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Abstract
The cerebrovascular response to decreases in hematocrit and viscosity depends on accompanying
changes in arterial O2 content. This study examines whether 1) the arteriolar dilation seen after
exchange transfusion with a 5% albumin solution can be reduced by the KATP channel antagonist
glibenclamide (known to inhibit hypoxic dilation), and 2) the arteriolar constriction seen after
exchange transfusion with a cell-free hemoglobin polymer to improve O2-carrying capacity can be
blocked by inhibitors of the synthesis or vasoconstrictor actions of 20-HETE. In anesthetized rats,
decreasing hematocrit by one-third with albumin exchange transfusion dilated pial arterioles (14 ±
2%; SD), whereas superfusion of the surface of the brain with 10 μM glibenclamide blocked this
response (−10 ± 7%). Exchange transfusion with polymeric hemoglobin decreased the diameter of
pial arterioles by 20 ± 3% without altering arterial pressure. This constrictor response was attenuated
by superfusing the surface of the brain with a 20-HETE antagonist, WIT-002 (10 μM; −5 ± 1%), and
was blocked by two chemically dissimilar selective inhibitors of the synthesis of 20-HETE, DDMS
(50 μM; 0 ± 4%) and HET-0016 (1 μM; −6 ± 4%). The constrictor response to hemoglobin transfusion
was not blocked by an inhibitor of nitric oxide (NO) synthase, and the inhibition of the constrictor
response by DDMS was not altered by coadministration of the NO synthase inhibitor. We conclude
1) that activation of KATP channels contributes to pial arteriolar dilation during anemia, whereas 2)
constriction to polymeric hemoglobin transfusion at reduced hematocrit represents a regulatory
response that limits increased O2 transport and that is mediated by increased formation of 20-HETE,
rather than by NO scavenging.

Keywords
anemia; blood substitute; cytochrome P-450; nitric oxide; oxygen carrier; ATP-sensitive potassium
channel

Address for reprint requests and other correspondence: R. C. Koehler, Dept. of Anesthesiology and Critical Care Medicine, The Johns
Hopkins Medical Institutions, 600 North Wolfe St., Blalock 1404, Baltimore, MD 21287 (e-mail: rkoehler@jhmi.edu)..
DISCLOSURES
E. Bucci and the University of Maryland are holders of a patent on the zero-link bovine hemoglobin polymer used in this study.
R. C. Koehler and H. Kwansa are paid consultants to Oxyvita, holder of the licensing rights to the zero-link bovine hemoglobin polymer.
The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies.
GRANTS
This work was supported by National Institutes of Health Grants NS-38684 and HL-59996.

NIH Public Access
Author Manuscript
J Appl Physiol. Author manuscript; available in PMC 2007 March 15.

Published in final edited form as:
J Appl Physiol. 2006 January ; 100(1): 336–342.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Cerebrovascular Autoregulation usually refers to active changes in arteriolar diameter that
maintain cerebral blood flow constant during alterations in cerebral perfusion pressure. With
increases in arterial blood pressure, the normal maintenance of cerebral blood flow has been
shown to depend, in part, on cytochrome P-450 (CYP) ω-hydroxylase activity, which converts
arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) in arterial smooth muscle
(5). 20-HETE is thought to amplify the myogenic response by inhibiting calcium-activated
potassium channels (6,16), which would ordinarily temper an increase in tone elicited by the
increases in intracellular calcium. Production of 20-HETE is O2 dependent in the physiological
range (7). Thus interventions that increase oxygenation in the brain other than an increase in
perfusion pressure may also act to produce vasoconstriction by a mechanism dependent on
increased formation of 20-HETE.

Changes in pial arteriolar diameter in response to changes in blood viscosity have been referred
to as viscosity autoregulation (21,23). Decreases in arterial hematocrit have been reported to
either increase, decrease, or produce no change in pial arteriolar diameter (4,11,12,22,23,25).
This variability may be due to the countering effects of viscosity and changes in arterial O2
content on oxygenation and, thus, may be influenced by differences in baseline hematocrit and
metabolic rate for a particular species. We previously reported that exchange transfusion of a
solution of cell-free tetrameric cross-linked hemoglobin or cell-free polymeric hemoglobin in
cats constricts pial arterioles, in contrast to the dilation seen with exchange transfusion of an
albumin solution at equivalent hematocrit but with a lower O2-carrying capacity (4,25).
Interestingly, the different arteriolar responses to transfusion with albumin- vs. hemoglobin-
containing solutions produced equivalent levels of cerebral O2 transport, but increasing plasma
viscosity during the cell-free hemoglobin transfusion converted the constrictor response to a
dilator response. These findings imply that active vascular responses to changes in viscosity
of the blood can be viewed as an extension of pressure-induced autoregulation in which Po2
levels in the brain are tightly controlled.

Without active arteriolar constriction, decreases in blood viscosity without a fall in arterial
O2 content will increase in cerebral blood flow and increase tissue Po2. We postulate that the
pial arteriolar constrictor response seen after exchange transfusion with cell-free, polymeric
hemoglobin solution may be mediated by an O2-dependent increase in ω-hydroxylase activity.
The possibility that changes in O2 levels in the brain contributes to viscosity autoregulation by
regulating the production of the potent vasoconstrictor 20-HETE in cerebral arteries has not
been investigated previously. In addition, ω-hydroxylase activity is strongly inhibited by nitric
oxide (NO) (1,30). Because it has been postulated that cell-free hemoglobin in the plasma can
act as a more efficient sink for NO than cell-based hemoglobin (10,17,18), an alternative
possibility is that plasma-based hemoglobin reduces NO concentration in vascular smooth
muscle sufficiently to disinhibit ω-hydroxylase activity. Thus the present study examined the
hypotheses 1) that local application of a 20-HETE antagonist or two chemically dissimilar
selective inhibitors of the synthesis of 20-HETE (2,15,20) reduces the pial arteriolar constrictor
response to exchange transfusion of a cell-free polymeric hemoglobin solution, 2) that local
application of a NO synthase (NOS) inhibitor does not block the pial arteriolar constrictor
response to polymeric hemoglobin transfusion and does not interfere with the inhibitory effect
of an ω-hydroxylase inhibitor on the response, and 3) that the pial arteriolar dilation seen after
exchange transfusion with an albumin-containing solution is reduced by local application of
an inhibitor of ATP-sensitive potassium (KATP) channels. The rationale for the latter
hypothesis is based on the assumption that the dilation is the result of a hypoxic stimulus
accompanying the decrease in O2-carrying capacity (34,36) and on the evidence that KATP
channels contribute to pial arteriolar dilation associated with hypoxic hypoxia (29,31).
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METHODS
All procedures were approved by the Johns Hopkins University Animal Care and Use
Committee. Male Wistar rats weighing 250–300 g were anesthetized with halothane + 70%
N2O-balance O2. The lungs were mechanically ventilated through a tracheostomy. Catheters
were inserted into a femoral artery and vein for monitoring arterial blood pressure and for
infusions. A closed cranial window was constructed over the parietal cortex for measuring pial
arteriolar diameter by intravital microscopy (3,9). A plastic ring was cemented to the skull,
and ~3–4 mm of bone were removed. The dura was incised and retracted, the ring was filled
with artificial cerebrospinal fluid (CSF), and the window was sealed with a coverslip cemented
to the plastic ring. The plastic ring was equipped with an inflow port, an outflow port, a port
for measuring fluid pressure, and a thermistor for monitoring fluid temperature. Rectal
temperature was maintained at ~37°C with a heating pad.

Pial arterioles were imaged through the cranial window with a microscope and video recording
system. Measurements were usually made at two to four sites along each arteriole segment and
on two different arterioles in each window. For each intervention, the percent change in
arteriolar diameter was calculated at each site. An average percent change was then obtained
for each rat, and this average value was used for statistical analysis, with the sample size equal
to the number of rats.

Exchange transfusion was performed over a 15-min period by administration of a 5% solution
of human albumin or a 6% solution of a hemoglobin polymer. Approximately 7 ml of blood
were removed from the rat via the arterial catheter while simultaneously being replaced with
an intravenous infusion of either solution to reduce hematocrit by ~30%. The process for
polymerization, purification, and removal of endotoxin from the solution of the bovine
hemoglobin polymer in lactated Ringer solution has been previously described (19,25). The
polymers are characterized by covalent amide bonds linking the tetramers (zero-link bovine
hemoglobin polymer). Low-molecular-mass species (<300 kDa) were removed from the
hemoglobin solution by diafiltration in which the retentate contains polymers with an estimated
average molecular mass of 20 MDa. The polymeric hemoglobin has a high O2 affinity (P50 ~4
Torr at 50% O2 saturation) with poor cooperativity (Hill coefficient of ~1).

To assess the role of 20-HETE in the arteriolar response to hemoglobin transfusion, the window
was superfused with either 1) the putative 20-HETE antagonist WIT-002 [20-hydroxyeicosa-6
(Z),15(Z)-dienoic acid (also known as 20-HEDE); 10 μM] (5,37); 2) a selective inhibitor of
the synthesis of 20-HETE, DDMS (N-methylsulfonyl-12,12-dibromododec-11-enamide; 50
μM) (5,35); or 3) a structurally dissimilar inhibitor of the synthesis of 20-HETE, HET-0016
[N-hydroxy-N′-(4-butyl-2-methylphenyl)-formamidine; 1 μM] (15,20). The concentrations of
these inhibitors have previously been shown to be efficacious in the cerebral circulation of rats
(5,15). To test the role of NO in the vascular response to hemoglobin transfusion, the window
was superfused with the NOS inhibitor Nω-nitro-L-arginine (L-NNA; 300 μM). To test the role
of KATP channels in the arteriolar response to albumin exchange transfusion, the window was
superfused with 10 μM glibenclamide. Vehicle or a single drug diluted in artificial CSF was
superfused through the cranial window at a rate of 0.2 ml/min for 20 min before the start of
the exchange transfusion. Fluid pressure in the window was maintained at 5 mmHg by adjusting
the height of the outflow catheter.

Six groups of rats were studied with hemoglobin exchange transfusion: 1) vehicle (0.25%
ethanol; n = 6); 2) WIT-002 (n = 6); 3) DDMS (n = 7); 4) HET-0016 (n = 6); 5) L-NNA (n =
6); and 6) L-NNA + DDMS (n = 6). The combined L-NNA + DDMS group was studied to
determine whether the effect of DDMS on the vascular response required NOS activity. Two
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groups of rats were studied with albumin transfusion: 1) vehicle (0.1% DMSO; n = 6); and 2)
glibenclamide (n = 6).

The percent change in arteriolar diameter was measured immediately after completion of the
exchange transfusion and 30 and 60 min later. To test whether the pial arterioles were still
capable of constriction after the various drug treatments, the vascular response to superfusion
of the pial window with the thromboxane analog U-46619 (0.1 μM) was determined at the end
of each experiment.

Statistics
Values are presented as means ± SD. The significance of differences in the percent change in
arteriolar diameter at various time points in drug- and vehicle-treated groups was evaluated by
analysis of variance and the Newman-Keuls multiple-range test. A P value <0.05 was
considered to be significant. Arterial blood measurements made after transfusion were
compared with the pretransfusion values by paired t-test.

RESULTS
Exchange transfusion with the zero-link bovine hemoglobin polymer decreased hematocrit
from 36–40 to 27–29%. This was accompanied by only a small decrease in blood hemoglobin
concentration (Table 1). In contrast, exchange transfusion with the albumin solution produced
a large decrease in blood hemoglobin concentration, with a similar reduction in hematocrit.
Arterial Pco2 was controlled in the range of 36–40 Torr and was not significantly altered by
the transfusion. Arterial Po2 was maintained at ~130 Torr in all rats, and arterial pH was
maintained in the range of 7.40–7.45 (data not shown). Mean arterial blood pressure was not
significantly changed after transfusion of hemoglobin polymer, although a small decrease
occurred after transfusion of the albumin solution (Table 1). Rectal temperature and fluid
temperature in the cranial window were both in the range of 36.8–37.5°C before and after
transfusion in all groups.

Immediately after completion of the exchange transfusion with the polymeric hemoglobin
solution, the diameter of the pial arterioles fell by 20%. This constrictor response was attenuated
by 75% by superfusing the surface of the brain with 10 μM WIT-002 and was completely
blocked in the groups superfused with 50 μM DDMS and 1 μM HET-0016 (Fig. 1).

Previous studies have indicated that the formation of 20-HETE is directly dependent on tissue
Po2 levels in the physiological range from 20–100 Torr and is strongly inhibited in cerebral
arteries both in vivo and in vitro by NO (1,7,30). Because the plasma-based hemoglobin might
scavenge NO sufficiently to disinhibit ω-hydroxylase activity, the effect of the NOS inhibitor
L-NNA was tested to determine whether L-NNA prevented the ability of DDMS to block the
vascular response to hemoglobin transfusion. Superfusion of L-NNA alone reduced the
baseline diameter of the pial arterioles by 12% before hemoglobin transfusion (Fig. 2).
Subsequent transfusion of hemoglobin produced a statistically significant, additional 5%
constriction. The overall constrictor response as a percent of the pre-L-NNA baseline (17%)
was similar to that obtained with hemoglobin transfusion in the vehicle-super-fused group. In
the vehicle group, the constrictor response gradually subsided over the 60-min observation
period after completion of the hemoglobin transfusion (Fig. 2). The time course of the overall
constrictor response in the group super-fused with L-NNA was similar to that in the vehicle
group over the first 30 min, but the constriction was maintained for more than 60 min after
transfusion. In the group superfused with DDMS, time-dependent dilation occurred after
hemoglobin transfusion, and the responses were significantly different from those seen in the
vehicle group at 0 and 30 min after transfusion. With combined L-NNA and DDMS
superfusion, no significant change was observed in baseline diameter before hemoglobin
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transfusion, in contrast to the constriction seen with L-NNA alone (Fig. 2). Hemoglobin
transfusion in the group superfused with L-NNA plus DDMS resulted in time-dependent
dilation, which was similar to that seen with DDMS alone. These responses are significantly
different from the response seen in rats treated with L-NNA alone at all time points. The
difference in the percent diameter responses between 0 min and 60 min after completion of the
hemoglobin transfusion was greater in the vehicle group than in any of the drug-treated groups.

Exchange transfusion with the albumin solution produced a 14% dilation of pial arteries relative
to the baseline diameter after vehicle superfusion. The dilation did not vary over the 60-min
observation period (Fig. 3), and the response was significantly different from that seen with
hemoglobin transfusion over the entire 60 min. Superfusion of 10 μM glibenclamide did not
affect baseline arteriolar diameter compared with vehicle but completely blocked the dilator
response to albumin transfusion at all time points (Fig. 3).

Superfusion of the surface of the brain with 0.1 μM U-46619 1 h after transfusion reduced the
diameter of pial arterioles in all groups (Fig. 4). The response in the albumin-transfused group
superfused with glibenclamide is not different from the response seen in the albumin-transfused
group superfused with vehicle. Likewise, the constrictor responses to U-46619 in the
hemoglobin-transfused groups superfused with the various inhibitors are not significantly
different from that seen in the hemoglobin-transfused group superfused with vehicle.

DISCUSSION
This study examined potential mechanisms mediating the change in pial arteriolar diameter
after decreases in hematocrit with and without a proportional decrease in O2-carrying capacity.
The major findings were 1) that elevations in the production of 20-HETE appears to play an
important role in constricting pial arterioles after decreases in hematocrit when O2-carrying
capacity is maintained at near-normal levels by transfusion of a cell-free hemoglobin polymer;
2) that the expected fall in NO levels by binding to hemoglobin does not play a major role in
this constrictor response; and 3) that activation of KATP channels contributes to the pial
arteriolar dilation seen when hematocrit is decreased and there are a parallel decreases in the
O2-carrying capacity of the blood.

The results obtained with DDMS in blocking the constrictor response to hemoglobin
transfusion are similar to those obtained by using a chemically dissimilar and more selective
inhibitor of the synthesis of 20-HETE, HET-0016. Moreover, similar results were obtained by
superfusing the brain with an antagonist of the vasoconstrictor properties of 20-HETE,
WIT-002 (5,37). The concordant results obtained with the three distinct pharmacological
probes support a role for 20-HETE in mediating the constriction of pial arteries after exchange
transfusion with a hemoglobin-containing solution.

Exchange transfusion reduces hematocrit and blood viscosity and thus would normally act to
increase cerebral blood flow. Because the O2-carrying capacity of the blood has been
maintained by the hemoglobin solution, an increase in delivery of O2 to the brain would be
expected if there was no change in vascular tone. Indeed, an improvement of O2 delivery to
the brain after hypoperfusion is one of the therapeutic targets for the development of this class
of compounds. The production of 20-HETE by CYP4A enzymes is directly related to the
prevailing tissue Po2 levels over the normal physiological range of 20–80 Torr found in various
tissues (7). The results of the present study imply that the formation of 20-HETE from
arachidonic acid by CYP ω-hydroxylase in arteriole smooth muscle increases after exchange
transfusion with the hemoglobin-containing solution and that the elevated levels of 20-HETE
contributes to arteriolar constriction to prevent overoxygenation when blood viscosity is
decreased without a proportional reduction in O2-carrying capacity. Thus the mechanism
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involved in this autoregulation to an imposed change in blood viscosity is similar to that
proposed for 20-HETE in mediating autoregulation of cerebral blood flow after increases in
arterial blood pressure (5).

In addition to its O2 dependency, the formation of 20-HETE in isolated cerebral arteries is
augmented by increases in transmural pressure (5). Thus one needs to consider whether an
increase in transmural pressure might also provide the initial stimulus for pial arteriolar
constriction by a 20-HETE -dependent mechanism. At constant aortic pressure, pial arteriolar
intravascular pressure would increase if the effect decreased blood viscosity resulted in a
disproportionately greater reduction in the pressure drop across extraparenchymal resistance
vessels compared with that across the intraparenchymal resistance vessels. However, because
the major effect of reducing hematocrit is on blood viscosity at low shear rates present in the
microcirculation, one would not anticipate a disproportionate effect on the macrocirculation
vascular resistance. Indeed, servo-null measurements did not demonstrate a significant change
in pial arteriolar intravascular pressure with reduced hematocrit in rats (12). Thus an increase
in pial arteriolar transmural pressure is unlikely to be the major contributor to the observed
20% constriction after hemoglobin exchange transfusion.

Another consideration is that 20-HETE production is strongly inhibited by NO. For example,
NO donors have been found to open calcium-activated potassium channels and produce
cerebral vasodilation, and part of this response depends on NO inhibition of ω-hydroxylase
activity rather than increases in cGMP (1,30). Indeed, we found that the decrease in baseline
pial arteriolar diameter seen with the NOS inhibitor L-NNA was blocked by coapplication of
the ω-hydroxylase inhibitor DDMS, whereas DDMS application alone had no effect on
baseline diameter. Previous work has also shown that intracisternal injection of WIT-002 had
no effect on baseline cortical perfusion (37). Together, these findings suggest that tonic NO
production normally suppresses basal 20-HETE formation to very low levels but that inhibition
of basal NO production results in constriction that is dependent on 20-HETE synthesis.

Hemoglobin transfusion in the presence of L-NNA produced additional pial arteriolar
constriction compared with L-NNA alone. Cell-free hemoglobin in plasma can scavenge NO
more effectively than red cell-based hemoglobin (10,17,18). Mathematical models of the
microcirculation indicate that the presence of hemoglobin in the plasma can theoretically
scavenge sufficient NO to reduce NO concentration in vascular smooth muscle (14). Thus the
constrictor response to exchange transfusion of cell-free hemoglobin could be mediated by
decreases in NO sufficient either to decrease cGMP or to increase the formation of 20-HETE.
Our observation that the effect of combining L-NNA with DDMS on blocking the constrictor
response was the same as administering DDMS implies that the inhibitory effect of DDMS
does not require the presence of NO. Thus the effect of transfusing cell-free hemoglobin is
unlikely to be due to scavenging of NO by hemoglobin. Moreover, the observation that
constriction was still present with L-NNA alone implies that a decrease in cGMP as a result
of NO scavenging by hemoglobin plays only a minor role, if any, in the constrictor response.

Previous work in cats showed that pial arteriolar constriction to cell-free hemoglobin
transfusion also persisted in the presence of L-NNA (27). In this case, however, exchange
transfusion was performed with a cross-linked tetramer of hemoglobin that extravasates into
renal lymph and increases arterial pressure. The increase in arterial pressure could have
augmented myogenic tone, which also stimulates the formation of 20-HETE in cerebral arteries
(5). In the present study, administration of the polymeric hemoglobin that does not extravasate
in renal lymph (19) did not increase arterial pressure, and L-NNA still had little effect on the
constrictor response to exchange transfusion, whereas inhibitors of the synthesis or actions of
20-HETE were completely effective. In aggregate, these results are consistent with the concept
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that cell-free hemoglobin exchange transfusion increases the formation of 20-HETE in cerebral
arteries by increasing O2 availability for this O2-dependent enzyme.

Glibenclamide has been reported to attenuate the dilation of pial arterioles (29,31) and the
increase in cerebral blood flow during hypoxic hypoxia (32). Some evidence suggests that
anemia can reduce O2 availability in brain, although hypotension that often accompanies
hemodilution may also participate (28,36). Decreases in Po2 in pial venules has been reported
during hemodilution, in contrast to an increase in venular Po2 after exchange transfusion of
cross-linked tetrameric hemoglobin at reduced hematocrit (34). The present data showing that
glibenclamide blocks pial arteriolar dilation during anemia induced by albumin exchange
transfusion indicate that KATP channels ordinarily contribute to an active dilatory response to
anemia, possibly as a result of a hypoxic stimulus. A decrease in transmural pressure is unlikely
to fully account for the observed 14% dilation because others have reported that a 5-mmHg
decrease in mean arterial blood pressure, as occurred in the present study, would result in only
a 2–3% dilation of rat pial arterioles (8) and that pial arteriolar intravascular pressure remained
unchanged after hemodilution (12). Our results with anemia differ from those of Tomiyama et
al. (32), who found that injection of glibenclamide into cisternal CSF failed to prevent the
increase in blood flow induced by hemodilution. The different findings may be due to
differences in methodology.

The initial constriction seen after hemoglobin transfusion gradually subsided over the 1-h
observation period, although the diameter response remained significantly different from the
stable dilation seen after albumin transfusion. A similar diminishment of pial arteriolar
constriction was previously observed in the cat (25), indicating that the presently observed
effect was not specific for the rat. In the present study, hematocrit, total blood hemoglobin
concentration, arterial blood gases, and arterial blood pressure did not change over the 1-h
period (data not shown) and thus did not account for the diminished constriction over time.
Time-dependent dilation after hemoglobin transfusion persisted in the groups treated with the
NOS and ω-hydroxylase inhibitors, although the magnitude of the dilation between the 0-min
and the 60-min time point was attenuated. Persistent dilation suggests that other pathways may
be partly responsible for the diminished constriction over time.

In summary, the present work demonstrates a role for 20-HETE in mediating the cerebral
vasoconstrictor response to exchange transfusion with a cell-free hemoglobin polymer. The
constrictor response observed at a reduced hematocrit with this O2 carrier in the absence of
arterial hypertension suggests that this signaling pathway is important in a form of viscosity
autoregulation that limits overoxygenation of the brain. Some effort has been directed at
designing hemoglobin O2 carriers with reduced affinity for NO to minimize unwanted
vasoconstriction (24,26). The present study indicates that constriction can occur independent
of NO in a vascular bed with tight endothelial junctions and that this constriction acts to
overcome the decrease in blood viscosity. Others have proposed that designing a hemoglobin-
based solution with high viscosity and high O2 affinity will overcome arteriolar constriction
in beds such as skeletal muscle, which can reduce capillary perfusion (13,33). Whether
elevations in 20-HETE also play a role in the vascular response to cell-free hemoglobin
transfusion in other vascular beds remains to be determined.
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Fig. 1.
Change in pial arteriolar diameter immediately after completion of an exchange transfusion of
the hemoglobin polymer solution expressed as a percentage of the diameter after superfusing
the cranial window with 0.25% ethanol vehicle (n = 6), 10 μM 20-hydroxyeicosa-6(Z),15(Z)-
dienoic acid (WIT-002; n = 6), 50 μM N-methylsulfonyl-12,12-dibromododec-11-enamide
(DDMS; n = 7), or 1 μM N-hydroxy-N′-(4-butyl-2-methylphenyl)-formamidine (HET-0016;
n = 6). Values are means ± SD. *P < 0.05 from vehicle group.
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Fig. 2.
Change in pial arteriolar diameter after superfusion of the cranial window with 0.25% ethanol
vehicle (n = 6), 300 μM Nω-nitro-L-arginine (L-NNA; n = 6), 50 μM DDMS (n = 7), or 300
μM L-NNA plus 50 μM DDMS (n = 6), and at 0, 30, and 60 min after completion of an exchange
transfusion of the hemoglobin polymer solution. Values are means ± SD and are expressed as
a percentage of the baseline diameter before vehicle or drug superfusion of the window. *P <
0.05 from vehicle group.
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Fig. 3.
Change in pial arteriolar diameter after superfusion of the cranial window with 0.1% DMSO
vehicle (n = 6) or 10 μM glibenclamide (n = 6), and at 0, 30, and 60 min after completion of
an exchange transfusion of the albumin solution. Values are means ± SD and are expressed as
a percentage of the baseline diameter before vehicle or drug superfusion of the window. *P <
0.05 from vehicle group.
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Fig. 4.
Percent change in pial arteriolar diameter during superfusion of the thromboxane analog
U-46619 (1 μM) 1 h after completion of the exchange transfusion with the albumin (Alb) or
hemoglobin (Hb) in the various groups treated with vehicle or drugs. Values are means ± SD.
There were no significant differences between the treatment groups and the respective vehicle
groups.
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