Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 May;59(5):1688–1690. doi: 10.1128/aem.59.5.1688-1690.1993

Siderophore Utilization by Bradyrhizobium japonicum

Ora Plessner 1,, Taryn Klapatch 1, Mary Lou Guerinot 1,*
PMCID: PMC182140  PMID: 16348945

Abstract

Bradyrhizobium japonicum USDA 110 and 61A152 can utilize the hydroxamate-type siderophores ferrichrome and rhodotorulate, in addition to ferric citrate, to overcome iron starvation. These strains can also utilize the pyoverdin-type siderophore pseudobactin St3. The ability to utilize another organism's siderophores may confer a selective advantage in the rhizosphere.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bitter W., Marugg J. D., de Weger L. A., Tommassen J., Weisbeek P. J. The ferric-pseudobactin receptor PupA of Pseudomonas putida WCS358: homology to TonB-dependent Escherichia coli receptors and specificity of the protein. Mol Microbiol. 1991 Mar;5(3):647–655. doi: 10.1111/j.1365-2958.1991.tb00736.x. [DOI] [PubMed] [Google Scholar]
  2. Carson K. C., Holliday S., Glenn A. R., Dilworth M. J. Siderophore and organic acid production in root nodule bacteria. Arch Microbiol. 1992;157(3):264–271. doi: 10.1007/BF00245160. [DOI] [PubMed] [Google Scholar]
  3. Guerinot M. L., Chelm B. K. Bacterial delta-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in the soybean/Bradyrhizobium japonicum symbiosis. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1837–1841. doi: 10.1073/pnas.83.6.1837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Guerinot M. L., Meidl E. J., Plessner O. Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol. 1990 Jun;172(6):3298–3303. doi: 10.1128/jb.172.6.3298-3303.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hantke K. Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K12. Mol Gen Genet. 1983;191(2):301–306. doi: 10.1007/BF00334830. [DOI] [PubMed] [Google Scholar]
  6. Hohnadel D., Meyer J. M. Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains. J Bacteriol. 1988 Oct;170(10):4865–4873. doi: 10.1128/jb.170.10.4865-4873.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jurkevitch E., Hadar Y., Chen Y. Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl Environ Microbiol. 1992 Jan;58(1):119–124. doi: 10.1128/aem.58.1.119-124.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Page W. J., Dale P. L. Stimulation of Agrobacterium tumefaciens Growth by Azotobacter vinelandii Ferrisiderophores. Appl Environ Microbiol. 1986 Feb;51(2):451–454. doi: 10.1128/aem.51.2.451-454.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rabsch W., Winkelmann G. The specificity of bacterial siderophore receptors probed by bioassays. Biol Met. 1991;4(4):244–250. doi: 10.1007/BF01141188. [DOI] [PubMed] [Google Scholar]
  10. Rioux C. R., Jordan D. C., Rattray J. B. Anthranilate-promoted iron uptake in Rhizobium leguminosarum. Arch Biochem Biophys. 1986 Jul;248(1):183–189. doi: 10.1016/0003-9861(86)90415-7. [DOI] [PubMed] [Google Scholar]
  11. Rioux C. R., Jordan D. C., Rattray J. B. Iron requirement of Rhizobium leguminosarum and secretion of anthranilic acid during growth on an iron-deficient medium. Arch Biochem Biophys. 1986 Jul;248(1):175–182. doi: 10.1016/0003-9861(86)90414-5. [DOI] [PubMed] [Google Scholar]
  12. Scott-Craig J. S., Guerinot M. L., Chelm B. K. Isolation of Bradyrhizobium japonicum DNA sequences that are transcribed at high levels in bacteroids. Mol Gen Genet. 1991 Sep;228(3):356–360. doi: 10.1007/BF00260627. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES