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Abstract Fusarium head blight (FHB) of wheat, caused
by Fusarium graminearum and other Fusarium species, is a
major disease problem for wheat production worldwide. To
combat this problem, large-scale breeding efforts have been
established. Although progress has been made through stan-
dard breeding approaches, the level of resistance attained
is insufficient to withstand epidemic conditions. Genetic
engineering provides an alternative approach to enhance the
level of resistance. Many defense response genes are induced
in wheat during F. graminearum infection and may play
a role in reducing FHB. The objectives of this study were
(1) to develop transgenic wheat overexpressing the defense
response genes α-1-purothionin, thaumatin-like protein 1
(tlp-1), and β-1,3-glucanase; and (2) to test the resultant
transgenic wheat lines against F. graminearum infection
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under greenhouse and field conditions. Using the wheat
cultivar Bobwhite, we developed one, two, and four lines
carrying the α-1-purothionin, tlp-1, and β-1,3-glucanase
transgenes, respectively, that had statistically significant
reductions in FHB severity in greenhouse evaluations. We
tested these seven transgenic lines under field conditions
for percent FHB disease severity, deoxynivalenol (DON)
mycotoxin accumulation, and percent visually scabby
kernels (VSK). Six of the seven lines differed from the
nontransgenic parental Bobwhite line for at least one of
the disease traits. A β-1,3-glucanase transgenic line had
enhanced resistance, showing lower FHB severity, DON
concentration, and percent VSK compared to Bobwhite.
Taken together, the results showed that overexpression of
defense response genes in wheat could enhance the FHB
resistance in both greenhouse and field conditions.
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graminearum . Transgenic wheat . Triticum aestivum

Introduction

Fusarium head blight (FHB; scab), principally caused by
Fusarium graminearum Schwabe (teleomorph Gibberella
zeae (Schwein.) Petch), is a devastating disease of wheat
(Triticum aestivum L.) and barley (Hordeum vulgare L.)
throughout the world (Sutton 1982; McMullen et al. 1997).
Between 1993 and 2001, in United States, an estimated US$ 8
billion loss was incurred from FHB (Nganje et al. 2004). The
disease is favored by warm conditions with frequent rainfall
and high humidity during flowering. Yield reductions result
from reduction in the kernel number and the presence of
dry, shriveled kernels, often referred to as ‘tombstone ker-
nels’. Additionally, reductions in grain quality are caused by
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Fusarium trichothecene mycotoxins such as deoxynivalenol
(DON; Bai and Shaner 1994; Sutton, 1982; Tuite et al. 1990).

The most economical and efficient way to protect wheat
from FHB is to develop genetically-resistant varieties. Wheat
breeding programs are utilizing resistance to initial infection
(Type I) and resistance to spread of the disease (Type II) as
the primary forms of resistance (Rudd et al. 2001). However,
these forms of resistance are partial (Kolb et al. 2001), and
the level of genetic resistance provided is generally insuffi-
cient to withstand a FHB epidemic. Therefore, novel sources
of resistance are required, and genetic engineering is one
approach to develop novel resistance in wheat.

Several classes of genes have the potential to provide
genetically-engineered resistance to FHB in wheat. One
group of genes, referred to as pathogenesis-related (PR)
or defense response genes, encode proteins such as β-1,3-
glucanases, chitinases, thaumatin-like proteins (tlps) and
thionins whose expression often increase as part of the plant
host defense response to pathogen attack (Linthorst 1991).
Many defense response genes were shown to be induced in
wheat (Pritsch et al. 2000, 2001; Li et al. 2001; Kang and
Buchenauer 2002; Kong et al. 2005; Han et al. 2005; Zhou
et al. 2005; Bernardo et al. 2006) and barley (Boddu et al.
2006) spikes during F. graminearum infection. In particular,
PR1, PR-2 (β-1,3-glucanase), PR-3 (chitinase), PR-4, and
PR-5 (tlp-1) transcripts accumulated in wheat spikes dur-
ing F. graminearum infection (Pritsch et al. 2000, 2001).
In addition, polyphenol oxidase activities were detected in
resistant wheat genotypes (Mohammadi and Kazemi 2002).
Furthermore, Kang and Buchenauer (2003) showed accu-
mulation of thionin proteins in F. culmorum-infected wheat
tissues. These findings demonstrated that wheat and barley
mount an induced defense response to Fusarium infection
that involves many defense response genes.

Overexpression of defense response genes in transgenic
plants has provided enhanced resistance to a variety of fun-
gal pathogens (Muehlbauer and Bushnell 2003). For exam-
ple, transgenic wheat lines carrying a barley-seed class II
chitinase exhibited enhanced resistance to powdery mildew
(Bliffeld et al. 1999; Oldach et al. 2001). Varying amounts of
resistance towards powdery mildew were observed in trans-
genic wheat lines carrying a barley chitinase or a barley
β-1,3-glucanase (Bieri et al. 2003). With respect to FHB, a
transgenic wheat line carrying a rice tlp and a line carry-
ing a combination of a wheat β-1,3-glucanase and chitinase
exhibited delayed symptoms of FHB in greenhouse trials
(Chen et al. 1999; Anand et al. 2003). However, neither
transgenic wheat line exhibited any resistance to FHB under
field conditions (Anand et al. 2003). In addition, transgenic
Arabidopsis carrying an overexpressed Arabidopsis thionin
showed increased resistance to F. oxysporum (Epple et al.
1997). Recently, transgenic wheat expressing the Arabidop-
sis NPR1 gene, a gene that regulates defense responses, was

shown to exhibit a high level of resistance to FHB in green-
house evaluations (Makandar et al. 2006).

As part of our effort to increase variation for genetic re-
sistance to FHB and to understand the relationship between
defense response gene expression and FHB resistance, we
produced wheat plants carrying a wheat α-1-purothionin, a
barley tlp-1, or a barley β-1,3-glucanase transgene. We eval-
uated these plants against FHB under greenhouse and field
conditions. Our results show that the overexpression of α-
1-purothionin, tlp-1, or β-1,3-glucanase in wheat results in
enhanced resistance to FHB.

Materials and methods

Plant materials

The spring wheat cultivars ‘Wheaton’, ‘Roblin’, ‘Alsen’,
‘2375’, ‘Sumai 3’, and ‘Bobwhite’ were used as checks for
FHB responses. Wheaton and Roblin are hard red spring
wheat cultivars that are highly susceptible to FHB; Bobwhite
is a cultivar from CIMMYT that is susceptible to FHB; 2375
is moderately susceptible to FHB; Alsen is moderately re-
sistant to FHB with resistance derived from Sumai 3; and
Sumai 3 is a Chinese cultivar known for resistance to spread
of disease in the spike (Type II resistance; Bai and Shaner
1996). The cultivar Bobwhite was used as parental material
for transformations.

Plant transformation plasmids

pAHC25

The pAHC25 plasmid (Fig. 1; Christensen et al. 1992), con-
taining the uidA and bar genes under the control of the maize
ubiquitin promoter, was kindly donated by Dr. Peter Quail
of the Plant Gene Expression Center, University of Califor-
nia at Berkeley. The uidA gene encodes β-glucuronidase and
the bar gene encodes the enzyme phosphinothricin acetyl-
transferase which confers resistance to the phosphinothricin-
containing herbicides.

pKM1

A plasmid containing a 460 bp wheat α-1-purothionin gene
(GenBank accession number X70665.1) under the control
of the maize ubiquitin promoter was kindly provided by Dr.
Ann Blechl (USDA-ARS, Albany, CA). The α-1-purothionin
gene was cloned into the BamHI/BglII site (replacement of
the bar gene) of pUBK BglII−. The pUBK BglII− vector,
kindly provided by Drs. Ann Blechl, Pat Okubara, and Kent
McCue (USDA-ARS, Albany, CA), is a derivative of the
pAHC20 vector (Christensen et al. 1992). pUBK BglII−
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Ubi1 promoter intron αααα-1-purothionin T nos

Ubi1 promoter intron ß-1,3-glucanase T nos

pKM1 (6.4 kb)

Ubi1 promoter intron Tlp-1 T nos

pUBKBarGluc-3 (7.2 kb)

pAHCBarPR5 (5.8 kb)

Ubi1 promoter intron uidA T nos Ubi1 promoter intron Bar T nos

pAHC25 (9.7 kb)

460 bp2.0 kb

1.63kb

928 bp

283 bp

Fig. 1 Plasmids used for wheat transformation. Plasmids con-
taining the wheat α-1-purothionin (pKM1), barley tlp-1 transgene
(pAHCBarPR5), and barley β-1,3-glucanase (pUBKBarGluc-3) were
co-bombarded with pAHC25 to develop transgenic wheat plants. The
ubiquitin 1 promoter and intron is from the maize ubiquitin gene, and

the T nos termination sequence is from the nopaline synthase gene from
Agrobacterium tumefaciens. The uidA gene encodes β-glucuronidase
and is from Escherichia coli and the bar gene encodes the enzyme phos-
phinothricin acetyltransferase and is from Streptomyces hygroscopicus

contains the ubiquitin promoter, with the BglII site removed,
driving the bar gene.

pAHCBarPR5

Barley tlp-1 cDNA (GenBank accession number
AM403331) was removed from the parent plasmid
(kindly provided by Dr. David Collinge, Department of
Plant Biology, Royal Veterinary and Agricultural University,
Denmark) by XhoI digestion, blunt-end repaired and cloned
into the blunt-end repaired BamHI site of pAHC17. The
expression cassette in the pAHC17 vector (Christensen
et al. 1992) contains the maize ubiquitin promoter and the
NOS terminator element. The pAHC17 vector was kindly
provided by Dr. Peter Quail of the Plant Gene Expression
Center, University of California at Berkeley.

pUBKBarGluc-3

The 1234 bp barley class-II β-1,3-glucanase cDNA (Gen-
Bank accession number M62907.1; Leah et al. 1991) was
removed from the parent plasmid (kindly provided by Dr.
John Mundy, Carlsberg Research Laboratory, Copenhagen,
Denmark) by EcoRI digestion, blunt-end repaired and ligated
into the blunt-end repaired BglII/BamHI site (replacement of
bar gene) of the expression vector pUBK BglII−.

Wheat transformation

Spring wheat (cv. Bobwhite) was used for all trans-
formations. Particle gun bombardment of embryos, se-

lection, and regeneration were carried out as described
by Mackintosh et al. (2006). We conducted cotrans-
formation of pAHC25 with pKM1, pAHCBarPR5, or
pUBKBarGluc-3.

RNA isolation and transcript analysis

RNA was isolated from leaf tissue using the Trizol reagent
(Invitrogen, Carlsbad, CA) as per manufacturers’ instruc-
tions. RNA was subjected to RT-PCR based on the pro-
tocol accompanying the Calypso RT-PCR kit (GenSys
Ltd., Farnborough, UK) using primers synthesized by In-
tegrated DNA Technologies Inc. (Coralville, IA). The 5′

sense primer was a maize ubiquitin promoter sequence (5′-
GATGCATATACATGATGGCATATGCAG-3′) and the 3′

antisense primers were oligonucleotides that corresponded to
defense response gene coding sequences for α-1-purothionin
(5′-GTTACAGAAATTGACACAAGCATCGCC-3′), tlp-1
(5′-GACAGAAGGTGATCTGGTAGTTATTATT-3′) and β-
1,3-glucanase (5′-GATGTTCACGGCAGGGTAGT-3′ and
5′-GCCACGTCCGTCATGTAGGCGTTC-3′). A wheat
actin gene (GenBank accession number AB181991) with the
primer sequences 5′-GCCACACTGTTCCAATCTATGA-
3′ and 5′-TGATGGAATTGTATGTCGCTTC-3’ was used
as a positive control. Sizes for the amplified prod-
ucts from the α-1-purothionin and tlp-1 transgenes
were 600 and 805, respectively. Sizes for the two
primers for the β-1,3-glucanase transgene were 577
and 777 bp. Size for the wheat actin gene was
369 bp.
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Greenhouse evaluation of transgenic lines against Fusarium
graminearum infection

Seeds of each transgenic line were planted in the greenhouse.
At anthesis, one spikelet at the central node of the main
spike of each plant was inoculated with 10 µl of a macro-
conidial spore suspension (100,000 conidia/ml) of Fusarium
graminearum isolate Butte 86ADA-11 (Evans et al. 2000;
NRRL 38661). Plants were placed in a dew chamber for 72 h
following inoculation and then returned to the greenhouse.
Disease severity was assessed at 20 days after inoculation
by counting the number of infected spikelets and expressing
the infection level as a percentage of the total number of
spikelets for each spike. Bobwhite, Wheaton, and Sumai 3
were used as checks in each greenhouse test.

Field evaluation of transgenic lines against Fusarium
graminearum infection

Transgenic wheat lines were examined for their reaction to
FHB in the field. RT-PCR positive plants of each of the
lines were selected as the source of seed for the field plant-
ings. In addition to the test lines, Bobwhite was included as
the untransformed control. Two experiments were conducted
during the summers of 2004 and 2005 at the University
of Minnesota Agricultural Experiment Station, Crookston,
Minnesota. T6 and T7 of the transgenic lines were used for
the 2004 and 2005 field tests, respectively. The field tests
were each a randomized complete block design with four
replications. Entries were established in two-row plots; rows
were 2.4 m (8 ft) long and were spaced 0.3 m (1 ft) apart.
Within rows, seed was planted at a rate of 3.3 g of seed/m.
Alsen, 2375, Roblin and Wheaton were also included in the
experiment as disease response checks. Additional plantings
of noninoculated Wheaton were included in the field trial to
determine the level of disease.

Inoculum consisted of a mixture of 12 isolates of F.
graminearum. These came from naturally infected samples
of grain from commercial fields of wheat and barley in Min-
nesota from 2002 to 2004. Plots were inoculated twice; the
first time at anthesis and then 3 days later. Inoculum (1 × 105

macroconidia/ml) was applied at a rate of 33 ml/m of row
using a CO2-powered backpack sprayer, at a pressure of
276 kPa and fitted with a flat-fan spray tip (TeeJet SS8003,
Spraying Systems Co., Wheaton, IL).

FHB incidence and severity were evaluated visu-
ally 21 days after the initial inoculation. Incidence was
recorded as the percentage of spikes with symptomatic
spikelets and severity as the percentage of symptomatic
spikelets in 20 spikes of primary tillers arbitrarily selected
per plot.

Plots were harvested with a Wintersteiger classic com-
bine (Wintersteiger, Ried, Austria) at maturity. The percent-

age of visually scabby kernels (VSK) was assessed on a
hand-cleaned 50 g sample by comparison to standards with
a known percentage of scabby kernels according to the pro-
cedure of Jones and Mirocha (1999).

Following VSK analysis, the samples were ground for
2 min with a Stein Laboratory Mill (model M-2, Stein Lab-
oratories, Atchison, KS) and analyzed for deoxynivalenol
(DON) concentration using gas chromatography and mass
spectrometry according to the procedures of Mirocha et al.
(1998) with the following modifications. DON was extracted
from 4 g of the ground wheat placed in a 50 ml centrifuge
tube to which 16 ml of acetonitrile:water (84:16 v/v) was
added. Samples were derivatized using 100 µl of the sily-
lating reagent (TMSI/TMCS, 100:1), 1 ml of isooctane and
1 ml of distilled water.

Western blot analysis

Spike tissue was ground using liquid nitrogen and protein
was extracted by vortexing the tissue at 4◦C for 10 min
in extraction buffer (50 mM NaH2PO4, pH 6.8, 100 mM
PMSF). After micro-centrifugation at 4◦C, full speed, for
5 min, supernatant protein measurements were conducted
using Biorad reagent (Biorad) with bovine serum albumin
as a standard. Extracts containing 10 µg protein were used
to determine the amount of transgenic protein present in
transgenic lines using Western blotting.

Samples were subjected to SDS-PAGE using 12% gels,
transferred to PVDF-PLUS transfer membrane (Micron Sep-
arations Inc., Westborough, MA) and cross reacted with an
affinity-purified polyclonal antibody (1:1000 dilution of sup-
plied material). The tlp-1 and β-1,3-glucanase antibodies
were provided by Quality Controlled Biochemicals Inc.,
Hopkinton, MA. For tlp-1, two peptides (QAYQHPND-
VATHAC and CINVPAG TQAGRIWAR) were used to raise
the antibody. For β-1,3-glucanase, one peptide (CGLFN-
PDKSPAYNIQF) was used to raise the antibody. Protein
was visualized using an ECF Western Blotting Reagent
Pack (rabbit) (Amersham Biosciences, Piscataway, NJ), and
fluorescence detection was carried out using a Storm 840
(Molecular Dynamics, Sunnyvale, CA). Specificity of β-
1,3-glucanase and tlp-1 antibodies was confirmed through
cross-reacting the antibodies with the peptides on Western
blots.

Southern blot analysis

DNA isolation, gel electrophoresis, gel blotting, hybridiza-
tion, and washing were conducted according to de la
Peña et al. (1996). Radio-labeled probes for tlp-1, β-1,3-
glucanase, and α-1-purothionin were used in the hybridiza-
tion reactions. The subsequent banding patterns were visu-
alized using autoradiography.
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Table 1 Production of
transgenic wheat plants Transgene Number of embryos

bombarded
Number of plants
expressing transgenea

Transformation (%)

Wheat α-1-purothionin 1787 25 1.4
Barley thaumatin-like protein-1 825 25 3.0
Barley β-1,3-glucanase 1079 31 2.9

aExpression based on RT-PCR
of each transgene.

Statistical analysis

For the greenhouse evaluation data, t-tests were used to com-
pare each transgenic line to the parental Bobwhite controls.
For the field evaluation data from 2004 and 2005, all analyses
were performed with SAS r© Version 9.1 (SAS Institute, Cary,
NC). Analyses of variance were performed using PROC
MIXED procedure. The statistical model included genotype,
year and genotype-by-year interactions as fixed factors, and
replication nested within year as a random factor was used
as an error term for testing year effect. For each experiment,
homogeneity of variances among genotypes was checked for
each trait using PROC UNIVARIATE. For each trait, when
variances were found to be more than four times different
from each other A REPEATED/GROUP = statement of
PROC MIXED was used to account for the heterogeneity
of variances. Least square means and pairwise comparisons
between means were obtained using LSMEANS and PDIFF
options.

Results

Generation of transgenic wheat plants

The wheat cultivar Bobwhite was used as parental ma-
terial for all transformation experiments. The pAHC25
plasmid and either the pKM1 (wheat α-1-purothionin),
pAHCBarPR5 (barley tlp-1), or pUBKBarGluc-3 (barley β-
1,3-glucanase) plasmids were used in cotransformation ex-
periments. Figure 1 shows a schematic of each plasmid. The
correct orientation within the vector and open reading frame
integrity of the inserted cDNA in pKM1, pAHCBarPR-5,
and pUBKBarGluc-3 was confirmed by DNA sequence anal-
ysis. pAHC25 carries the uidA gene for visual scoring of β-
glucuronidase (GUS) activity and the bar gene which con-
fers tolerance to the herbicide phosphinothricin for selection.
Both the uidA and bar genes were driven by the promoter
from the maize ubiquitin gene. Selection and regeneration
of plants was conducted as described in Mackintosh et al.
(2006).

To identify transgenic wheat plants carrying the α-1-
purothionin, barley tlp-1 and barley β-1,3-glucanase trans-
genes, we conducted RT-PCR analysis on the T0 plants. We
identified 25, 25, and 31 transgenic wheat lines carrying

expressed wheat α-1-purothionin, barley tlp-1, and barley
β-1,3-glucanase, respectively. Table 1 shows the number of
embryos bombarded for each plasmid, and the percent trans-
formed plants carrying the expressed transgene of interest.
Our efficiency for recovering transgenic wheat plants ex-
pressing the transgenes of interest ranged from 1.4 to 3%.

To obtain T2 lines for further characterization, we grew
five T1 seeds from each T0 plant. Each T1 plant was tested by
RT-PCR for expression of the appropriate transgene, and T2

seed was collected from plants expressing each transgene.

Greenhouse evaluation of transgenic plants for response to
Fusarium head blight

To identify transgenic lines with enhanced resistance to FHB
and to eliminate susceptible lines, we conducted two green-
house evaluations for FHB resistance. Of the 81 transgenic
wheat lines developed, 70 (18 of 25 wheat α-1-purothionin,
23 of 25 barley tlp-1 and 29 of 31 barley β-1,3-glucanase)
lines produced enough T2 seed for FHB evaluations. Sixteen
to 20 seeds were planted for each line and inoculated with F.
graminearum. We assayed the spread of the disease follow-
ing point inoculation, and analyzed the results as the percent
disease severity at 20 days after inoculation. In addition, each
plant in the α-1-purothionin lines was assayed for transgene
expression using RT-PCR. Only those plants expressing the
α-1-purothionin transgene were used to evaluate the efficacy
of α-1-purothionin against FHB. The plants carrying the tlp-1
and β-1,3-glucanase transgenes were not assayed for trans-
gene expression in the initial T2 FHB screen. For the lines
carrying the tlp-1 and β-1,3-glucanase transgenes, data from
all plants assayed for FHB resistance, which would have in-
cluded transgene null together with transgene homozygous
and hemizygous plants, were used to calculate the percent
FHB severity. We compared FHB severity in the transgenic
lines against the nontransformed Bobwhite parent.

Based on this initial experiment, we eliminated the most
susceptible lines ( > 50% disease severity) and reevaluated
6, 13, and 16 T2 lines carrying the α-1-purothionin, tlp-1, and
β-1,3-glucanase transgenes, respectively. We also evaluated
the T3 lines of the same 6 lines carrying the α-1-purothionin
transgene, and 13 lines carrying the tlp-1 transgene. Again,
we planted 16–20 plants per line, and evaluated the lines
against FHB. In this screen, all plants were assayed for
transgene expression. Only those plants expressing the trans-
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Table 2 Percent Fusarium
head blight severity in
greenhouse evaluations of seven
wheat lines carrying wheat
α-1-purothionin, barley
thaumatin-like protein 1, or
barley β-1,3-glucanase that
were selected in initial tests and
three wheat varieties used as
disease checks

Generation testeda

Genotypeb T2 T2 T2 T3 T3 T3 T3 T4

CM17 38∗ (9) 44∗∗ (8) –c 38∗∗ (10) 74 (14) - - 28∗ (22)
CM21 39∗ (12) 38 (4) 26∗∗∗ (11) 89 (11) – – 57∗ (22) –
CM23 37∗ (14) 55 (14) 44∗∗ (18) 41∗ (12) – – – –
CM27 38∗ (12) 34∗∗ (12) – – 55∗ (17) – – –
CM28 26∗∗ (10) 37∗ (10) – – 41∗∗ (12) – – –
CM30 19∗∗∗ (8) 36∗ (11) – – 51 (4) – – –
CM33 33 (8) 48∗ (11) 44∗ (7) – – 40∗ (12) – –
Bobwhite 63 (31) 71 (28) 78 (28) 71 (28) 78 (28) 64 (18) 73 (33) 54 (36)
Wheaton 70 (33) 85 (45) – 85 (45) – 91 (21) 94 (57) 99 (60)
Sumai 3 26 (22) 9 (25) 10 (78) 9 (25) 10 (78) 21 (16) 16 (46) 7 (61)

Numbers in parenthesis represent the number of plants in the screen.
aIndicates the generation that was evaluated. T2 and T3 lines that were evaluated in the initial FHB disease
screens are in bold. Each column, except for the second T2 screen and the first T3 screen, represent individual
experiments where lines were evaluated simultaneously.
bCM17 is a transgenic wheat line carrying the wheat α-1-purothionin, CM21 and CM23 are transgenic wheat
lines carrying barley thaumatin-like protein 1, and CM27, CM28, CM30, and CM33 are the transgenic wheat
lines carrying barley β-1,3-glucanase transgene. Bobwhite is the variety transformed and susceptible check,
Wheaton is a susceptible check, and Sumai 3 is a resistant check. It is not known whether the transgenic lines
were homozygous for the transgene or segregating.
cIndicates that this line was not examined in this screen.
∗Significance at the 0.05 compared to Bobwhite.
∗∗Significance at the 0.01 compared to Bobwhite.
∗∗∗Significance at the 0.001 level compared to Bobwhite.

gene were used to calculate disease severity for comparison
against the nontransformed Bobwhite.

From the initial disease screens on the 70 transgenic lines,
we identified seven lines with enhanced FHB resistance.
One line had the α-1-purothionin transgene and is referred
to as CM 17, two lines carried the tlp-1 transgene and are
referred to as CM21 and CM23, and four lines had bar-
ley β-1,3-glucanase transgene and are referred to as CM27,
CM28, CM30, and CM33. The results for these initial two
screens of the resistant transgenic lines are shown in Table
2. The resistant transgenic lines were evaluated in further
FHB disease screens in the greenhouse (Table 2). For these
additional greenhouse evaluations, only plants expressing
the transgene, based on RT-PCR assays, were used to cal-
culate the percent FHB severity. One line carrying the α-
1-purothionin transgene (CM17) significantly reduced FHB
severity in four of five screens (P < 0.05), and had an over-
all average reduction of 34%. The tlp-1 transgenic CM23
and CM21 lines significantly reduced FHB severity when
compared to the Bobwhite control in three of four or five
screens, respectively (P < 0.05). Taking the average disease
severity over all screen replicates, CM21 and CM23 reduced
disease severity compared to Bobwhite by 30% and 36%,
respectively. The ß-1,3-glucanase transgenic CM27, CM28,
CM30 and CM33 lines significantly reduced FHB severity
compared to the Bobwhite control in two to three screens
(P < 0.05). The average reduction in disease severity com-

pared to Bobwhite for CM27, CM28, CM30, and CM33 was
40, 49, 47, and 38%, respectively. While all seven transgenic
lines had similar levels of enhanced disease resistance, the
lines with the β-1,3-glucanase transgene had slightly better
disease control.

Molecular characterization of transgenic plants

To verify that one, two, and four lines transformed with α-1-
purothionin, tlp-1, and β-1,3-glucanase transgenes, respec-
tively, were transgenic, we conducted Southern blot analysis.
Our Southern blots also provided the opportunity to deter-
mine if the two tlp-1 lines and four β-1,3-glucanase lines
were independent events. Genomic DNA was isolated from
each line, digested with the appropriate restriction enzyme,
blotted, and hybridized with a radio-labeled probe from
the α-1-purothionin, tlp-1, or β-1,3-glucanase transgenes
(Fig. 2). Each transgenic line contained at least one unique
band compared to the nontransformed Bobwhite, indicating
that each of the lines were transgenic for the appropriate
transgene. In addition, the banding patterns of the two tlp-1
lines and the four β-1,3-glucanase lines were distinct, indi-
cating that the two tlp-1 lines were independent events, and
the four β-1,3-glucanase lines were also independent events.

To confirm transgene expression, we conducted RT-PCR
and Western blot analyses. As stated earlier, RT-PCR was
conducted on each plant used in the greenhouse disease eval-
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Fig. 2 a–c Southern blot
analysis of transgenic wheat
plants. a EcoRI-digested
genomic DNA from
untransformed Bobwhite (BW),
and pUBKBarGluc-3 transgenic
CM27, CM28, CM30, and
CM33 plants hybridized with a
probe designed to bridge the
ubiquitin promoter and the
β-1,3-glucanase transgene
junction. b HindIII-digested
genomic DNA from
untransformed Bobwhite (BW),
and pAHCBarPR5 transgenic
CM21 and CM23 plants and
hybridized with a probe
designed to bridge the ubiquitin
promoter and the tlp-1 transgene
junction. c XhoI-digested
genomic DNA from
untransformed Bobwhite (BW),
and pKM1 transgenic CM17
plants hybridized with a probe
designed to bridge the ubiquitin
promoter and the
α-1-purothionin transgene
junction

BW BW BW17 21 23 27 28 30 33

Transgenes

Actin

Fig. 3 RT-PCR analysis of transgenic wheat lines carrying the wheat
α-1-purothionin (CM17), barley tlp-1 (CM21 and CM 23), and barley
β-1,3-glucanase (CM27, CM28, CM30, and CM33) transgenes. The
fragment sizes for the α-1-purothionin, barley tlp-1, and barley β-1,3-

glucanase amplified the expected products of 600, 805, and 577 bp,
respectively. The wheat actin gene was used as a positive control and it
exhibited the expected size of 369 bp

uations, except where indicated. Figure 3 shows an example
of the RT-PCR analysis of the lines carrying each transgene.
We also conducted Western blot analysis on plants carrying
the tlp-1, and β-1,3-glucanase transgenes. We isolated pro-
tein from spikes, blotted the protein, and cross-reacted the
blots with antibodies specific for tlp-1 and β-1,3-glucanase
proteins. Our results showed that the transgenic lines ex-
hibited an increase in their appropriate transgene protein
compared to the nontransgenic Bobwhite control (Fig. 4).

Field evaluation of transgenic plants for response to
Fusarium head blight

To further examine the level of effect on FHB, we con-
ducted field tests of these seven lines in the summers of
2004 and 2005. Seed for each of the seven lines was de-
rived from plants expressing the transgene based on RT-PCR

analysis. We scored the lines for percent FHB severity, DON
concentration, and percent visually scabby kernels (VSK)
and compared the lines to the parental cultivar Bobwhite
(Table 3). All transgenic lines tested in the field except for
CM28 showed a significant reduction in at least one FHB
disease measure in comparison with Bobwhite. Four, four,
and two lines exhibited significant reductions in percent FHB
severity, DON concentration, and percent VSK, respectively.
Although CM30 showed a significant reduction in percent
FHB severity, it showed a significant increase in DON con-
centration. CM27 was the only transgenic line that exhibited
a significant reduction in all three disease measures.

Discussion

Large-scale wheat breeding efforts have not resulted in the
development of highly resistant varieties to FHB. This is due
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BW 27 28 30 33

BW 21 23

a

b

Fig. 4 a–b Western blot analysis of transgenic wheat lines. a Pro-
tein extracted from spikes of transgenic lines carrying barley β-1,3-
glucanase (CM27, CM28, CM30, and CM33) transgene was subjected
to SDS-PAGE using a 12% polyacrylamide gel. Our barley β-1,3-
glucanase antibody does not distinguish the transgenic barley protein
from the endogenous wheat protein. The transgene-specific protein
band in line CM33 appears to exhibit a higher molecular weight. Molec-
ular markers indicated the protein to be the expected 35.2 kDa size. b
Protein extracted from spikes of lines carrying barley tlp-1 (CM21 and
CM23) transgene was subjected to SDS-PAGE using a 10% polyacry-
lamide gel. Molecular markers indicated the protein to be the expected
17.5 kDa size

to the fact that resistance in wheat is partial and quantitative.
That is, multiple loci in wheat explain just a portion of the
variation for FHB resistance (e.g., Kolb et al. 2001). Single
genes conferring a high degree of resistance to FHB have not
been found despite extensive searches of wheat germplasm
resources (Leonard and Bushnell 2003). One characteristic
of the wheat response to F. graminearum infection is the
induction of defense response genes such as β-1,3-glucanase,
tlp-1, and thionin genes (Chen et al. 1999; Pritsch et al.
2000, 2001; Li et al. 2001; Kang and Buchenauer 2002; Han
et al. 2005; Zhou et al. 2005; Bernardo et al. 2006). These
genes are thought to provide basal resistance during infection
because they encode proteins with differing modes of action
against fungal pathogens. Thionins and tlps damage fungal
cell membranes by making them permeable (Bohlmann et al.
1988; Yun et al. 1998), whereas β-1,3-glucanases degrade
cell wall polysaccharide linkages (Leah et al. 1991). In this
study, we produced transgenic wheat lines overexpressing
either α-1-purothionin, a tlp-1, or a β-1,3-glucanase to test
their efficacy against FHB.

Numerous studies reveal that over-expression of defense
response genes in transgenic plants results in enhanced resis-
tance to various fungal pathogens (reviewed in Muehlbauer
and Bushnell 2003). In general, these studies show that par-
tial resistance can be achieved from over-expressing defense
response genes in plants. In this study, we defined enhanced
resistance as exhibiting a reduction in any of the three dis-
ease parameters. To date, there are no reports of commer-
cially practical levels of fungal resistance derived from over-
expressing defense response genes.

Table 3 Percent Fusarium head blight (FHB) severity, deoxynivalenol
(DON) concentration, and percent visual scabby kernels (VSK) in trans-
genic wheat plants carrying wheat α-1-purothionin, barley thaumatin-
like protein l, and barley β-1,3-glucanase and check wheat varieties
evaluated in the field in 2004 and 2005

Genotypea FHB severity
(%)

DON concentration
(ppm)b

VSK (%)

Bobwhite 65.1 16.3 29.6
Alsen 15.4∗∗∗ 3.7∗∗∗ 5.4∗∗∗

Wheaton 81.2∗∗∗ 26.2∗∗∗ 51.9∗∗∗

Wheaton
(noninoculated)

64.3 17.8 32.2

Roblin 70.9 18.8 42.2∗

2375 46.2∗∗ 8.3∗∗∗ 11.6∗∗∗

CM17 52.7∗ 15.7 24.7
CM21 55.1 11.4∗∗∗ 19.8 ∗
CM23 57.2 13.4 ∗ 21.0
CM27 46.5∗∗∗ 9.9∗∗∗ 17.7 ∗
CM28 58.2 17.6 25.8
CM30 48.3∗∗∗ 22.8∗∗ 34.3
CM33 49.2∗∗∗ 14.3 20.3

aCM17 is a transgenic wheat line carrying the wheat α-1-purothionin,
CM21 and CM23 are the transgenic wheat lines carrying barley
thaumatin-like protein 1, and CM27, CM28, CM30, and CM33 are
the transgenic wheat lines carrying barley β-1,3-glucanase transgene.
T6 and T7 were used for the 2004 and 2005 field screens, respectively.
Bobwhite is the variety transformed and susceptible check, Wheaton
and Roblin are the susceptible checks, 2375 is a moderately resistant
check, and Alsen is a resistant check.
bParts per million deoxynivalenol concentration.
∗Significance at the 0.05 level compared to Bobwhite.
∗∗Significance at the 0.01 level compared to Bobwhite.
∗∗∗Significance at the 0.001 level compared to Bobwhite.

From our initial 70 transgenic lines, there were seven lines
carrying either α-1-purothionin, tlp-1, or β-1,3-glucanase
transgenes that resulted in enhanced FHB resistance in the
greenhouse. Enhanced resistance was not detected in each
of these seven lines in every greenhouse screen conducted
(Table 2). These results are likely due to the high variabil-
ity inherent in FHB disease screens. However, over multiple
disease screens, the transgenic lines provided a level of resis-
tance above that present in the nontransgenic control cultivar
Bobwhite. In particular, we identified CM27, a line carrying
a β-1,3-glucanase transgene that exhibited low FHB sever-
ity, low DON concentration, and low percent VSK in the
field. Interestingly, in the field screens we observed lines,
such as CM30, with significantly lower FHB severity and a
high DON level. As seen in the greenhouse screens, these
results are likely due to the variation in FHB disease screens.
Variation in FHB readings from field grown plants can be
difficult to control (Campbell and Lipps 1998).

Consistent with our results, Chen et al. (1999) and Anand
et al. (2003) showed that overexpression of tlp-1 and a combi-
nation of β-1,3-glucanase and chitinase transgenes in wheat
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resulted in enhanced FHB disease in the greenhouse. In-
terestingly, these authors only detected enhanced resistance
during early stages of disease progression. They interpreted
the action of these transgenes as delaying the development
of FHB. Unfortunately, field disease screens of their lines
lacked resistance (Anand et al. 2003). For their field study,
these authors used inoculated corn kernels, which provided
a continuous source of inoculum, whereas in our field study,
we sprayed fungal spores on the spikes twice. Thus, there
is a distinct difference in the inoculation methodology be-
tween the two studies, which could lead to different disease
reactions. Developmental differences such as the timing of
flowering have resulted in different disease reactions to FHB.
When inoculated grain is used for the inoculum, early head-
ing plants can exhibit greater susceptibility than late heading
plants as they are exposed to the inoculum for a longer period
of time. In our study, we controlled the timing of inoculation
through spraying the spikes, and we did not observe any obvi-
ous developmental differences in our transgenic lines. Thus,
our results demonstrate that enhanced resistance to FHB can
be obtained through overexpressing defense response genes.

To date, there are no wheat germplasm sources that exhibit
immunity to FHB. The best available lines, such as Sumai 3
and Alsen, exhibit resistance to initial infection and spread
of the disease but this resistance is partial and plants may be-
come severely diseased when conditions are highly favorable
for disease development. The transgenic lines described in
this study may provide a potential wheat germplasm source
for enhanced FHB resistance. Although the level of transgene
resistance is not high enough to alone provide useful protec-
tion to FHB, our transgenic lines may extend and enhance
FHB resistance germplasm when combined with other resis-
tance sources. To increase the level of resistance, we crossed
our β-1,3-glucanase and tlp-1 transgenic lines and combined
the transgenes into a common background because develop-
ing lines with multiple transgenes in tobacco increased resis-
tance to a fungal pathogen (Jach et al. 1995). We have also
initiated crosses of our transgenic lines with the moderately
resistant genotype, Alsen. Alsen contains the chromosome
3BS QTL for FHB resistance (Waldron et al. 1999). Our goal
is to develop populations containing the 3BS QTL in com-
bination with each of the three transgenes. Our expectation
is that these combinations may result in enhanced resistance
to FHB over the levels present in Alsen.
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