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Abstract
Statistical reconstruction has become popular in emission computed tomography but suffers slow
convergence (to the MAP or ML solution). Methods proposed to address this problem include the
fast but non-convergent OSEM and the convergent RAMLA [1] for the ML case, and the convergent
BSREM [2], relaxed OS-SPS and modified BSREM [3] for the MAP case. The convergent algorithms
required a user-determined relaxation schedule. We proposed fast convergent OS reconstruction
algorithms for both ML and MAP cases, called COSEM (Complete-data OSEM), which avoid the
use of a relaxation schedule while maintaining convergence. COSEM is a form of incremental EM
algorithm. Here, we provide a derivation of our COSEM algorithms and demonstrate COSEM using
simulations. At early iterations, COSEM-ML is typically slower than RAMLA, and COSEM-MAP
is typically slower than optimized BSREM while remaining much faster than conventional MAP-
EM. We discuss how COSEM may be modified to overcome these limitations.

1. Introduction
In emission tomography, the reconstruction of vast quantities of noisy, low-count data in
practical times remains a challenge. The convenient FBP (Filtered backprojection)
reconstruction algorithm is widely used. However, FBP and its analytical relatives do not
always lend themselves to specialized acquisition geometries. In addition, it has been shown
that statistical reconstructions have outperformed FBP [4].

Statistical reconstruction is useful in emission computed tomography due to its ability to
accurately model noise, imaging physics, and to incorporate prior knowledge about the object.
Statistical reconstruction approaches use iterative algorithms that optimize objective functions
based on maximum likelihood (ML) or maximum a posteriori (MAP, a.k.a. penalized
likelihood) principles. An additional advantage of MAP and ML solutions is that their statistical
properties such as covariance, mean and local point spread function can be predicted using
theoretical expressions [5]. A drawback of statistical reconstruction algorithms is that they are
slow. It is a challenge to devise convergent ML and MAP algorithms that require few iterations
to approach the fixed-point solution and to reduce the number of the algorithm-specific
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parameters that must be hand-tuned. Earlier attempts to address the speed problem included
preconditioned conjugate-gradient [7] and coordinate descent methods [8], but each of these
had practical drawbacks.

In [9], an ordered subsets expectation maximization (OSEM) algorithm achieved an order of
magnitude speedup over conventional (non-OS) EM by using only a subset of the projection
data per sub-iteration. The OSEM algorithm is fast, parallelizable and preserves positivity.
However, these early OS methods did not converge to the ML fixed-point solution. An
algorithm [1], termed row-action maximum likelihood algorithm (RAMLA), used a relaxation
schedule, i.e. a relaxation parameter at each iteration of an OSEM-like update, to attain
convergence. The relaxation schedule had to satisfy certain properties as a prerequisite for
convergence. In practice, this relaxation schedule must be determined by trial and error to
ensure good speed. More recently, RAMLA was extended to the MAP case in BSREM (Block
Sequential Modified EM) [2], modified BSREM [3], and relaxed OS-SPS (OS Separable
Paraboloidal Surrogates) [3]. These MAP approaches also required a user-determined
relaxation schedule. A practical solution to the problem of determining a relaxation schedule
remains open.

To overcome the need of relaxation schedules in these OS algorithms, we formulated
relaxation-free COSEM (Complete-Data OSEM) algorithms [11,12]. COSEM, while derived
in terms of an algebraic transformation [13], is a form of incremental EM algorithm [14]. We
independently introduced COSEM-ML and COSEM-MAP in terms of algebraic
transformations [11,12], but learned shortly after that a COSEM-ML algorithm for emission
tomography had been independently derived [15] using incremental-EM approaches [14]. No
experimental results were presented in [15]. We later extended COSEM-MAP to a list-mode
version [16]. Despite the appeal of COSEM as a relaxation-free convergent algorithm,
simulations show that it is not as fast as the aforementioned convergent relaxation-based
approaches.

In Sections 2 and 3, we state the problem and derive the COSEM-ML and MAP algorithms.
In Section 4, we compare COSEM-MAP speed with that of competitors, and in Section 5,
discuss how COSEM can be sped up to close the speed gap with its competitors while
maintaining its advantages.

2. Statement of the Problem
Define the object to be an N-dim lexicographically ordered vector f with elements fj, j = 1, …,
N. We model image formation by a simple Poisson model g ~ Poisson(ℋf), where ℋ is the
system matrix whose element ℋij indicates the probability of receiving a count in detector bin
i from pixel j, and g is the integer-valued random data vector (sinogram) with elements gi, i =
1, …, M.

The ML problem is written as the minimization of an objective function

f̂ = arg min
f≥0

Einc−ML(f) (1)

where the ML objective corresponding to the usual (incomplete data) Poisson likelihood is
given by

Einc−ML(f) = ∑
ij

ℋij f j − ∑
i

gi log ∑
j

ℋij f j. (2)

The MAP problem may be similarly stated as the minimization of the ML objective plus a prior
objective Eprior. We consider quadratic priors of the form
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Eprior(f) = β∑
j

∑
j ′∈N( j)

w
j j ′

( f j − f
j ′

)2 (3)

with smoothing parameter β > 0, and a neighborhood system N( j) with weights wjj′. It will be
convenient to define Einc–MAP ≡ Einc–ML + Eprior.

3. COSEM Objective and Algorithm
The direct minimization of Einc–ML is difficult. One way of carrying out the minimization is
by the well-known ML-EM algorithm. The conventional EM derivation [6] is statistical in
nature, but there exists an alternate means for deriving this algorithm via a minimization of a
so-called complete data objective function. This objective function is derived from an algebraic
transformation of Einc–ML(f) in Eq.(2), from the use of Jensen’s inequality [17]. We briefly
summarize this step. From Jensen’s inequality and the convexity of − log(·), we have that

− log ∑ j ℋij f j ≤ − ∑ j
Cij
gi

log
giℋij f j

Cij

where the new ”complete data” Cij ≥ 0, ∀ij and ∑ j Cij = gi, ∀ i and with equality occurring

at Cij =
giℋij f j

∑
j ′

ℋ
i j ′

f
j ′

. This allows us to transform the original incomplete-data objective

function in Eq.(2) to a new objective, Ecomp(f, C) given by:

Ecomp(f, C) = ∑
l

∑
i∈Sl

∑
j

Cij log
Cij

ℋij f j

+∑
l

∑
i∈Sl

∑
j

ℋij f j +∑
l

∑
i∈Sl

γi(∑j
Cij − gi).

(4)

Note that the sum over detector bins ∑i in Einc–ML in Eq.(2) is replaced in Eq.(4) by a sum over
subsets ∑l∑i∈Sl where l = 1, …, L indexes subset number and Sl is the set of detector bins
belonging to the lth subset. Here, Cij is the complete data, roughly analogous to the complete
data as used in statistical derivations of EM-ML. From its Jensen’s inequality origin, we know
that Cij is real and positive, and that it obeys the constraints ∑jCij = gi expressed in terms of a
Lagrange parameter γi. Differentiating Eq.(4) w.r.t. C, setting the result to zero and solving for
the Lagrange parameter vector γ by imposing the constraints ∑jCij = gi we get

Cij
sol(f) = gi

ℋij f j
∑n ℋin fn

∀ i, ∀ j. (5)

Inserting the just established solution (5) into (4), we can write the identity

Ecomp(Csol(f), f) = ∑
ij

ℋij f j − ∑
i

gi log ∑
j

ℋij f j

+terms independent of f = Einc−ML(f)
(6)

where Einc–ML(f) is the desired objective function in Eq.(2). We have shown that optimizing
only over C (while keeping f fixed) in (4) results in Eq.(2). By optimizing Ecomp(f, C) to obtain
solutions f ̂, Ĉ, we also obtain the solution f ̂ of Einc–ML [17].

One may maximize Ecomp(f, C) by a form of grouped coordinate ascent on subsets of C and
f, which leads to a convergent and fast OS algorithm. Above, we showed that by first
minimizing Eq.(4) w.r.t. C, we obtained Eq.(2). We now show that minimizing Eq.(4) w.r.t.
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subsets of C results in a convergent ordered subsets EM algorithm (COSEM). First,
differentiate Eq.(4) w.r.t. a subset of C and set the result to zero. Solve for the subset Sl of C
in terms of f and the Lagrange multiplier γi where i ∈ Sl. Then, as before, we can eliminate
γi but only for i ∈ Sl by enforcing the constraints ∑jCij = gi, and obtain the update equation for
the Sl subset of the complete data C. We then solve for f by setting the derivative of Eq.(4)
w.r.t. f to zero. We then repeat the above procedure for the next subset and so on. One can
obtain the final update for all subsets of C and f as shown below. The update, in fact, closely
resembles that of OSEM itself, but the slight modifications introduced by COSEM-ML ensure
convergence to the ML solution. It is worth examining the updates of both algorithms, and
these are summarized below:

Cij
(k,l) = gi

ℋij f j
(k,l−1)

∑
j ′

ℋ
i j ′

f
j ′
(k,l−1) ∀ i ∈ Sl ∀ j (7)

Cij
(k,l) = Cij

(k,l−1) ∀ i ∉ Sl ∀ j (8)

f̃ j
(k,l) =

∑i Cij
(k,l)

∑i ℋij
∀ j (9)

f
⌣

j
(k,l)

=
∑i∈Sl

Cij
(k,l)

∑i∈Sl
ℋij

∀ j (10)

The updates Eq.(7) and Eq.(10) when combined, form the familiar OSEM update, while the
updates Eq.(7), Eq.(8) and Eq.(9) constitute COSEM-ML [11]. The notation f j

(k,l) indicates
the update of the jth voxel at the lth subiteration (corresponding to use of the lth subset) of
iteration k. When all L subsets have been updated, k is incremented. A first look at details of
these updates appears to indicate that COSEM-ML involves many more steps per iteration k
than does OSEM, but in [17], we show that the amount of computation is about the same. The
updates for COSEM-ML preserve positivity.

We are primarily interested in the MAP case, and note that a COSEM-MAP version is
obtainable by adding a prior Eprior(f) to Eq.(4). The updates for C in the COSEM-MAP
algorithm remain the same as in Eq.(7) and Eq.(8). When we attempt to derive an update
analogous to Eq.(9), the prior introduces a coupling between voxels, and this causes difficulty
in deriving a closed-form and parallel update for f. To solve this, we use the method of separable
surrogates [21] replacing Eq.(3) by

EpriorSS(f) =
β
2 ∑

j
∑

j ′∈N( j)
w

j j ′
(2 f j − f j

(k)

− f
j ′
(k))2 + (2 f

j ′
− f j

(k) − f
j ′
(k))2

(11)

at iteration k. Since the resulting MAP objective function including Eq.(4) and Eq.(11) is a
simple, convex 1-D objective w.r.t. fj, we can trivially find that f j

(k,l) which minimizes it.
Setting the derivative of the separable surrogate enhanced complete data MAP objective, Eqs.
(4) plus (11), w.r.t. fj to zero, and defining vjj′ ≡ wjj′ + wj′j, and Dj = ∑iHij, we obtain the final
COSEM-MAP update for f [12]:
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f j
(k,l) = − b + b2 − 4ac

2a (12)

where a = 4β∑
j ′

v
j j ′

, b = − 2β∑
j ′

v
j j ′

( f j
(k,l−1) + f

j ′
(k,l−1)) + D j and c = − ∑i Cij

(k,l).

Note that the f j
(k,l) update preserves positivity and that the COSEM-MAP updates are parallel

in the voxel space. The overall computation per (k, l) subiteration is close to that of OSEM.

4. Simulation Results
To assess COSEM-MAP speed we display the normalized objective difference (NOD), versus
iteration number k defined as:

NOD(k) =
Einc−MAP(fk) − Einc−MAP(f∗)

Einc−MAP(f0) − Einc−MAP(f∗)
(13)

where fk ≡ f(k,0) and f0 is the initial estimate obtained via FBP. We define f* to be the true MAP
solution at k = ∞, estimated from 5000 iterations of EM-MAP.

A sinogram (64 angles by 96 bins) with 300K counts was simulated using a 2D 64×64 phantom
( pixel = 5.6 mm), shown in Fig. 1(a). The phantom consists of a background and hot and cold
lesions with a contrast ratio of 1:4:8 (cold:background:hot). Uniform attenuation (H2O at 140
KeV) and depth-dependent blur for a parallel collimator were modeled.

Reconstructions were performed using EM-MAP, BSREM [2] and COSEM-MAP. (Note that
EM-MAP is simply COSEM-MAP at L = 1 subset). We chose L = 8 subsets for BSREM and
COSEM-MAP, and for all reconstructions set β = 0.06. The relaxation schedule for BSREM

was chosen as: αk =
α0

max{ j,l} ∑i∈Sl
ℋij + k  with α0 = 3.2. This schedule obeys the constraints

in [2]. The schedule was chosen to attain rapid convergence at early iterations. Anecdotal
reconstructions for each algorithm are shown in Fig. 1 at iteration 30.

We plot NOD vs. k for each reconstruction in Fig. 2. At early iterations, the speed of COSEM-
MAP lies between that of BSREM and EM-MAP, and by iteration 25, the NOD’s of COSEM-
MAP and BSREM cross each other. We also plot NOD(k) (not shown here) for COSEM-MAP
with varying numbers of subsets (L= 4, 8, 16, 32, 64). After an initial speedup at L = 4, further
speedup with increasing L is modest and is not as good as that observed with competing OS-
type algorithms.

5. Discussion
We have derived new convergent complete data ordered subsets algorithms for ML (COSEM-
ML) and MAP (COSEM-MAP) reconstruction. It is straightforward to include randoms or
scatter via an affine term s ̄, corresponding to g ∼ Poisson (ℋf + s̄), in the algorithms. Detailed
convergence proofs are presented in [17].

It is unknown whether COSEM converges monotonically. (By monotonic, we mean that the
objective decreases at each outer loop iteration k.) In our many simulations with clinically
realistic imaging parameters, we have not yet observed non-monotonicity.
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Though the simulations in Sec. 4 are not extensive, the results are quite typical, and the speed
gap relative to relaxation-based methods cannot be closed by simply choosing a better L or
initial condition. One might consider speeding up COSEM while maintaining its desirable
properties. In separate publications [22,18,23], we have demonstrated that this is possible with
an “enhanced” COSEM (ECOSEM) algorithm for MAP and ML versions.

In ECOSEM, the basic strategy is to apply an automatically computed parameter that controls
a trade-off between a COSEM update and a faster OSEM update at each sub-iteration, while
maintaining convergence. Simulations results for ECOSEM-ML [18] show its speed to
approach that of optimized RAMLA.

In sum, we have presented COSEM-ML and COSEM-MAP for emission tomography based
on our notion of a complete data energy. The COSEM algorithms needs no user-specified
relaxation schedule as do competitors. While the early-iteration speed of COSEM is slower
than that of competitors, we are developing faster enhanced ECOSEM versions competitive
in speed with RAMLA and BSREM.
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Figure 1.
The 2D 64×64 phantom is shown in (a), while the anecdotal reconstructions are displayed in
(b) EM-MAP, (c) COSEM-MAP, and (d) BSREM.
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Figure 2.
Normalized objective difference for EM-MAP, COSEM-MAP, and BSREM at L=8.

Hsiao et al. Page 8

Nucl Instrum Methods Phys Res A. Author manuscript; available in PMC 2007 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


