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Abstract
Functional data can be clustered by plugging estimated regression coefficients from individual curves
into the k-means algorithm. Clustering results can differ depending on how the curves are fit to the
data. Estimating curves using different sets of basis functions corresponds to different linear
transformations of the data. k-means clustering is not invariant to linear transformations of the data.
The optimal linear transformation for clustering will stretch the distribution so that the primary
direction of variability aligns with actual differences in the clusters. It is shown that clustering the
raw data will often give results similar to clustering regression coefficients obtained using an
orthogonal design matrix. Clustering functional data using an L2 metric on function space can be
achieved by clustering a suitable linear transformation of the regression coefficients. An example
where depressed individuals are treated with an antidepressant is used for illustration.
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1 Introduction
Functional data applications, where each data point corresponds to a curve, have come to play
a prominent role in statistical practice (e.g. Ramsay and Silverman, 1997, 2002). The curves
in a functional data set often have a variety of distinctive shapes that can have important
interpretations. Representative curve shapes can be found by clustering the curves (e.g.
Heckman and Zamar, 2000; Abraham et al., 2003; James and Sugar, 2003; Luschgy and Pagés,
2002; Tarpey and Kinateder, 2003). The k-means clustering algorithm (e.g. Forgy, 1965;
Hartigan and Wong, 1979; MacQueen, 1967) has been and remains one of the most popular
tools for clustering data. When applied to functional data, k-means clustering results vary
depending on how the curves are fit to the data. Ultimately, the problem of k-means clustering
of functional data boils down to the behavior of the k-means algorithm for different linear
transformations of the data which is the focus of this paper.

Let y1(t), y2(t), . . . , yn(t) denote a sample of functional responses. In most applications the
functions are only observed at a finite number of time points along with a random error. Thus,
a regression model can be used to estimate the function:

yi = Xbi + ∊i, (1)
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where yi = (yi(t1) + ∊i1, yi(t2) + ∊i2, . . . yi(tmi) + ∊imi)′, ∊i is a vector of random errors, bi is the
p × 1 vector of regression coefficients for the ith function and X is a design matrix determined
by the choice of basis functions used to represent the functions (e.g. Ramsay and Silverman,
1997, Section 3.2). The estimated regression coefficients can be obtained using least-squares:

b̂i = (X ′X )
−1

X ′yi. (2)

A natural way to cluster the functions is to apply the k-means algorithm to the estimated
regression coefficients b̂i, i = 1, . . . , n.

Figure 1 shows fitted curves using a B-spline basis (de Boor, 1978) for n = 414 depressed
subjects treated with Prozac for twelve weeks (McGrath et al., 2000). The functions are the
estimated Hamilton Depression (HAM-D) responses as a function of time (scaled to take values
between 0 and 1) for each subject where lower HAM-D scores correspond to lower levels of
depression. The shapes of the curves are important indicators of the strength of placebo
responses and drug responses for individual subjects. However, due to the large number of
curves in Figure 1, it is difficult to pick out distinct and representative curve shapes.

Figure 2 shows the k = 3 cluster mean curves obtained from the k-means algorithm for four
different representations of this functional data. In panel A of Figure 2, the functional nature
of the data is ignored and the raw data (the yi’s) were plugged into the k-means algorithm. In
panels B, C, and D, the estimated regression coefficients (2) using respectively a B-spline basis,
a Fourier basis and a power basis (with an intercept and exponents −1, 1, 2, and 3) were
clustered. For the power series basis in panel D, a functional L2 metric was used in the k-means
algorithm instead of the usual Euclidean metric (see Section 3). The B-spline representation
used a single knot at t = 1/2 which was nearly optimal in terms of a cross-validation prediction
error. The resulting design matrix for the B-spline basis was based on p = 5 cubic B-spline
basis functions. Five basis functions were used for the Fourier and power series as well so that
each basis representations corresponds to the same dimension reduction.

The results from clustering shown in panels A, B and D in Figure 2 are somewhat similar: (1)
the lower curve corresponds to a very strong immediate improvement and then a leveling off
indicating an initial placebo response before the drug has an effect; (2) the middle curve shows
a steady improvement; (3) the top curve corresponds to subjects experiencing stronger
improvement later in the trial, perhaps after the drug has had time to take effect. The cluster
mean curves in panel C for the Fourier fits are considerably more bunched together and have
different shapes. Incidently, the cluster results for the power basis are very similar to the Fourier
results (panel C) if a Euclidean metric had been used instead of the L2 metric.

Figure 2 highlights a very important point: The fitted curves for individual subjects using the
B-spline, Fourier and power bases are almost identical and fit the data quite well but the cluster
results for the different fits can differ considerably. The reason is because different methods
of fitting curves correspond to different linear transformations of the raw data. Therefore the
covariance structures for the regression coefficients differ causing the clustering results to
differ as well. For instance, the first principal component of the estimated Fourier coefficient
distribution accounts for 99.8% of the variability and consequently, the estimated cluster means
from the Fourier fits lie approximately along the first principal component axis of the 5-
dimensional coefficient space. The cluster means from clustering the B-spline coefficients on
the other hand lie approximately in the 2-dimensional subspace spanned by the first two
principal component axes (which explains only 51% and 28% of the variability respectively).

If A denotes an arbitrary square invertible matrix, the regression model (1) can be expressed
as
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yi = (XA)(A−1bi) + ∊i = Zai + ∊i, (3)

where Z = XA and ai = A−1bi. Although the fitted values from (1) and (3) are identical, k-means
clustering of the b̂i’s and the âi’s generally yield different results. Standardized and weighted
regression as well as fitting orthogonal polynomials use transformations similar to (3). It is
well-known that results from the k-means algorithm depends on how the data is weighted (e.g.
Milligan and Cooper, 1988; Gnanadesikan et al., 1995;Green et al., 1990;Milligan, 1989). The
primary question of interest when clustering functional data is not necessarily how to choose
individual weights, but more generally how best to linearly transform the data prior to
clustering.

It is interesting to note that in the Prozac example above that clustering an appropriate linear
transformation of the Fourier coefficients produces results almost identical to clustering the
B-spline coefficients shown in panel B of Figure 2. The required linear transformation can be
found by letting PF = XF (X′F XF)−1 X′F denote the “hat” matrix for projections onto the column
space of XF , the Fourier basis design matrix. Let X̂ B = PF XB denote the projection of the B-
spline basis design matrix XB onto the column space of XF. Then using X̂ B in place of XB, the
estimated B-spline coefficients b̂B can be approximated by

b̂B ≈ (X̂ B
′ X̂ B)−1X̂ B

′ y = (XB
′PF

′ PF XB)−1XB
′PBy

= (XB
′PF XB)−1XB

′ XF (XF
′ XF )−1XF

′ y

= T b̂F

where the transformation matrix T = (X′BPFXB)−1X′BXF, and b̂F  equals the estimated
coefficient vector using the Fourier design matrix. In the Prozac example, the cluster mean
curves from clustering the transformed Fourier coefficients T b̂F  are essentially
indistinguishable from the cluster mean curves obtained by clustering the estimated B-spline
coefficients shown in panel B of Figure 2. It should be noted that transformations of coefficients
from one basis to approximate coefficients from another will not always produce nearly
identical clustering results.

The remainder of the paper is organized as follows: Section 2 shows that clustering the raw
data will often produce results very similar to clustering estimated regression coefficients from
an orthogonal regression; Section 3 shows that the k-means algorithm using an L2 function
space metric is equivalent to clustering regression coefficients after an appropriate linear
transformation; Section 4 discusses optimal linear transformations of the data for k-means
clustering and provides a simple illustration for clustering linear functions. The paper is
concluded in Section 5.

2 Clustering the Raw Data
In the Prozac example of Section 1, it turns out that clustering regression coefficients obtained
using an orthogonal design matrix produces cluster mean curves that are essentially
indistinguishable from those produced by clustering the raw data shown in panel A of Figure
2. That is, reducing the dimensionality of the data using the regression model appears to give
no advantage over clustering the raw data. This section explains why.

First, certain linear transformations have no effect on k-means clustering. In particular,
clustering p-dimensional observations, yi’s, and the transformed data
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ỹi = μ + cH yi (4)

where μ ∈ ℜp, c ∈ ℜ1, and H is an orthogonal p × p matrix, yield identical results. If ξ̂ j,  j =

1, . . . , k, are the cluster means found from clustering the ỹi, then H ′(ξ̂ j − μ) / c are the cluster
means from clustering the original data.

Let X = UDV′ denote the singular value decomposition of the design matrix X in (1). Then
Xo = XVD−1 = U is an orthogonal design matrix and bo = DVb is the vector of associated
regression coefficients. The least squares estimator of bo is
b̂o = (X ′

oXo)
−1X ′

oy = U ′(Ubo + ∊) = bo + U ′∊. Define V to be a m × (m − p) matrix with
orthonormal columns such that H = [U : V ] is an orthogonal m × m matrix. Since H′y is just
a rotation of y, clustering the raw data will yield identical classifications as clustering H′y by
(4). Now

H ′y = (U ′ y

V ′ y
)

= (U ′(Ubo + ∊)

V ′ (Ubo + ∊))
= ( b̂o

V ′ ∊
).

The raw data, after rotating by H′, has two orthogonal parts: the estimated orthogonal regression
coefficients b̂o and a pure error part V′∊. Thus, if the error variance is zero, clustering the raw
data is exactly equivalent to clustering the regression coefficients from an orthogonal design
matrix. That is, both methods will produce identical clusters. Since the (rotated) raw data has
a pure error component V′∊ that presumably contains no information on the true clusters, one
would expect that clustering the estimated coefficients b̂o from an orthogonal design matrix
to do a better job at recovering true clusters than clustering the raw data when the error variance
is large. If the error variance is small relative to the variability of the regression coefficients,
then clustering the raw data should yield essentially the same results as clustering estimated
coefficients using an orthogonal design matrix which is what happens in the Prozac example
of Section 1 when orthogonal design matrices are used.

3 Clustering Functional Data with an L2 Metric
In standard applications of k-means clustering, data points in ℜp are assigned to clusters based
minimal Euclidean distance to the cluster centers. If the data are functions, then an L2 metric
in function space may be a more appropriate metric to use for clustering. If y(t) is a functional
observation and ξ(t) is a functional cluster mean, then the squared L2 distance between these
two functions on an interval [T1, T2] is

∥ y − ξ∥2 = ∫T1

T2(y(t) − ξ(t))2dt. (5)

Suppose functions y(t) are represented using a regression relation

y(t) = β0u0(t) + β1u1(t) + ⋯ + βpup(t) + ∊(t).
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For instance, in a quadratic regression we would have u0(t) = 1, u1(t) = t, u2(t) = t2. Alternatively,
the ul(t) could be orthogonal polynomials or, in the case of a Fourier expansion, trigonometric
functions. Denote the expansion of a cluster mean ξ(t) by ξ(t) = ∑l=0

p γlul(t). The squared L2

distance between a function y(t) and a cluster mean ξ(t) in (5) can be expressed as

∥ y − ξ∥2 = ∫T1

T2(y(t) − ξ(t))2dt

= ∫T1

T2{ ∑
l=0

p
(βl − γl)ul(t)}2dt

= ∑
l1=0

p
∑

l2=0

p
(βl1

− γl1
)(βl2

− γl2
)∫T1

T2ul1
(t)ul2

(t)dt

= (β − γ)′W (β − γ)

= (W 1/2(β − γ))′(W 1/2(β − γ)),

where β and γ are the vector of regression coefficients for y(t) and ξ(t) respectively, W is the
symmetric (p + 1) × (p + 1) matrix with elements

∫T1

T2ul1
(t)ul2

(t)dt, (6)

and W1/2 is the symmetric square root of W. Thus, if one wishes to cluster functional data using
an L2 metric, then one can simply plug in the transformed regression coefficients W1/2β into a
standard k-means algorithm. This transformation was used in the Prozac example of Section
1 to obtain an L2 metric clustering of the estimated power series basis coefficients (see panel
D of Figure 2). As Tarpey and Kinateder (2003) noted, clustering regression coefficients is not
appropriate if an L2 metric is desired unless the functions ul(t) are orthonormal over (T1, T2)
in which case W = I and the L2 metric in function space is equivalent to a Euclidean metric on
the regression coefficients.

4 A Canonical Transformation for Clustering
The k-means algorithm may fail to find true clusters in a data set if there is substantial variability
in the data unrelated to differences in clusters. In fact, there is nothing inherent in the k-means
algorithm that guarantees that true clusters will be discovered. Instead the k-means algorithm
tends to place sample cluster means where maximal variation occurs in the data. Thus,
clustering functional data using the k-means algorithm will perform best if the linear
transformations used to fit the curves stretch the data in a direction that corresponds to true
cluster differences.

Basically the k-means algorithm begins with an initial set of k cluster means and then assigns
individual data points to clusters depending on which cluster center the individual points are
nearest. The cluster means are then updated based on the assignment of points to clusters and
the algorithm continues to iterate until no more points are reassigned to clusters. Because the
algorithm iterates by assigning points to the cluster whose center is closest, the optimization
achieved by the algorithm is to find groupings that minimize the within group sum-of-squares,
or equivalently, to maximize the between group sum-of-squares.

We will assume that differences between clusters lie in the random regression coefficients b
in (1) and not in the random error ∊. Let μj and Ψj denote the mean and covariance matrix
respectively of the random regression coefficient b for the jth cluster and let πj denote the
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proportion of the population in cluster j = 1, 2, . . . , k. The covariance matrix for the b can be
decomposed as

cov (b) = W + B, (7)

where

W = ∑
j=1

k
π jΨ j and B = ∑

j=1

k
π j(μ j − μ)(μ j − μ)′,

are the within cluster and the between cluster covariance matrices respectively and where
μ = ∑ j=1

k π jμ j. From (7) one can see that in order to optimize the k-means clustering, a
transformation should be used that minimizes the contribution of the within cluster variability
while maximizing the between cluster variability. A canonical discriminant function is defined
as “linear combinations of variables that best separate the mean vectors of two or more groups
of multivariate observations relative to the within-group variance” (Rencher, 1993). In
canonical discriminant analysis, transformations based on vectors aj that successively
maximize (a′jBaj)/(a′jWaj) are used. The solution is to choose the aj as the eigenvectors of
W−1B. A canonical transformation for clustering is now defined by first linearly transforming
the regression coefficient vector into Fisher’s canonical variates followed by a stretching of
the coefficient distribution to accent the between cluster variability and minimize the within
cluster variability. In particular, consider a linear transformation that simultaneously
diagonalizes W and B. Denote the spectral decomposition of W−1/2BW−1/2 by HDH′ where
H is an orthogonal p × p matrix and W1/2 is the symmetric square root of W. Let Γ =
W−1/2H. Assume the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp in D are arranged from largest to smallest
down the diagonal. Then from (7), the covariance matrix of Γ′b will be

I + D. (8)

In order to accent the between cluster variability and diminish the contribution of the within
cluster variability, one can further transform using a canonical transformation for clustering

CΓ′b (9)

where C = diag(c1, c2, . . . , cp) and the cj ≥ 0 are appropriately chosen constants. From (8), the
covariance matrix for the canonically transformed coefficients in (9) is C2 + C2D. Thus,
choosing large values of cj corresponding to eigenvalues in D greater than one inflates the
between cluster variability relative to the within cluster variability of the canonically
transformed coefficients and setting cj = 0 for eigenvalues between zero and one minimizes
the contribution of the within cluster variability. For instance, suppose the cluster means lie on
a line. Then multiplying the positive eigenvalue λ1 in D by a large value of c1 transforms the
coefficient distribution by stretching it in the direction of the line containing the cluster means.
Consequently, the k-means algorithm will place cluster means along this line for large values
of c1. If the cluster means lie approximately in a q-dimensional plane, then one would choose
c1, . . . , cq to be large and the remaining cj to be small. An interesting problem is to determine
the optimal settings for the cj in order to optimize the k-means algorithm according to
minimizing a mean squared error or a classification error rate.

The canonical transformation of the regression coefficients in (9) can be adjusted for the

random error in a regression model. Letting b̂ = (X ′X )
−1

X ′y denote the least-squares
estimator of b, it follows from (1) that
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cov (b̂) = W + B + σ 2(X ′X )
−1

, (10)

where σ2 is the error variance and we have assumed the error components are independent.
The canonical transformation for b̂ is the same as (9) except W is replaced by

W + σ̂2(X ′X )
−1. The following example illustrates the canonical transformation.

Example: An Simple Illustration of a Canonical Transformation
Consider k = 3 clusters of random linear functions y(t) = b0 + b1t + ∊. The y-intercepts and
slopes were simulated from a three component normal mixture with mean values of y-intercept
and slopes equal to (0, 1), (2, 1), and (3, 3) in the three clusters and a common within cluster
covariance matrix equal to

Ψ = ( 2 − 1
− 1 6 ).

The proportion of the population in each of the three clusters is taken to be π1 = π2 = π3 = 1/3.
The error variance is σ2 = 0.25. Regression coefficients were estimated via least-squares. In
addition, regression coefficient estimates were also estimated using an orthogonal design
matrix Xo where X′oXo = I. Finally, a canonical transformation for clustering (9) was also used.
If c1 in C of (9) is too large relative to c2, the sample cluster means from the k-means algorithm
for the canonically transformed data will lie along a line which will not be optimal because the
true cluster means defined above are not co-linear. Testing different values of c1 with simulated
data indicated that setting C = diag(3.5, 1) appears to be a nearly optimal canonical
transformation in terms of minimizing the average squared difference between the estimated
cluster means and the true cluster means. Figure 3 shows contours of equal density for the three
cluster components with the horizontal axis corresponding to the y-intercept and the vertical
axis corresponding to the slope. The top-left panel of Figure 3 shows the distribution for the
original coefficient distribution; the coefficient distribution using the orthogonal design matrix
is shown in the top-right panel; and the coefficients for the canonical transformation
distribution is shown in the bottom panel.

In order to compare the performance of the three cases shown in Figure 3, 1000 data sets of
size n = 100 were simulated for mi = 10 equally spaced time points between t = 0 to 1. The k-
means algorithm was run for each transformation using the R-software R Development Core
Team (2003). The estimated cluster means for the orthogonal design matrix and the canonical
coefficient distributions were transformed back to the original scale. For each simulated data
set, a squared error was computed by summing the squared distances between each estimated
cluster mean and the nearest true cluster mean. The squared error distributions, plotted in Figure
4, shows that clustering the original coefficients (without transforming) does very badly
because the primary direction of within cluster variability is in a direction different than the
between cluster variability. Clustering the coefficients from an orthogonal design matrix does
much better in terms of the squared error because the transformation for the orthogonal design
matrix provides more separation between clusters as shown in the top-right panel of Figure 3.
The canonical transformation stretches the distributions in the direction with actual cluster
differences and therefore performs the best in terms of squared error. With other parameter
configurations, it is possible that clustering the original coefficients will perform better than
clustering coefficients from an orthogonal design matrix.

The main point of this section is that one should not blindly throw regression coefficients into
a clustering algorithm and expect the results to coincide with actual clustering in the data. In
particular, as the simulation example above illustrates, the performance of the k-means
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algorithm for clustering functional data can vary considerably depending how the functional
data is transformed prior to clustering.

The optimal canonical transformation for clustering (9) requires knowing the true within and
between covariance matrices which in practice are unknown. Unfortunately the sample
between covariance matrix B̂ obtained from running the k-means algorithm will often reffect
the major variability in the coefficient distribution regardless of whether or not this variability
corresponds to true differences in cluster means. In the Prozac example of Section 1, the first
eigenvector of the sample between covariance matrix B̂ for the Fourier coefficients is
approximately equal to the first eigenvector of the Fourier coefficient covariance matrix, i.e.
the k = 3 estimated cluster means from the k-means algorithm lie approximately on the first
principal component axis.

In situations where cluster means lie in a common hyperplane, Bock (1987) proposes a
projection pursuit clustering algorithm. This algorithm iterates by estimating the common
hyperplane using the subspace spanned by the largest eigenvectors from the between group
sums-of-squares-and-products matrix and then applying the k-means algorithm to the data
projected onto this hyperplane. Bolton and Krzanowski (2003) note that Bock’s algorithm tends
to find groups in the direction of the data corresponding to the largest variance and they propose
a slightly different projection pursuit index to avoid this problem.

When actual cluster means do indeed lie along the major axis of variation (i.e. the first principal
component), the k-means algorithm should perform quite well. This phenomenon occurs
frequently in morphometric studies of growth and is called allometric extension (Hills, 1982;
Bartoletti et al., 1999; Tarpey and Ivey, 2006). Let μ1 and μ2 denote the means of the two
populations and suppose that the eigenvector associated with the largest eigenvalue of the
covariance matrices in both populations is the same, call it β1. Then the allometric extension
model states that μ2 − μ1 = δβ1 where δ is a constant (Flury, 1997, page 630). The allometric
extension model may be reasonable in cases where two (or more) closely related species follow
a common growth pattern where one species evolved to a larger overall size. If the first principal
component accounts for a large proportion of the overall variance, then the k-means algorithm
will tend to place estimated cluster means along the first principal component axis where the
true cluster means reside. Thus, one would not want to automatically standardized the data
before clustering in these cases because it may hurt the k-means algorithm ability to correctly
determine groupings along the primary axis.

In a functional data analysis context, suppose the results of clustering curves produces roughly
“parallel” cluster mean curves with the same shape. Parallel cluster mean curves occur quite
often in practice when the variability in the intercepts of the curves overwhelms other modes
of variation. In these cases, the first principal component variable will tend to coincide with
the intercept approximately. Consequently all the cluster mean curves have basically the same
shape as the overall mean curve and differ only in their intercepts. This is fine if the actual
clusters differ in terms of their intercepts only. However, if curve shapes differ among groups,
then the data needs to be transformed to minimize the variability of the intercept and allow the
k-means algorithm to find distinct curve shapes. A couple possible solutions are to either drop
the intercept term when clustering, or to cluster the derivatives of the estimated functions, see
Tarpey and Kinateder (2003).

5 Discussion
An appealing aspect of functional data is that the observations are not just ordinary points in
Euclidean space, but they are curves with distinct shapes. Clustering functional data is a useful
way of determining representative curve shapes in a functional data set. However, the results
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from clustering curves depend on how the curves are fit to the data. The k-means clustering
algorithm will perform best if the linear transformation used to fit the curves stretches the data
in the direction corresponding to true cluster differences. Unfortunately optimal
transformations required for clustering require knowing the true cluster means. A promising
approach to solving this problem is to use projection pursuit clustering (Bolton and
Krzanowski, 2003).

It has been assumed that the error in the regression model contained no information on the
underlying clusters. This assumption may not always hold if the error variances in different
clusters differ. In addition, if the wrong model is fit to the data producing non-random structure
in the residuals, then this structure could contain information on clusters.

Clustering functional data by applying the k-means algorithm to the estimated coefficients is
very easy and fast. There are two substantial disadvantages of the k-means algorithm: (i) the
algorithm chops up the data into non-overlapping clusters, whereas in practice distinct groups
in the data will often overlap; (ii) the k-means algorithm is completely nonparametric and does
not take advantage of any valid parametric assumptions. Finite mixture models do not suffer
from these two weaknesses and provide a useful alternative to the k-means algorithm. A simple
approach is to plug the estimated coefficients into the EM algorithm for estimating parameters
of a finite mixture. A computationally more complicated but highly flexible approach is to
express the cluster/mixture model as a random effects model with a latent categorical variable
for cluster membership and then estimate the parameters using maximum likelihood via the
EM algorithm (James and Sugar, 2003; Muthén and Shedden, 1999).
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Figure 1.
Estimated B-spline curves for HAM-D response over a 12 week period for n = 414 depressed
subjects taking Prozac.
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Figure 2.
k = 3 cluster mean curves for the Prozac data from four different approaches: A. results from
clustering the raw data yi’s; B. results from clustering estimated B-spline coefficients; C: results
from clustering estimated Fourier coefficients; D: results from clustering estimated coefficients
from a power basis fit to the curves.
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Figure 3.
Contours of equal density for a k = 3 coefficient distribution. Top-left panel: the original
distribution; Top-right panel: coefficient distribution using an orthogonal design matrix;
Bottom panel: coefficient distribution using a canonical transformation.
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Figure 4.
Density distributions for the squared error for clustering the estimated coefficients using (i)
the original design matrix (solid curve), (ii) an orthogonal design matrix (dotted curve), and
(iii) canonically transformed coefficients (dashed curve).
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