Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Jun;59(6):1855–1863. doi: 10.1128/aem.59.6.1855-1863.1993

Effects of Kraft Pulp and Lignin on Trametes versicolor Carbon Metabolism

Brian P Roy 1, Frederick Archibald 1,*
PMCID: PMC182172  PMID: 16348963

Abstract

The white rot basidiomycete Trametes (Coriolus) versicolor can substantially increase the brightness and decrease the lignin content of washed, unbleached hardwood kraft pulp (HWKP). Monokaryotic strain 52J was used to study how HWKP and the lignin in HWKP affect the carbon metabolism and secretions of T. versicolor. Earlier work indicated that a biobleaching culture supernatant contained all components necessary for HWKP biobleaching and delignification, but the supernatant needed frequent contact with the fungus to maintain these activities. Thus, labile small fungal metabolites may be the vital biobleaching system components renewed or replaced by the fungus. Nearly all of the CO2 evolved by HWKP-containing cultures came from the added glucose, indicating that HWKP is not an important source of carbon or energy during biobleaching. Carbon dioxide appeared somewhat earlier in the absence of HWKP, but the culture partial O2 pressure was little affected by the presence of pulp. The presence of HWKP in a culture markedly increased the culture's production of a number of acidic metabolites, including 2-phenyllactate, oxalate, adipate, glyoxylate, fumarate, mandelate, and glycolate. Although the total concentration of these pulp-induced metabolites was only 4.3 mM, these compounds functioned as effective manganese-complexing agents for the manganese peroxidase-mediated oxidation of phenol red, propelling the reaction at 2.4 times the rate of 50 mM sodium malonate, the standard chelator-buffer. The presence of HWKP in a culture also markedly stimulated fungal secretion of the enzymes manganese peroxidase, cellulase, and cellobiose-quinone oxidoreductase, but not laccase (phenol oxidase) or lignin peroxidase.

Full text

PDF
1855

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addleman K., Archibald F. Kraft Pulp Bleaching and Delignification by Dikaryons and Monokaryons of Trametes versicolor. Appl Environ Microbiol. 1993 Jan;59(1):266–273. doi: 10.1128/aem.59.1.266-273.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Archibald F. S. Lignin Peroxidase Activity Is Not Important in Biological Bleaching and Delignification of Unbleached Kraft Pulp by Trametes versicolor. Appl Environ Microbiol. 1992 Sep;58(9):3101–3109. doi: 10.1128/aem.58.9.3101-3109.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Archibald F., Roy B. Production of manganic chelates by laccase from the lignin-degrading fungus Trametes (Coriolus) versicolor. Appl Environ Microbiol. 1992 May;58(5):1496–1499. doi: 10.1128/aem.58.5.1496-1499.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bourbonnais R., Paice M. G. Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem J. 1988 Oct 15;255(2):445–450. doi: 10.1042/bj2550445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fåhraeus G., Reinhammar B. Large scale production and purification of laccase from cultures of the fungus Polyporus versicolor and some properties of laccase A. Acta Chem Scand. 1967;21(9):2367–2378. doi: 10.3891/acta.chem.scand.21-2367. [DOI] [PubMed] [Google Scholar]
  6. Glenn J. K., Morgan M. A., Mayfield M. B., Kuwahara M., Gold M. H. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1983 Aug 12;114(3):1077–1083. doi: 10.1016/0006-291x(83)90672-1. [DOI] [PubMed] [Google Scholar]
  7. Kelley R. L., Reddy C. A. Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium. J Bacteriol. 1986 Apr;166(1):269–274. doi: 10.1128/jb.166.1.269-274.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kersten P. J., Kirk T. K. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol. 1987 May;169(5):2195–2201. doi: 10.1128/jb.169.5.2195-2201.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keyser P., Kirk T. K., Zeikus J. G. Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J Bacteriol. 1978 Sep;135(3):790–797. doi: 10.1128/jb.135.3.790-797.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kirkpatrick N., Reid I. D., Ziomek E., Ho C., Paice M. G. Relationship between Fungal Biomass Production and the Brightening of Hardwood Kraft Pulp by Coriolus versicolor. Appl Environ Microbiol. 1989 May;55(5):1147–1152. doi: 10.1128/aem.55.5.1147-1152.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klyosov A. A. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry. 1990 Nov 27;29(47):10577–10585. doi: 10.1021/bi00499a001. [DOI] [PubMed] [Google Scholar]
  12. Lackner R., Srebotnik E., Messner K. Oxidative degradation of high molecular weight chlorolignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1092–1098. doi: 10.1016/0006-291x(91)91004-v. [DOI] [PubMed] [Google Scholar]
  13. Lingappa B. T., Prasad M., Lingappa Y., Hunt D. F., Biemann K. Phenethyl alcohol and tryptophol: autoantibiotics produced by the fungus Candida albicans. Science. 1969 Jan 10;163(3863):192–194. doi: 10.1126/science.163.3863.192. [DOI] [PubMed] [Google Scholar]
  14. Morpeth F. F., Jones G. D. Resolution, purification and some properties of the multiple forms of cellobiose quinone dehydrogenase from the white-rot fungus Sporotrichum pulverulentum. Biochem J. 1986 May 15;236(1):221–226. doi: 10.1042/bj2360221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morpeth F. F. Some properties of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum. Biochem J. 1985 Jun 15;228(3):557–564. doi: 10.1042/bj2280557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Narayanan T. K., Rao G. R. Production of 2-phenethyl alcohol and 2-phenyllactic acid in Candida species. Biochem Biophys Res Commun. 1974 Jun 4;58(3):728–735. doi: 10.1016/s0006-291x(74)80478-x. [DOI] [PubMed] [Google Scholar]
  17. Narayanan T. K., Rao G. R. Production of beta-(4-hydroxyphenyl)ethanol and beta-(4-hydroxyphenyl)lactic acid by Candida species. Can J Microbiol. 1976 Mar;22(3):384–389. doi: 10.1139/m76-058. [DOI] [PubMed] [Google Scholar]
  18. Paice M. G., Reid I. D., Bourbonnais R., Archibald F. S., Jurasek L. Manganese Peroxidase, Produced by Trametes versicolor during Pulp Bleaching, Demethylates and Delignifies Kraft Pulp. Appl Environ Microbiol. 1993 Jan;59(1):260–265. doi: 10.1128/aem.59.1.260-265.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Samejima M., Eriksson K. E. Mechanisms of redox interactions between lignin peroxidase and cellobiose:quinone oxidoreductase. FEBS Lett. 1991 Nov 4;292(1-2):151–153. doi: 10.1016/0014-5793(91)80855-w. [DOI] [PubMed] [Google Scholar]
  20. Scott W., Foote J. L. The inhibition of stearoyl-coenzyme A desaturase by phenyllactate and phenylpyruvate. Biochim Biophys Acta. 1979 Apr 27;573(1):197–200. doi: 10.1016/0005-2760(79)90186-3. [DOI] [PubMed] [Google Scholar]
  21. Tien M., Kirk T. K. Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science. 1983 Aug 12;221(4611):661–663. doi: 10.1126/science.221.4611.661. [DOI] [PubMed] [Google Scholar]
  22. Wariishi H., Dunford H. B., MacDonald I. D., Gold M. H. Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism. J Biol Chem. 1989 Feb 25;264(6):3335–3340. [PubMed] [Google Scholar]
  23. Wariishi H., Valli K., Renganathan V., Gold M. H. Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J Biol Chem. 1989 Aug 25;264(24):14185–14191. [PubMed] [Google Scholar]
  24. Yu E. K., Saddler J. N. Enhanced Production of 2,3-Butanediol by Klebsiella pneumoniae Grown on High Sugar Concentrations in the Presence of Acetic Acid. Appl Environ Microbiol. 1982 Oct;44(4):777–784. doi: 10.1128/aem.44.4.777-784.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES