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Cultures of 10 different bacteria were used to serve as food sources for axenically grown Acanthamoeba
casteUlanii, Acanthamoeba polyphaga, and HartmanneUla vermiformis. The nonpigmented enterobacteriaceae
Escherichia coli K-12 and KlebsieUla aerogenes appeared to be excellent feed to all three amoebae. Hardly any
growth or ammonium production was observed in tests with Chromatium vinosum and Serratia marcescens,
which share the presence of pigmented compounds. Distinct differences in net ammonium production were
detected and were correlated to the amoebal growth yield. In general, growth of amoebae and ammonium
production increased in the order A. polyphaga, A. castellanii, and H. vermiformis.

Protozoa are the most important predators of bacteria in
soil (2, 6, 10, 25) and aquatic systems (3, 14, 15). Because of
their predatory activity, they play a major role in controlling
the bacterial population in soil (1, 4, 12). However, not all
bacteria seem to be an equally suitable food source for
protozoa. Gram-negative bacteria were able to survive the
presence of many protozoa (1), while biologically formed
toxins in bacteria may prevent the attack by protozoa (17).
Protozoan grazing stimulates microbial activity and en-
hances the turnover of nutrients, particularly nitrogen,
which would otherwise become immobilized in bacterial
biomass (2, 11, 16, 27). Therefore, they play an active role in
the control of soil fertility and soil nutrient cycling (13, 23,
24). Knowledge about the role and importance of protozoa in
soil food chains was already available but was mainly
focused on ciliates and flagellates. Food preferences of
free-living soil amoebae and nitrogen mineralization as a
result of amoebal grazing are still barely examined. Free-
living amoebae are the dominant bacterial consumers in soil
(5, 10) and are responsible for 60% of the total decrease of
the bacterial population (5). Differences in the ability for
amoebae to grow on various food bacteria were previously
reported (20-22, 25). However, quantitative results concern-
ing the predator-prey relationship, edibility of various bac-
teria, and the growth capacity and ammonium production of
free-living soil amoebae feeding on various bacteria are
scarce. The aims of this study were to investigate food
preferences of actively grazing Acanthamoeba castellanii,
Acanthamoeba polyphaga, and Hartmannella vermiformis
in monoxenic cultures and to quantitate the amoebal growth
response and ammonium production in relation to their food
source.
Organisms and cultivation. A. castellanii (CCAP strain

1501/lB) and A. polyphaga (CCAP strain 1501/3C) were
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obtained as axenic cultures from the Culture Collection of
Algae and Protozoa (CCAP; Ambleside, United Kingdom)
and were cultured as reported previously (19). H. vermi-
formis strain Atlanta (strain CDC-19) was obtained as an
axenic culture from B. J. Fields (Respiratory Disease
Branch, Center for Infectious Disease, Atlanta, Ga.) and
was cultured as reported previously (26). Exponentially
growing amoebal cells were harvested by centrifugation (10
min, 750 x g) and washed (three times) with and resus-

pended in 20 mM buffered Neff Amoeba Saline (19). Arthro-
bacter simplex, Agrobacterium tumefaciens, Bacillus mega-
terium, Bacillus subtilis, Chromatium vinosum, Escherichia
coli K-12, Klebsiella aerogenes, Micrococcus luteus,
Pseudomonas fluorescens, and Serratia marcescens were

cultured overnight in nutrient broth (Oxoid, Basingstoke,
United Kingdom) at 30°C on a shaking incubator. Bacterial
cells were harvested by centrifugation (10 to 15 min, 25,000
x g) and washed (three times) with and resuspended in 20
mM buffered Neff Amoeba Saline. Immediately after har-
vest, the amoebae and bacteria were used to start monoxenic
incubations.
Monoxenic incubations. Axenically grown amoebal cells

and pure bacterial cells were inoculated in sterilized 250-ml
Erlenmeyer flasks with cotton plugs containing 25 ml of Neff
Amoeba Saline buffer (pH 6.8, 20 mM) with initial cell
densities of 104 amoebae and 109 bacteria per ml. Amoebal
and bacterial controls for cell numbers and ammonium
concentrations were inoculated in the same way and con-

tained either amoebae or bacteria. Monoxenic cultures ofA.
castellanii, A. polyphaga, and H. vermiformis with 10 bac-
teria (Table 1) and amoebal and bacterial controls were

incubated simultaneously on a shaking incubator (25°C, 40
rpm) in the dark for 15 days, and bacterial feed (1 ml) was

added every other day at a concentration of 109 cells per ml
in order to prevent substrate limitation. Homogenous sam-

ples of 1 ml were taken every other day under aseptical
conditions to quantitate amoebal cell numbers (Burker-Turk
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TABLE 1. Amoebae cell yield and ammonium production resulting from amoeba growth on various food bacteriaa
A. castellanii A. polyphaga H. vermifornis

Bacterium Amoebae yield' Ammoniumc Amoebae yieldb Ammoniumc Amoebae yieldb Ammoniumc
(105/ml) (mM) (105/ml) (mM) (105/ml) (mM)

A. tumefaciens 0.55 ± 0.30 1.66 ± 0.10 0.45 ± 0.12 1.55 ± 0.06 10.84 ± 0.84 2.65 ± 0.24
A. simplex 0.31 ± 0.19 0.59 ± 0.08 0.70 ± 0.17 1.73 ± 0.12 12.21 ± 1.60 3.93 ± 0.26
B. megaterium 1.06 ± 0.14 1.82 ± 0.16 0.76 ± 0.22 1.08 ± 0.18 32.05 ± 3.65 6.44 ± 0.54
B. subtilis 2.94 ± 0.13 1.44 ± 0.21 0.98 ± 0.14 0.51 ± 0.07 32.22 ± 2.43 3.35 ± 0.61
C. vinosum 0.02 ± 0.01 0.43 ± 0.18 0.01 ± 0.01 0.35 ± 0.09 0.62 ± 0.08 0.91 ± 0.02
E. coli K-12 10.46 ± 0.44 11.12 ± 0.41 1.60 ± 0.27 1.73 ± 0.19 167.50 ± 15.6 15.95 ± 0.91
K aerogenes 3.77 ± 0.45 4.75 ± 0.32 2.08 ± 0.37 3.87 ± 0.22 25.55 ± 1.18 6.18 ± 0.52
M. luteus 0.10 ± 0.02 2.47 ± 0.19 0.51 ± 0.11 3.54 ± 0.12 0.35 ± 0.10 1.00 ± 0.04
P. fluorescens 1.44 ± 0.24 1.27 ± 0.22 1.16 ± 0.31 1.52 ± 0.16 11.80 ± 1.42 2.91 ± 0.26
S. marcescens 0.02 ± 0.01 0.62 ± 0.07 0.01 ± 0.01 0.01 ± 0.01 1.90 ± 0.33 0.60 ± 0.08

a Incubations were in 25 ml of medium for 15 days, and data refer to increase in cell numbers and are shown as means + standard deviations; n = 3 for individual
experiments.

b Initial amoebal density was 0.1 x 105 cells per ml.
c Values are corrected for bacterial controls.

counting chamber) and ammonium concentration (18) to
reveal amoebal food preferences and ammonium production
for amoebae grazing on various bacteria. Examples of amoe-
bal growth responses are shown in Fig. 1 for H. vermifornis
grazing on E. coli K-12 and A. tumefaciens. The growth
yields and net ammonium production for the predator-prey
combinations incubated for 15 days are shown in Table 1 and
revealed distinct differences not only between the various
bacteria used as feed but also among the amoebae tested.
Amoebal growth, to some extent, was detected in all test
combinations, but E. coli K-12 proved to be a far better feed
than indigenous soil bacteria like A. tumefaciens, A. sim-
plex, B. megaterium, B. subtilis, K aerogenes, and P.
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FIG. 1. Typical growth yield and ammonium production curves

for monoxenically growing H. vermiformis on E. coli K-12 (E and,
*) and A. tumefaciens (O and, 0) as food bacteria. Amoebal cell
numbers (open symbols) and ammonium concentrations (closed
symbols) are represented as means (n = 3 for individual experi-
ments) in which the vertical bars represent the standard deviation.

fluorescens. Growth yields varied between 0.01 x 105 and
167.5 x 105 cells per ml for A. polyphaga grazing on C.
vinosum or S. marcescens and H. vermiformnis grazing on E.
coli K-12, respectively. In accordance with the amoebal
grazing activity, distinct differences in the amount of ammo-
nium produced for each monoxenic incubation were de-
tected. The ammonium production in the different mono-
xenic combinations varied between 0.01 and 15.95 mM for
A. polyphaga grazing on S. marcescens and H. vermiformis
grazing on E. coli K-12, respectively (Table 1).

Protozoa, and especially amoebae, were recognized as the
major predators of bacteria in soil, thereby regulating the
size of the bacterial population. Amoebal grazing on various
bacteria during a 2-week period in monoxenic incubation
revealed food preferences as expressed in differences in the
amoebal growth yield and concomitant ammonium produc-
tion depending on the type of bacterial feed. The nonpig-
mented enterobacteriaceae E. coli K-12 and K aerogenes
appeared to be a far better food source to all three amoebae
than the other bacteria tested. Hardly any growth and
ammonium production was observed in tests with C. vino-
sum and S. marcescens, which share the presence of pig-
mented compounds. A. tumefaciens, A. simplex, B. mega-
terium, B. subtilis, M. luteus, and P. fluorescens, of which
some are indigenous soil bacteria, supported a low to mod-
erate growth of the three amoebae. In general, growth of
amoebae and ammonium production increased in the order
A. polyphaga, A. castellanii, and H. vermiformis. Differ-
ences in growth yield of amoebae were due to the ability to
select their food among different kinds of bacteria (9, 21, 22)
and might be explained either by the incapabilities of the
amoebae in the uptake or digestion of specific bacteria or by
the capability of the bacteria to prevent grazing by means of
defense mechanisms, like toxic pigments or special outer
membrane structures. Such mechanisms may hamper exten-
sive grazing on bacteria known to be indigenous in soil, like
gram-negative Pseudomonas and Agrobacterium and gram-
positive Arthrobacter and Bacillus (8, 25). Predator-prey
relationships can have positive as well as negative effects on
the prey organisms. Bacterial numbers may decrease in the
presence of amoebae by the consumption of edible bacteria,
whereas bacterial numbers of inedible bacteria may increase
by a higher rate of mineralization of nutrients in the presence
of amoebae (2, 7, 11, 16). Amoebae feeding on bacteria
improved the mineralization of nitrogen from soil organic
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matter, which previously was immobilized in bacteria, by
stimulating the turnover of bacterial biomass (27). There-
fore, grazing of rhizosphere microorganizms, especially bac-
teria, by the free-living soil amoebae has practical impor-
tance for agriculture and forestry.

This research was supported by a grant from the Netherlands
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