# Survey of Fumonisin Production by Fusarium Species

P. G. THIEL,<sup>1\*</sup> W. F. O. MARASAS,<sup>1</sup> E. W. SYDENHAM,<sup>1</sup> G. S. SHEPHARD,<sup>1</sup> W. C. A. GELDERBLOM,<sup>1</sup> AND J. J. NIEUWENHUIS<sup>2</sup>

Research Institute for Nutritional Diseases, South African Medical Research Council, P.O. Box 70, Tygerberg 7505,<sup>1</sup> and Roodeplaat Research Laboratories (Pty) Ltd., P. O. Box 13873, Sinoville 0129, Pretoria,<sup>2</sup> Republic of South Africa

Received 5 November 1990/Accepted 15 January 1991

Fumonisins  $B_1$  (FB<sub>1</sub>) and  $B_2$  (FB<sub>2</sub>), two structurally related mycotoxins with cancer-promoting activity, were recently isolated from corn cultures of *Fusarium moniliforme* MRC 826. These toxins have been reported to be produced also by isolates of *F. proliferatum*. Contamination of foods and feeds by *F. moniliforme* has been associated with human esophageal cancer risk, and FB<sub>1</sub> has been shown to be the causative agent of the neurotoxic disease leukoencephalomalacia in horses. Because of the toxicological importance of the fumonisins, the potential to produce FB<sub>1</sub> and FB<sub>2</sub> was determined in a study of 40 toxic *Fusarium* isolates representing 27 taxa in 9 of the 12 sections of *Fusarium*, as well as two recently described species not yet classified into sections. With the exception of one isolate of *F. nygamai*, fumonisin production was restricted to isolates of *F. moniliforme* and *F. proliferatum*, in the section Liseola. The *F. nygamai* isolate produced 605 µg of FB<sub>1</sub> g<sup>-1</sup> and 530 µg of FB<sub>2</sub> g<sup>-1</sup>, and the identity of the toxins was confirmed by capillary gas chromatography-mass spectrometry. This is the first report of the production of the fumonisins by *F. nygamai*.

Fusarium moniliforme contamination of feeds has been associated with several diseases in animals, including leukoencephalomalacia (LEM) in horses (12), and the incidence of F. moniliforme infection of home-grown corn has been shown to be correlated with the high incidence of human esophageal cancer in Transkei, southern Africa (9, 10, 16), and in China (8, 27).

Fumonisins  $B_1$  (FB<sub>1</sub>) and  $B_2$  (FB<sub>2</sub>), structurally related mycotoxins with cancer-promoting activity, were recently isolated from corn cultures of *F. moniliforme* Sheldon strain MRC 826 (3), and their structures were elucidated (1). FB<sub>1</sub> has since been shown to induce LEM in horses after either intravenous (11) or per os (6) administration and to induce pulmonary edema in swine after intravenous administration (5).

Both  $FB_1$  and  $FB_2$  have been found to occur naturally in corn and in feeds associated with field outbreaks of LEM in horses (20, 21, 23, 25, 26). Higher concentrations of both toxins have been detected in corn samples from areas with a high esophageal cancer rate in Transkei than in samples from low-rate areas (22).

At present there is no experimental proof that the fumonisins, which are rat liver cancer promoters, are causative agents of esophageal cancer in humans. However, the toxicological importance of the fumonisins emphasizes the need to establish the extent of human and animal exposure to these toxins. One approach is to screen different fungal isolates that commonly occur on foods and feeds for their potential to produce the fumonisins. A recent report (19) documented the production of FB<sub>1</sub> and FB<sub>2</sub> by cultures of both *F. moniliforme* and *F. proliferatum* (Matsushima) Nirenberg isolated from feeds associated with LEM in horses and pulmonary edema in swine in the United States.

In the present study 40 toxic *Fusarium* isolates representing 27 taxa in 9 of the 12 sections of *Fusarium* as classified by Nelson et al. (17), as well as two recently described species not yet classified into sections, were screened for their potential to produce  $FB_1$  and  $FB_2$ .

### MATERIALS AND METHODS

**Fusarium isolates.** All Fusarium isolates used in this investigation were obtained from the culture collection of the Research Institute for Nutritional Diseases, Medical Research Council, Tygerberg, South Africa. Cultures on corn of all the isolates tested were known to be highly toxic to ducklings, causing four of four deaths when fed to 1-day-old Pekin ducklings for 14 days, as previously described (15). The origin of each isolate, the substrate from which it was isolated, and the Fusarium taxon to which it belongs are given in Table 1. The Fusarium taxa are also arranged in sections as described by Nelson et al. (17), except for the two recently described species F. nygamai Burgess & Trimboli (2) and F. napiforme Marasas, Nelson & Rabie (13), which have not yet been classified into sections.

**Culture techniques.** Lyophilized conidia of the different *Fusarium* isolates were suspended in sterile water and used to inoculate moistened yellow corn kernels (400 g of kernels and 400 ml of water) in 2-liter glass fruit jars previously autoclaved at  $121^{\circ}$ C for 1 h on each of 2 consecutive days. Cultures were incubated in the dark at 25°C for 21 days, dried overnight at 45°C, ground to a fine meal in a laboratory mill, and stored at 0°C until analyzed.

**Reference standards.**  $FB_1$  and  $FB_2$  standards were isolated and purified from cultures of *F. moniliforme* MRC 826 as previously described (3). The identity and purity of each standard were assessed by thin-layer chromatography, highperformance liquid chromatography, and nuclear magnetic resonance spectroscopy.

**Determination of fumonisins.**  $FB_1$  and  $FB_2$  were determined by a recently developed high-performance liquid chromatography method (20). Briefly, fumonisins were extracted from a sample of the culture material with methanolwater (3:1, vol/vol). The extract was purified on a strong anion-exchange cartridge, and an aliquot was derivatized with *o*-phthaldialdehyde. The derivatized fumonisins were separated on a reversed-phase column, monitored by fluorescence detection, and quantified by comparison of peak areas with those obtained with reference standards of  $FB_1$  and  $FB_2$ .

<sup>\*</sup> Corresponding author.

| Section, MRC <sup>a</sup> no., and species | Origin        | Substrate | Fumonisin concn $\mu g g^{-1}$ |     |
|--------------------------------------------|---------------|-----------|--------------------------------|-----|
|                                            |               |           | FB <sub>1</sub>                | FI  |
| picarioides                                |               |           |                                |     |
| 2801 F. decemcellulare                     | South Africa  | Avocado   | ND <sup>b</sup>                | N   |
| porotrichiella                             |               |           |                                |     |
| 43 F. sporotrichioides                     | France        | Corn      | ND                             | N   |
| 3424 F. poae                               | South Africa  | Barley    | ND                             | N   |
| 1577 F. tricinctum                         | United States | Ivy       | ND                             | N   |
| Roseum                                     |               |           |                                |     |
| 3302 F. avenaceum                          | South Africa  | Medicago  | ND                             | N   |
| rthrosporiella                             |               |           |                                |     |
| 2905 F. semitectum                         | South Africa  | Corn      | ND                             | N   |
| 4815 F. camptoceras                        | Costa Rica    | Cocoa     | ND                             | N   |
| 3520 F. camptoceras <sup>c</sup>           | South Africa  | Soil      | ND                             | N   |
| ibbosum                                    |               |           |                                |     |
| 2330 F. equiseti                           | United States | Cereal    | ND                             | N   |
| 4463 F. equiseti                           | Transkei      | Soil      | ND                             | N   |
| 3311 F. acuminatum                         | South Africa  | Medicago  | ND                             | N   |
| 4028 F. acuminatum <sup>d</sup>            | South Africa  | Soil      | ND                             | N   |
| 3687 F. scirpi                             | Australia     | Soil      | ND                             | N   |
| 3528 F. longipes <sup>e</sup>              | South Africa  | Soil      | ND                             | N   |
| 4458 F. longipes                           | New Guinea    | Soil      | ND                             | N   |
| Discolor                                   |               |           |                                |     |
| 3307 F. sambucinum                         | South Africa  | Medicago  | ND                             | N   |
| 4666 F. sambucinum                         | South Africa  | Potato    | ND                             | N   |
| 1115 F. graminearum Gr.2                   | Transkei      | Corn      | ND                             | N   |
| 4917 F. graminearum Gr.1                   | South Africa  | Barley    | ND                             | N   |
| 5052 F. graminearum Gr.2                   | South Africa  | Wheat     | ND                             | N   |
| 3636 F. reticulatum                        | South Africa  | Medicago  | ND                             | N   |
| 1386 F. compactum                          | South Africa  | Groundnut | ND                             | N   |
| ateritium                                  |               |           |                                |     |
| 1925 F. lateritium                         | Zimbabwe      | Coffee    | ND                             | N   |
| liseola                                    |               |           |                                |     |
| 826 F. moniliforme                         | Transkei      | Corn      | 7,100                          | 3,0 |
| 1065 F. moniliforme                        | Transkei      | Corn      | 85                             |     |
| 4315 F. moniliforme                        | Transkei      | Corn      | 2,645                          | 2   |
| 4317 F. moniliforme                        | Transkei      | Corn      | 205                            |     |
| 4318 F. moniliforme                        | Transkei      | Corn      | 105                            | N   |
| 4319 F. moniliforme                        | Transkei      | Corn      | 180                            |     |
| 4321 F. moniliforme                        | Transkei      | Corn      | 1,330                          |     |
| 2059 F. proliferatum                       | South Africa  | Sorghum   | 20                             | :   |
| 2301 F. proliferatum                       | United States | Corn      | 870                            | 4   |
| 2302 F. proliferatum                       | United States | Corn      | 290                            |     |
| 2383 F. proliferatum                       | Sierra Leone  | Corn      | 660                            | 2   |
| 1077 F. subglutinans                       | Transkei      | Corn      | ND                             | N   |
| 3823 F. anthophilum                        | South Africa  | Oats      | ND                             | N   |
| legans                                     |               |           |                                |     |
| 1492 F. oxysporum                          | South Africa  | Groundnut | ND                             | N   |
| lewly described species                    |               |           |                                |     |
| 4003 F. nygamai                            | South Africa  | Soil      | 605                            | 4   |
| 4150 F. nygamai <sup>f</sup>               | Namibia       | Millet    | ND                             | N   |
| 4134 F. napiforme                          | Namibia       | Sorghum   | ND                             | N   |

## TABLE 1. Fumonisin production by Fusarium species

<sup>*a*</sup> MRC, Medical Research Council. <sup>*b*</sup> ND, Not detected ( $<1 \mu g g^{-1}$ ). <sup>*c*</sup> Lamprecht et al. (7). <sup>*d*</sup> Rabie et al. (18). <sup>*e*</sup> Van Wyk et al. (24). <sup>*f*</sup> Marasas et al. (14).

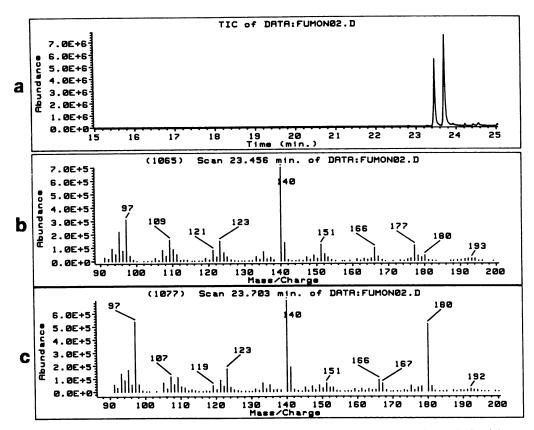



FIG. 1. (a) Total ion chromatogram (TIC) of the acylated hydrolysates of authentic fumonisin standards. (b) Partial mass spectrum of the amino-tetraol moiety of FB<sub>2</sub>. (c) Similar mass spectrum of the amino-pentol moiety of FB<sub>1</sub>.

Confirmation of the presence of FB<sub>1</sub> and FB<sub>2</sub>. Corn culture extracts were prepared and purified on strong anion-exchange cartridges and then hydrolyzed with 2  $\dot{M}$  potassium hydroxide (25). The hydrolysates were acidified with 1 M hydrochloric acid and purified further on short Amberlite XAD-4 columns (25). Aliquots of the purified hydrolysates were either derivatized with o-phthaldialdehyde and analyzed by high-performance liquid chromatography or derivatized with trifluoroacetylimidazole and analyzed by capillary gas chromatography-mass spectrometry. The amino-pentol moiety of  $FB_1$  and the amino-tetraol moiety of  $FB_2$  (present in the hydrolysates) were determined by both chromatographic techniques. The retention times and mass spectra observed in the culture extracts were compared with those obtained for the amino-pentol and amino-tetraol present in similarly hydrolyzed fumonisin standards.

### **RESULTS AND DISCUSSION**

Results of fumonisin analyses of corn cultures of 40 toxic *Fusarium* isolates are summarized in Table 1. With the exception of one isolate of *F. nygamai*, fumonisin production was restricted to section Liseola. All the isolates tested of two of the *Fusarium* spp. in section Liseola, *F. moniliforme* and *F. proliferatum*, produced both FB<sub>1</sub> and FB<sub>2</sub> except for *F. moniliforme* strain MRC 4318, which produced only FB<sub>1</sub>. One isolate of each of two other species in this section, *F. subglutinans* (Wollenweber & Reinking) Nelson, Toussoun & Marasas, and *F. anthophilum* (A. Braun) Wollenweber, did not produce any chemically detectable FB<sub>1</sub> or FB<sub>2</sub>.

Six of the seven F. moniliforme isolates from corn from a high-risk area of human esophageal cancer in the Transkei (4) produced both  $FB_1$  and  $FB_2$ , whereas the seventh isolate (MRC 4318) produced only  $FB_1$ . The highest producer of both FB<sub>1</sub> (7,100  $\mu$ g g<sup>-1</sup>) and FB<sub>2</sub> (3,000  $\mu$ g g<sup>-1</sup>) was F. moniliforme MRC 826, the strain from which the fumonisins were originally isolated and characterized (1, 3). Cultures of MRC 826 also had the highest cancer promotion activity compared with those of 10 other isolates of F. moniliforme from Transkeian corn, in a short-term cancer initiationpromotion bioassay in rat liver (4). The two other highest producers of fumonisins (MRC 4315 and MRC 4321, Table 1) similarly exhibited high cancer promotion activity in the cancer initiation-promotion bioassay (4). Of the three lowest producers of fumonisins (MRC 4317, MRC 4318, and MRC 4319; Table 1), two (MRC 4317 and MRC 4318) exhibited no cancer promotion activity, whereas the third (MRC 4319) registered the second-highest activity (4). With the exception of F. moniliforme MRC 4319, the fumonisin production by all F. moniliforme strains correlated well with the cancer promotion activity of the cultures.

The observation that all four isolates of *F. proliferatum* tested produced both FB<sub>1</sub> and FB<sub>2</sub> (Table 1) confirms a previous report (19) on fumonisin production by two isolates of *F. proliferatum* from feeds associated with field outbreaks of equine LEM and porcine pulmonary edema, respectively. The concentrations reported by Ross et al. (19) were in excess of 1,600  $\mu$ g g<sup>-1</sup> for FB<sub>1</sub> and 150  $\mu$ g g<sup>-1</sup> for FB<sub>2</sub>. In the present study, four *F. proliferatum* isolates, either from sorghum in South Africa or from corn in the United States

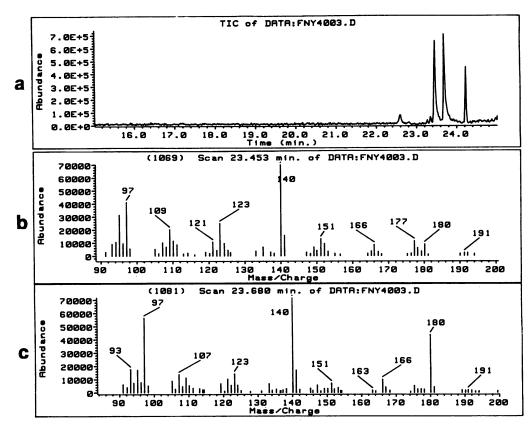



FIG. 2. (a) Total ion chromatogram (TIC) of the acylated hydrolysate of an extract of *F. nygamai* MRC 4003. (b) Partial mass spectrum of the peak eluting at 23.45 min. (c) Similar mass spectrum of the peak eluting at 23.68 min.

and Sierra Leone, produced FB<sub>1</sub> and FB<sub>2</sub> in cultures on corn, at levels ranging from 20 to 660  $\mu$ g g<sup>-1</sup> and 65 to 450  $\mu$ g g<sup>-1</sup>, respectively. One South African isolate of *F. proliferatum* (MRC 2059) from sorghum differed from all other fumonisin-producing strains thus far analyzed, in that it produced more FB<sub>2</sub> (160  $\mu$ g g<sup>-1</sup>) than FB<sub>1</sub> (20  $\mu$ g g<sup>-1</sup>).

In addition to the two fumonisin-producing Fusarium species in section Liseola, i.e., F. moniliforme and F. proliferatum, only one other toxic Fusarium isolate produced chemically detectable levels of  $FB_1$  and  $FB_2$ ; this was F. nygamai MRC 4003 (Table 1). The identity of the fumonisins produced by this isolate was confirmed by the hydrolysis of a sample extract followed by o-phthaldialdehyde derivatization and high-performance liquid chromatographic analysis as well as by acylation and analysis by capillary gas chromatography-mass spectrometry.

Figure 1a shows the total ion chromatogram of the hydrolyzed, acylated products of authentic fumonisin standards. The two chromatographic peaks eluting at 23.45 and 23.70 min correspond to the amino-tetraol and -pentol moieties of FB<sub>2</sub> and FB<sub>1</sub>, respectively. Figures 1b and c show the partial mass spectra (90 to 200 m/z) of the peaks.

Figure 2a illustrates the total ion chromatogram of an extract of *F. nygamai* MRC 4003, and Fig. 2b and c show the mass spectra of the two major peaks observed in Fig. 2a. The excellent agreement between the two sets of retention times and mass spectra confirmed the production of both FB<sub>1</sub> and FB<sub>2</sub> by *F. nygamai* MRC 4003. The presence of the aminopentol moiety of FB<sub>1</sub> and the amino-tetraol moiety of FB<sub>2</sub> in the hydrolyzed extracts of a culture of *F. nygamai* MRC

4003 was also confirmed by HPLC analysis of the *o*-phthaldialdehyde-derivatized hydrolysate.

The recently described species *F. nygamai* (2) is related to but excluded from the section Liseola by the production of chlamydospores but has not yet been assigned to a section. *F. nygamai* MRC 4003 was isolated from soil in the Kruger National Park, South Africa, and is one of the authentic isolates cited (as M-2368) in the original description (2). Cultures of *F. nygamai* MRC 4003 on corn produced 605 µg of FB<sub>1</sub> g<sup>-1</sup> and 530 µg of FB<sub>2</sub> g<sup>-1</sup> (Table 1). This is the first report of fumonisin production by *F. nygamai*.

#### REFERENCES

- Bezuidenhout, S. C., W. C. A. Gelderblom, C. P. Gorst-Allman, R. M. Horak, W. F. O. Marasas, G. Spiteller, and R. Vleggaar. 1988. Structure elucidation of the fumonisins, mycotoxins from *Fusarium moniliforme*. J. Chem. Soc. Chem. Commun. 1988: 743-745.
- Burgess, L. W., and D. Trimboli. 1986. Characterization and distribution of *Fusarium nygamai*, sp. nov. Mycologia 78:223– 299.
- Gelderblom, W. C. A., K. Jaskiewicz, W. F. O. Marasas, P. G. Thiel, R. M. Horak, R. Vleggaar, and N. P. J. Kriek. 1988. Fumonisins—novel mycotoxins with cancer-promoting activity produced by *Fusarium moniliforme*. Appl. Environ. Microbiol. 54:1806–1811.
- Gelderblom, W. C. A., W. F. O. Marasas, K. Jaskiewicz, S. Combrink, and D. J. Van Schalkwyk. 1988. Cancer promoting potential of different strains of *Fusarium moniliforme* in a short-term cancer initiation/promotion assay. Carcinogenesis 9:1405-1409.
- 5. Harrison, L. R., B. M. Colvin, J. T. Greene, L. E. Newman, and

J. R. Cole. 1990. Pulmonary edema and hydrothorax in swine produced by fumonisin  $B_1$ , a toxic metabolite of *Fusarium moniliforme*. J. Vet. Diagn. Invest. 2:217-221.

- Kellerman, T. S., W. F. O. Marasas, P. G. Thiel, W. C. A. Gelderblom, M. Cawood, and J. A. W. Coetzer. 1990. Leukoencephalomalacia in two horses induced by oral dosing of fumonisin B<sub>1</sub>. Onderstepoort J. Vet. Res. 57:269-275.
- Lamprecht, S. C., W. F. O. Marasas, E. W. Sydenham, P. G. Thiel, P. S. Knox-Davies, and P. S. Van Wyk. 1989. Toxicity to plants and animals of an undescribed, neosolaniol monoacetateproducing *Fusarium* species from soil. Plant Soil 114:75–83.
- Li, M., S. Lu, C. Ji, Y. Wang, M. Wang, S. Cheng, and G. Tian. 1980. Experimental studies on the carcinogenicity of funguscontaminated food from Linxian county, p. 139–148. *In* H. V. Gelboin (ed.), Genetic and environmental factors in experimental and human cancer. Japan Science Society Press, Tokyo.
- Marasas, W. F. O. 1982. Mycotoxicological investigations on corn produced in esophageal cancer areas in Transkei, p. 29-40. *In* C. J. Pheiffer (ed.), Cancer of the esophagus. CRC Press, Inc., Boca Raton, Fla.
- Marasas, W. F. O., K. Jaskiewicz, F. S. Venter, and D. J. Van Schalkwyk. 1988. Fusarium moniliforme contamination of maize in oesophageal cancer areas in Transkei. S. Afr. Med. J. 74:110-114.
- Marasas, W. F. O., T. S. Kellerman, W. C. A. Gelderblom, J. A. W. Coetzer, P. G. Thiel, and J. J. Van der Lugt. 1988. Leukoencephalomalacia in a horse induced by fumonisin B<sub>1</sub>, isolated from *Fusarium moniliforme*. Onderstepoort J. Vet. Res. 55:197– 203.
- 12. Marasas, W. F. O., P. E. Nelson, and T. A. Toussoun. 1984. Toxigenic *Fusarium* species: identity and mycotoxicology. Pennsylvania State University Press, University Park.
- Marasas, W. F. O., C. J. Rabie, A. Lübben, P. E. Nelson, T. A. Toussoun, and P. S. Van Wyk. 1987. Fusarium napiforme, a new species from millet and sorghum in southern Africa. Mycologia 79:910-914.
- Marasas, W. F. O., C. J. Rabie, A. Lübben, P. E. Nelson, T. A. Toussoun, and P. S. Van Wyk. 1988. Fusarium nygamai from millet in southern Africa. Mycologia 80:263-266.
- Marasas, W. F. O., P. G. Thiel, C. J. Rabie, P. E. Nelson, and T. A. Toussoun. 1986. Moniliformin production in *Fusarium* section *Liseola*. Mycologia 78:242–247.
- Marasas, W. F. O., F. C. Wehner, S. J. Van Rensburg, and D. J. Van Schalkwyk. 1981. Mycoflora of corn produced in human esophageal cancer areas in Transkei, southern Africa. Phytopathology 71:792–797.

- 17. Nelson, P. E., T. A. Toussoun, and W. F. O. Marasas. 1983. *Fusarium* species: an illustrated manual for identification. Pennsylvania State University Press, University Park.
- Rabie, C. J., E. W. Sydenham, P. G. Thiel, A. Lübben, and W. F. O. Marasas. 1986. T-2 toxin production by *Fusarium* acuminatum isolated from oats and barley. Appl. Environ. Microbiol. 52:594-596.
- Ross, P. F., P. E. Nelson, J. L. Richard, G. D. Osweiler, L. G. Rice, R. D. Plattner, and T. M. Wilson. 1990. Production of fumonisins by *Fusarium moniliforme* and *Fusarium proliferatum* isolates associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Appl. Environ. Microbiol. 56:3225-3226.
- Shephard, G. S., E. W. Sydenham, P. G. Thiel, and W. C. A. Gelderblom. 1990. Quantitative determination of fumonisins B<sub>1</sub> and B<sub>2</sub> by high-performance liquid chromatography with fluorescence detection. J. Liq. Chromatogr. 13:2077-2087.
- Sydenham, E. W., W. C. A. Gelderblom, P. G. Thiel, and W. F. O. Marasas. 1990. Evidence for the natural occurrence of fumonisin B<sub>1</sub>, a mycotoxin produced by *Fusarium moniliforme*, in corn. J. Agric. Food Chem. 38:285-290.
- 22. Sydenham, E. W., P. G. Thiel, W. F. O. Marasas, G. S. Shephard, D. J. Van Schalkwyk, and K. R. Koch. 1990. Natural occurrence of some *Fusarium* toxins in corn from low and high oesophageal cancer prevalence areas of the Transkei. J. Agric. Food Chem. 38:1900–1903.
- 23. Thiel, P. G., G. S. Shephard, E. W. Sydenham, W. F. O. Marasas, P. E. Nelson, and T. M. Wilson. 1991. Levels of fumonisins  $B_1$  and  $B_2$  in feeds associated with confirmed cases of equine leukoencephalomalacia. J. Agric. Food Chem. 39: 109–111.
- 24. Van Wyk, P. S., O. Los, and W. F. O. Marasas. 1988. Pathogenicity of a new *Fusarium* sp. from crown rot of wheat in South Africa. Phytophylactica 20:73-75.
- Voss, K. A., W. P. Norred, R. D. Plattner, and C. W. Bacon. 1989. Hepatotoxicity and renal toxicity in rats of corn samples associated with field cases of equine leukoencephalomalacia. Food Chem. Toxicol. 27:89–96.
- Wilson, T. M., P. F. Ross, L. G. Rice, G. D. Osweiler, H. A. Nelson, D. L. Owens, R. D. Plattner, C. Reggiardo, T. H. Noon, and J. W. Pickrell. 1990. Fumonisin B<sub>1</sub> levels associated with an epizootic of equine leukoencephalomalacia. J. Vet. Diagn. Invest. 2:217-221.
- 27. Yang, C. S. 1980. Research on esophageal cancer in China: a review. Cancer Res. 40:2633-2644.