excellent fits and each may find application in
different situations (Note 2 in SI Text). IL-4 modulates B cell
viability without stimulating cell growth by means of the up-
regulation of the anti-apoptotic molecule Bcl-xl (16–18). This efect
is shown in Fig. 1C. A lognormal density function also fits the loss
of B cells cultured with varying concentrations of IL-4 (Fig. 1C)
(Note 3 in SI Text). Interestingly, increasing IL-4 concentration
increased the mean time to die but not the value for the variance
(Fig. 1D). We conclude that time to death is capable of being
programmed for a particular mean time and altered by signals such
as IL-4. Further evidence that the time of death follows an
age-dependent distribution, rather than the age-independent ex-
ponential, was noted by modulating the crucial survival proteins
Bim and Bcl-2 (19, 20). The survival curves of B cells from Bim-
deficient or Bcl-2-overexpressing mice are well described by a
lognormal distribution, but the mean times to die are extended to
81 h and 234 h, respectively (SI Fig. 6). These results illustrate that
the expression of antiapoptotic molecules contributes to the setting
of the mean time to death, rather than controlling a constant
probability of dying over time.

Independent Control of Survival and Division. When resting T and B
cells are polyclonally stimulated in vitro the time taken to enter into
the first round of division is longer than for subsequent divisions (9)
and can be varied by the stimulation conditions. This result can be
visualized experimentally by arresting cells in G2/M of their first
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division. The mean time to divide varies with stimulus concentra-
tion, illustrating the wide spectrum of time modulation that is
possible (Fig. 2A). The broad variation in times to divide revealed
by this method is characteristic for all systems studied so far and is
well fitted by a lognormal in each case (Fig. 2A and refs. 7 and 8).

Lymphocytes placed in culture with a polyclonal stimulus are
subject to conflicting motivations to die or divide, and each can be
regulated by extrinsic signals. An important question for modeling
the net result is how the two mutually exclusive outcomes are
resolved within a cell. It has been reported that T cell activation with
�CD3 does not alter the rate of loss of cells for a number of days
(7). This pattern can also be seen for B cells stimulated with �-CD40
and IL-4 (Fig. 2B). The rate of death of cells is not affected in the
period before the time at which the surviving cells begin dividing.
Our hypothesis to explain this result is the independence of the
survival and division machinery inside each cell (7, 9). Each cell
placed in culture has a time to die and each mitogenic stimulus
activates the cells and imposes a time to divide that also varies in the
population according to a lognormal distribution. The two timed
processes within the cell are unaware of each other and whichever
outcome is reached first determines the fate of that cell. This
cellular ‘machinery’ is illustrated in SI Fig. 7 for individual cells. Fig.
2C gives an example of the calculation of net cell numbers. The
combination of independent cellular machines governing times to
divide and die therefore represents a key regulatory unit of the cell
(Note 4 in SI Text). We propose the name cyton for this unit. To
represent a cyton we plot time to divide as a positive probability and

time to die as a negative (Fig. 2C). Similarly, we can represent a
cyton symbolically using two probability distributions � and � as

with � representing time to divide and � time to die, whereas (. . . )
stands for the required parameter values. A cyton can operate with
any probability distribution, but we find the lognormal probability
density function is an excellent representation of experimental data
and we use it here to illustrate our argument for both division time
and death time (Note 5 in SI Text). Given parameter values for the
distributions of time to die and divide and the starting cell number
(N), the number of cells dividing or dying per unit time at time t can
be calculated:

ndiv�t� � N�1 � �
0

t

��t��dt����t�, [2]

ndie�t� � N�1 � �
0

t

��t��dt����t�. [3]

The factors in parentheses account for the cells that would have
divided at time t but had previously died, and vice versa, respec-
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Fig. 1. Probabilistic regulation of time to die. Small resting B cells from spleens
or lymph nodes were placed in culture under different conditions, and survival
was measured by propidium iodide uptake. Cell numbers were counted by
reference to beads as described (7). Fitting was performed by using a Matlab
fmincon function. (A) Survival curves were fitted by using an exponential decay
function [solid line, k � 0.35, 95% confidence interval (C.I.) (�0.011, �0.008)] or
a lognormal survival function without T � 0 and T � 1 [dashed line, � � 48.55,
95%C.I. (�2.3,2.2), � �24.90,95%C.I. (�4.6,�4.5)]. (B) SurvivalofBcells isolated
from lymph nodes by using the quick preparation method. Data fitted using
lognormal survival function [dashed line, � � 42.59, 95% C.I. (�4.6,�4.5), � �
29.08, 95% C.I. (�3.8, �3.0)]. The probability distribution function of the fitted
lognormal is represented in Inset. (C) Survival curvesofBcells isolatedfromspleen
and cultured either alone [circles, � � 45.40, 95% C.I. (�1.8, �1.7), � � 36.94, 95%
C.I. (�7.3, �5.9)] or with saturating IL-4 [squares, � � 62.33, 95% C.I.(�2.2, �2.0),
� � 30.02, 95% C.I. (�5.1, �4.2)]. (D) The values for � and � of lognormal survival
functionfit toviabilitydata for threeexperiments titrating IL-4.Errorbars for A–C
represent SEM for triplicate samples. Error bars in D represent 95% C.I.s assigned
by using a Monte Carlo simulation.
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Fig. 2. Independent times to die and divide. Resting B cells were placed in
culture with 10 �g/ml, 3.3 �g/ml, or 0 �g/ml �-CD40 and 500 units/ml IL-4. (A) B
cells were cultured in the presence of colcemid, and a time course of 1 h [3H]thy-
midine pulses was conducted. Cells were harvested and scintillation counted.
Lowering �-CD40 concentration delayed � [60.53, 95% C.I. (�1.1, �1.3) vs. 73.56,
95% C.I. (�3.1, �2.6)] and increased � [19.01, 95% C.I. (�1.8, �2.5) vs. 24.89, 95%
C.I. (�4.9, �4.0)]. (B) B cell number was measured by flow cytometry by using the
protocol described in ref. 7. After 48 h, cell numbers increased in a dose-
dependent manner. Before 48 h, cell numbers remained the same regardless of
stimulation level. (C) The independent operation of times to divide and times to
die for B cells stimulated with 10 �g/ml �-CD40 and 500 units/ml IL-4 is repre-
sented here by a cyton plot. The times to divide and times to die are represented
as positive and negative values, respectively. Assigning probability distributions
to the variations in times to divide and die allows the number of cells dividing and
dying in each time interval to be quantitated. The net effect of the two inde-
pendent timed events is shown in the shaded area.
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tively. The independent action of death and division thus reduces
the initial pool of cells available for the other process as time
progresses. This calculation is illustrated in Fig. 2C (Note 6 in
SI Text).

Generalized Cyton Model. The above probabilistic calculation deliv-
ers the number of cells that enter division over time. However, to
develop a model that can predict the number of cells in each division
at any time we must account for the fate of cells after they divide
the first time. Lymphocytes typically progress through a series of
division rounds much more quickly than they took to enter the first
division. Furthermore, the intermitotic times through subsequent
divisions are not affected by the time taken to reach first division
(9, 21). BrdU labeling also indicates that average division times are
not shorter among cells that have reached later divisions (7, 9, 21).
Thus, there is no evidence as yet for a significant inheritance of
division times by lymphocytes, as has been noted in studies of
mother-daughter inheritance (1, 3, 22) and for inheritance of key
growth factor receptors by T cells (1).

Based on the lack of inheritance of division times noted for
dividing lymphocytes we propose that general cell proliferation
obeys the following rules:

1. The operation of the regulable cyton controlling division and
survival, seen leading up to the first division, is repeated through
subsequent divisions.

2. Individual cells will, upon division, ‘‘erase’’ the values of the
parents for times to divide and die, and adopt new values drawn
from the appropriate distribution.

Thus we can assign a cyton term for each division:

where m is the largest division class being analyzed [typically m is
�8 in current carboxyfluorescein diacetate-succinimidyl ester
(CFSE) experiments because of technical limitations]. Given prob-
ability densities � and �i, i � 0, 1, . . . , m, which might each be
specified by a small number of parameters, the above cyton
expression can be solved to yield the number of cells that divide or
die in each division class at any time, as well as the cumulative
number of cells in each class. As such the solution will allow
comparisons to experimental data and evaluation of the underlying
assumptions.

The formulae in Eqs. 2 and 3 apply to the activation of an
homogeneous cell population where all cells will eventually divide
if they do not die first (Note 7 in SI Text). However, in reality not
all cells in a population will eventually divide if they avoid death.
Some may be nonresponsive to the stimulation, for example
through the lack of an effective receptor (23). Alternatively cells
may clearly respond, as evidenced by cell size increases or expres-
sion of activation markers, but not go on to divide (7). Thus, we
introduce the parameter progressor fraction, pF0, the proportion of
the population that will divide in response to the stimulation. This
factor modifies the formulae in Eqs. 2 and 3 to give the following
expressions for the number of cells dividing for the first time or
dying to exit division class 0 (Note 8 in SI Text)

n0
div�t� � pF0 � N � �1 � �

0

t

��t��dt�� � ��t�, [5]

n0
die�t� � N � �1 � pF0 � �

0

t

��t��dt�� � ��t�. [6]

For division classes i � 1,2,. . . ,m, the number of cells dividing or
dying per unit time at time t are given by

ni
div�t� � 2 � pFi � �

0

t

dt�ni�1
div �t�� � �1 � �

0

t�t�

dt��i�t��� � �i�t � t��,

[7]

ni
die�t� � 2 ��

0

t

dt�ni�1
div �t�� � �1 � pFi ��

0

t�t�

dt��i�t��� � �i� t � t�� . [8]

One can think of cells entering division class i from the previous
division at different times t� as separate cohorts that divide or die
as described in the previous section. The integrals in the above
equation simply sum over the different starting times of these
cohorts with different starting cell numbers, 2ni�1

div (t�), and different
times to division or death, t � t�. In these equations we have also
incorporated a progressor fraction for subsequent divisions, pFi, to
account for the possibility that some cells stop dividing at particular
division classes and remain there until they die. For experimental
systems under continuous stimulation, the progressor fraction for
subsequent divisions after the first is practically 1, and we do not
need it to obtain good fits. However, in the next section, we study
systems that receive stimulation only for a limited time, in which
case cells tend to stop dividing after a small number of divisions so
the progressor fractions for subsequent division are 	1.

To calculate total cell numbers in each division as a function of
time, Ni(t), the number of cells that have entered that division from
the previous division over all previous times are added, and the
number that have left by means of division and death are subtracted

N0�t� � N � �
0

t

dt��n0
div�t�� � n0

die�t���, [9]

Ni�t� � �
0

t

dt��2ni�1
div �t�� � ni

div�t�� � ni
die�t���, i � 1, 2, . . . , m.

[10]

Depending on the division and death distributions that define the
cyton, these integrals could be evaluated to give the number of cells
in each division as a function of time. This calculation can be done
analytically for the case of exponential distributions (constant rates
of division and death), and possibly other simple distributions.
However, for most distributions an analytic solution will not exist
so numerical techniques will be needed (Note 9 in SI Text). To this
end, we developed a numerical solver [general cyton solver
(GCytS)] that has the flexibility to substitute different probability
density functions and parameter values for consecutive divisions.
GCytS was implemented in Matlab (Mathworks, Natick, MA). The
primary operation of GCytS algorithms is given in quantitative
implementation method provided. Fig. 3A shows several solved
examples where the probability density function chosen is lognor-
mal and parameter values are kept constant after first division. The
results illustrate how subtle changes in mean times to die and divide
can vary the rate of cell expansion from rapid growth to rapid cell
loss. The extreme sensitivity to small changes in parameters is
emphasized by noting the 300-fold difference in cell number after
80 h that results from a simultaneous lengthening of time to divide
and shortening of time to die by 20%. SI Fig. 8 illustrates the
positive role variance plays in the effective operation of the cyton
machinery. With little variation in times to division and death, there
is a switch-like outcome yielding either a maximally strong response
or a rapid loss of all cells as the mean times to divide and die are

0 . . .
0 . . .

0

1 . . .
1 . . .

1

. . . m . . .
m . . .

m

; [4]
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varied. However, as the variance of both elements of the cyton is
increased the transition between rapid cell loss and growth is
softened, allowing many more transitional quantitative outcomes to
occur. Such a quantitative scenario is more typical of our experience
of immune responses under many different conditions.

Our GCytS can calculate total cell numbers at any time after
initiation of culture, the number of cells in each division, and the
number of dead cells and times of death. Therefore, appropriate
parameters can be found to fit experimental data from CFSE
division tracking experiments that report total cell number and
cells per division for both live and dead cells. GCytS was linked
to optimization routines in Matlab to apply to particular data
sets. In Fig. 3B, the number of B cells in each division was
determined over a series of harvest times after stimulation with
�-CD40 and IL-4. The optimal solution from GCytS is shown,
illustrating the possible excellent fits. The cyton model fits for
three independent experiments measuring proliferation under
the designated conditions were compared with both a Smith–
Martin model (2) and the Deenick six-parameter proliferation
model (7) (Note 10 in SI Text). We used Akaike’s information
criterion (AIC) as a guide for comparison taking account of the
different number of parameters used in each model (24). In all
experiments the difference in AIC values (
AIC) between the
cyton model and other proliferation models was 	10 (Note 11
in SI Text). 
AIC values 	10 indicate that the cyton model offers
a superior fit to the data despite the addition of two extra
parameters (24, 25). Nevertheless, fitting to live cell numbers
alone does not give an exclusive solution for subsequent division
and death parameters as faster division times can to some extent
be counteracted by earlier mean times to die (data not shown).
The solution is well constrained if the number of dead cells per
division can also be included in the data set examined by GCytS
(data not shown). However, this information is difficult to obtain
with the CFSE method. Thus, we explored experimental systems
more dependent on death to help further validate our model.

Regulating the Number of Divisions. Stimulated lymphocytes do not
divide indefinitely. However, the number of consecutive cell divi-
sions they undergo can vary. For example �-CD40 stimulated B
cells divide three to four times after stimulus is removed before they
have entered their first division (26), whereas CD8 T cells divide at
least eight times after stimulus removal (27, 28). Thus, stimulation

can initiate a variable number of division rounds, possibly by
accumulating an excess of mitosis triggering molecules that dilute
with division. When cells stop dividing they usually die rapidly (26).
The cyton model can describe this behavior in a very simple and
biologically intuitive manner. For a rapidly dividing population the
division time of individual cells is usually shorter than the under-
lying time to die and the cells are thus more likely to divide;
however, if the impetus to divide ends then the underlying time to
death and associated variance should be revealed.

To examine the process of division cessation and test the above
hypothesis, B cells were exposed to varying time periods of stim-
ulation. When stimulus was removed after 40 h, B cells divided on
average three times before dying compared with continuous stim-
ulation in which division continued (Fig. 4 A and B). Analysis of cell
division after stimulus removal at 30, 40, or 50 h revealed that
increasing the duration of stimulus enables cells to progress through
more divisions (Fig. 4C). These experiments illustrate that progres-
sion through division number can be regulated (26). However,
quantitative analysis of the number of divisions cells undergo is
complicated by the high level of death that follows once division
stops. To more accurately measure cell progression, the same
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average value for �i�0 was used in an alternative cyton fit (gray lines in D–F) and
was also used to fit continual stimulation data G. These model solutions illustrate
that the slight variations obtained in �i�0 do not appreciably affect the fit to total
cell number data and that the same parameter value can apply to cells in
continual stimulus. Data points represent mean and SEM of three replicates.
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Fig. 3. The generalized cyton model. (A) Cell number over time is plotted for
five different cyton configurations. Progressing from cyton plot 1 to 5, the
median times to divide (�i�0) and die (�i�0) in subsequent divisions are increased
and decreased, respectively, by 	20% (represented by the shaded area in cyton
plots).Thesesubtleshiftscausea largenetchangeintheresponsefromexpansion
(trace 1) to contraction (trace 5). Cyton parameter values: trace 1, �i�0 9, �i�0 11;
trace 2, �i�0 9, �i�0 10.5; trace 3, �i�0 10, �i�0 10.5; trace 4, �i�0 11, �i�0 10.5; trace
5, �i�0 11, �i�0 9. s is kept constant at 0.2 for all cyton plots. (B) B cells were labeled
with CFSE and stimulated with 10 �g/ml �-CD40 and 500 units/ml IL-4. Cells were
harvested at different times, and the total cell number as well as number of cells
in each division was calculated. The optimal cyton solution is shown by dashed
lines. Mean and SEM values of three replicates are shown. (C) Cyton solution of
data shown in B. By using the data available, the cyton solution for time to death
in subsequent divisions cannot be constrained.
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cessation experiments were conducted on B cells from Bcl-2-
overexpressing mice. These cells proliferated and stopped, as for
WT, but did not subsequently die confirming that regulation of
division number is independent of the cellular machinery that leads
to cell death (SI Fig. 9 A and C). Not all cells divide the same
number of times and SI Fig. 9 illustrates how a truncated normal
distribution provides an excellent fit to describe the variation in cell
progression of a population of cells (Notes 12 and 13 in SI Text).
Thus, the level of stimulation regulates the division number at which
cells cease dividing. We shall refer to this number as a cell’s
‘‘division destiny.’’

To accommodate the need to change cell division progression we
implemented into GCytS the ability to vary the number of divisions
taken by cells before they stop dividing by varying the progressor
fractions, pFi, for each division class. In accord with the above
experiments we used a truncated normal distribution starting at
division 1 (Note 14 in SI Text). This operation introduces two
parameters, D� and D�, to describe the ‘‘division destiny’’ of cells
or proportion that arrest in each division. Our implementation also
assumes that division destiny is independent of times to first division
(Note 13 in SI Text). This modified model was fitted to data for total
cell number and cells per division from cell cessation experiments
on WT cells (Fig. 4 D–G). Optimal solutions revealed that increas-
ing the stimulation duration increased the D� value of division
destiny (Fig. 4H). The modified GCytS could fit total cell number
(Fig. 4 D–G) and cell number per division data (SI Fig. 10) from
continuous and limited stimulation conditions extremely well. The
rate of cell death in subsequent divisions found by GCytS fitting was
consistent with lognormal probability densities of similar parame-
ters for all stimulation conditions (Fig. 4I). Thus, the basic assump-
tions of the generalized cyton model including modulation of total
division number apply extremely well to these complex experi-
ments. When the modified GCytS was used to refit the data
presented in Fig. 3 it detected a progressive dropping from cycle
with division number and gave faster division times consistent with
those reported in Fig. 4I. The reanalysis result is given in SI Fig. 11.

We envisage other scenarios are possible where parameter values
will change with division. Such changes could be by means of
internal division-linked programming, as seen for differentiation
(29, 30), or they could be imposed from external signals by means
of interactions with cells or exposure to cytokines. From a modeling
perspective both internal and external regulation of the parameters
can be treated in the same manner.

Quantitative Immune Responses. A period of antigen driven lym-
phocyte expansion in vivo is followed by cell death and contraction
leaving a long-lived memory population (31, 32). This pattern of
response is similar to that described above for cells following
general cyton rules. That is the primary stimulus induces continued
proliferation through a large number of divisions. Eventual cessa-
tion of proliferation triggering because of either internal limitations
or external withdrawal of growth factors would lead to cell loss
conforming to the underlying probabilistically distributed time to
die in the expanded population. The typically long tail of a
lognormal probability density function has the consequence that
most cells die off whereas a proportion of cells can be left as
long-lived, and potentially therefore serving as memory cells,
without any explicit ‘‘programming’’ for longevity.

In SI Fig. 12 the cyton model is applied to in vivo data for the
expansion, cessation of proliferation and subsequent death of CD8
and CD4 epitope-specific T cells in an LCMV infection (33).
Analysis of these data illustrates the general application of our
modeling approach. The data follows the cyton model encompass-
ing the expansion phase and the 10- to 30-fold reduction in cell
number before mechanisms for maintaining memory cell number
take over. This mechanism could be differentiation to long lived
memory cells or maintenance through homeostatic proliferation
(34). Thus, whilst acknowledging that differentiation to memory

cells and acquisition of sensitivity to regulatory cytokines necessary
for survival occurs in vivo (35), we suggest that the cyton rules of
proliferation, cessation and loss still underlie the basic processes of
the adaptive immune response.

Fig. 5 shows the family of patterns of adaptive response possible
with different parameter values of the generalized cyton model.
The parameters altered are those known to be influenced by signals:
the means of times to divide and die and the distribution of division
destiny. The figure emphasizes the quantitative nature of the
immune response and how changes in parameter values can pro-
foundly affect the outcome. Thus, we can ask, what regulates the
eventual path? Clearly from the above discussion and previous
work, lymphocyte subsets have different programmed outcomes for
the number of divisions, rate of division and subsequent death rate
(26, 28, 36). This outcome can be envisaged as a default response.
However, further regulation through receptor delivered signals can
alter this response. Cytokines, for example, can act on the division
times, number of divisions and possibly variance of these values. In
this way a default response in which cells are activated and
proliferate but subsequently die away leading to clonal deletion can
be converted progressively to one of weak positive outcome, to a
strongly positive response with memory (Fig. 5D) by signals that
reduce times to divide, increase times to die and increase the
eventual number of divisions. A conceptual framework where the
kinetic features of the immune response are triggered along a
default path that can be modulated by additional regulatory signals
may be useful as a basis for immune system modeling where the fate
of each individual need not be determined.

Discussion
We have formulated a model of cell growth, cessation and death
built on experimental evidence of how B cells interleave times to
divide and die under different conditions. We believe our model is
superior to alternatives such as the Smith–Martin-based models
(10–14) or Deenick et al. models (7) and offers a general tool for
examining regulation of growth and survival that is especially suited
to data obtained from CFSE division tracking methods. Whereas
formulated and tested here for B cells, the model is equally well
applied to T cells and other regulated cell systems. Our model
envisages the cell as comprising independent stochastic machines

Fig. 5. Regulating adaptive immunity. This figure exemplifies the proliferation
curves that result from varying parameters known to be affected by signal
strength and by external signal regulation such as cytokines. (A–C) Parameters
altered are the means of times to division and death (A and B) and the average
number of divisions undergone (C). Parameter values varied at equally spaced
intervals from: (A) �0 med�30h(darkest) to60h(lightest), sconstantat0.3hand
�i�0 from 100 h to 50 h, s constant at 0.5 h; (B) �i�0 from 10 h to 20 h, s constant
at 0.2 h and �i�0 from 35 h to 16 h, s constant at 0.75. pF0 was set to 1.0 in all cases.
Average division number (C) was defined by varying the mean of the division
destiny distribution from D� � 12 (darkest) to D� � 5 (lightest), while keeping D�

constant at 2. Possible outcomes are shown in D.
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controlling times to divide and die and the number of divisions
possible. By incorporating independent variation associated with
each machine a large number of alternative cell fates are realized
and, surprisingly, the essential features of the adaptive immune
response emerge

The cyton model was developed by taking a top-down view of the
lymphocyte and asking what internal mechanisms must be operat-
ing to explain our quantitative data. We conclude that independent
stochastic machinery governing cell division and death times are
essential. Much is known of the molecular machinery governing cell
division and death and the nature of signaling paths that modulate
them (20, 37). Strikingly, the regulation requires sets of molecules
that interact with each other, often through chains of enzyme-
substrate interactions. The concentration and expression level of
key molecules contribute to the timing of the regulated event (as is
well illustrated for pro- and antiapoptotic molecules). Thus, the
mechanism of timing the outcome can be understood. It is also
possible to speculate as to the source of the variation. It is clear that
protein products such as Bcl-2 are usually limiting for cell survival
as overexpression extends lifespan in many cell types. Therefore,
transcriptional variation intrinsic to expression of any protein (38,
39) will alter the lifetime of otherwise identical cells. Chains of
interacting proteins each with transcriptional ‘‘errors’’ will contrib-
ute to further variance. Thus, there is ample explanation for the
source of the variation. These complex internal processes, involving
links of enzymes and limiting substrates, are also consistent with the
class of skew probability distributions that fit the observed variation
in timed events. The lognormal distribution is typically generated by
a large number of sequential multiplicative events not unlike
enzyme-product sequences. The gamma distribution arises from a
series of consecutive stochastic events. It is tempting to suggest that
the surprisingly large number of internal regulatory proteins found
to control division and death has evolved partly to modulate time
variation and adjust it to an appropriate range. If internal complexi-
ty has evolved to contribute a measured degree of stochasticity to
cellular processes an important validating principle can be observed:
When modeling complex cellular events an appropriate probability
distribution can formally capture the intent of the myriad internal
cellular processes governing the eventual outcome, without having
to understand, or identify, each one (Note 15 in SI Text).

A key question that arises from our discussion therefore is
whether the cellular division and death machinery is inevitably
noisy, and inefficient, or whether it is deliberately so, as we argue
here. Perhaps the system has evolved the complex number of links,
regulators and epigenetic changes to allow the variance to reach an

optimal level. This proposal would explain why cell cycle time
variation is such a striking characteristic of cell growth (1–6).

Materials and Methods
Mice. Male C57BL/6 inbred mice were used for experiments. These
animals were bred at the Walter and Eliza Hall Institute (WEHI)
animal facility (Kew, Victoria, Australia) and were maintained in
specific pathogen-free conditions at WEHI (Parkville) in accor-
dance with institutional animal ethics committee regulations. Bcl-2
Vav and Bim KO mice were kindly provided by Alan Harris and
Philippe Bouillet and also maintained at WEHI (Parkville).

Reagents and Antibodies. Recombinant mouse IL-4 was a gift of R.
Kastelein (DNAX Research Institute, Palo Alto, CA). The �-CD40
antibody (1c10) was prepared from the original hybridoma (40)
provided by DNAX Research Institute.

B Cell Isolation and Cell Culture. Single-cell suspensions were pre-
pared from spleens and lymph nodes of mice, and red cells were
lysed and run on discontinuous Percoll density gradients as de-
scribed (41). Small dense cells were harvested from the 65%/80%
interface, and B cells were purified by means of negative selection
by using magnetic beads (Miltenyi Biotec, Bergisch Gladbach,
Germany). For division tracking experiments, cells were labeled
with CFSE (Molecular Probes, Eugene, OR) according to the
originally published method (42). B cells were �95% B220�,
CD19�, IgM�, IgD� as determined by flow cytometry. B cells were
cultured in B cell medium described in ref. 30. For stimulus
withdrawal experiments, cells were precultured in stimulus for a
designated time period before being washed twice in 37°C B cell
medium and returned to culture.

Colcemid Analysis. For direct analysis of time of entry into first
division, methodology defined in ref. 7 was followed.

Quantitative Implementation Method. A full description of the
quantitative implementation method is in SI Text.
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