Figure 1. Model of IR-Driven Mn and Fe Redox Cycling.
(H2O)n + γ-IR, radiolysis of water exposed to ionizing radiation [15]: H2O→ HO• + H+ + e− (IR-induced solvated electron); Primary radiolytic reaction [15]: 2 HO•→ H2O2; IR-induced superoxide [15]: O2 + e− → O2 •−; Fenton reaction [15]: Fe(II) + H2O2 → Fe(III) + HO• + OH− (hydroxide ion); Haber-Weiss reaction [15]: Fe(III) + HO2 • → Fe(II) + O2 + H+ and 2 Fe(III) + H2O2 → 2 Fe(II) + O2 + 2 H+; Mn oxidation [13]: Mn(II) + O2 •− + 2 H+→ Mn(III) + H2O2; Mn reduction [13]: 2 Mn(III) + H2O2 → 2 Mn(II) + O2 + 2 H+. Under IR, Fe(II,III) redox cycling is predicted to generate HO• and O2 •−, whereas Mn(II,III) redox cycling is predicted to favor O2 •− scavenging without HO• production.
