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The gene encoding the Treponema denticola factor H-like protein 1 (FHL-1) binding protein, FhbB, was
recovered and characterized. Sequence conservation, expression, and properties of FhbB were analyzed. The
identification of FhbB represents an important step in understanding the contribution of FHL-1 binding in T.
denticola pathogenesis and in development of periodontal disease.

Treponema denticola is an important contributor to the de-
velopment of acute and chronic periodontal disease in humans
(44, 48). Periodontal disease has been linked to systemic dis-
ease, including heart disease (21), low birth weight (34), and
esophageal cancers (33). Periodontal disease affects nearly all
individuals at some point in their lives. This disease results from
the synergistic action of a polymicrobial population of endoge-
nous bacteria in association with several host-determined factors.
The association of spirochetes with periodontal disease has been
firmly established (45). High numbers of T. denticola cells have
been found in periodontal lesions and at the leading front of
periodontitis-associated subgingival plaque (41).

T. denticola, a member of the “red microbial complex” (45),
binds the complement regulatory protein, factor H-like protein
1 (FHL-1) (25). The molecular mass of the FHL-1 binding
protein produced by T. denticola is �12 kDa, and this protein
has been tentatively designated FhbB (FHL-1 binding protein
B). This protein is unique in that it binds FHL-1 but not the
closely related factor H protein (FH) (25). FHL-1, which is
derived from the FH mRNA via alternative splicing, consists of
the N-terminal domain of FH (11, 50). Both FH and FHL-1, as
well as other members of the FH protein family, have similar
structural organizations in that they are comprised of a series
50- to 60-amino-acid repeat units called short consensus re-
peats (SCRs). FHL-1 is comprised of the first seven SCRs of
FH, but in addition it has four unique C-terminal residues as a
result of alternate splicing of the FH mRNA. In mammals, FH
and FHL-1 contribute to regulation of the alternative comple-
ment pathway by serving as cofactors for factor I-mediated
cleavage of C3b (39, 40). They also regulate complement by
inhibiting the initial formation and accelerating the dissocia-
tion of the alternative pathway C3 convertase. While the im-
portance of FH and FHL-1 binding by microbial pathogens as
an immune evasion mechanism has been clearly demonstrated

(for a review, see reference 20), some pathogens may also
exploit the interaction as a way to facilitate adherence and
intracellular localization (35). The different functional activi-
ties associated with these otherwise very similar proteins most
likely result from the different ways that they fold and present
individual SCR domains on their surfaces. Previously, we dem-
onstrated that T. denticola cleaves C3b through a predomi-
nantly FHL-1-independent mechanism (25). This observation
suggests that FHL-1 binding may contribute to other aspects of T.
denticola pathogenesis, such as adherence to the extracellular
matrix (ECM) or to anchorage-dependent cell types that present
FHL-1. The interaction of T. denticola with cell- or ECM-an-
chored FHL-1 could promote biofilm formation, plaque develop-
ment, and the progression of periodontal disease.

To allow future analysis of FhbB and the contribution of
FHL-1 binding to T. denticola pathogenesis, the first goal of
this study was to identify the gene that encodes FhbB. To do
this, a proteomics-based approach was used. Since most spiro-
chetal FH/FHL-1 binding proteins are lipoproteins (2, 15, 18),
we focused on lipoprotein-encoding genes, of which there are
more than 160 in strain 35405 (42, 43). In view of the fact that
FH/FHL-1 binding proteins lack conserved primary sequence
elements or an identifiable functional domain, we focused on
the genes annotated as having unknown functions (n � 63). Of
these 63 genes, 9 were predicted to encode proteins having
molecular masses in a broad range (8 to 17 kDa) similar to the
molecular mass of FhbB (�12 kDa). These nine open reading
frames (ORFs) were then scanned for the presence of possible
coiled-coil domains using the COILS program (22). Coiled
coils have been demonstrated to be critical structural elements
involved in FH/FHL-1 binding by several spirochetal proteins
(16, 23, 27) and by the M protein of the group A streptococci
(3). The predictive probability of coiled-coil formation was
highest for tde0108 and tde1135 (Table 1). For one ORF
(tde0851) no coiled-coil probability was predicted, and this
ORF was not considered further. The remaining eight ORFs
were the focus of additional screening analyses.

r-Protein was generated for each of the eight ORFs listed in
Table 1 using the pET32 Ek-LIC cloning vector and methods
that have been described previously (8). The primers used in
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all PCRs, including those used for cloning, are shown in Table
2. Protein expression in isopropyl-�-D-thiogalactopyranoside
(IPTG)-induced Escherichia coli was demonstrated by screen-
ing an immunoblot with S-protein (Fig. 1). All immunoblot
assays were conducted exactly as described previously (24). All
expressed r-proteins were the predicted size and exhibited little
or no degradation. The ability of the proteins to bind FHL-1
was assessed using the affinity ligand binding immunoblot
(ALBI) assay (32). The r-protein derived from ORF tde0108
displayed strong FHL-1 binding, while no binding was detected
to other r-proteins (Fig. 1). As a control, an identical blot was
screened using the ALBI assay except that no FH/FHL-1 was
added; as expected, no signal was observed. From these anal-
yses we concluded that tde0108 encodes the FhbB protein
previously described by McDowell et al. (25).

Analysis of the fhbB gene sequence revealed that it is 309 bp
long and encodes a putative lipoprotein with a predicted mo-
lecular mass of 11.4 kDa and a pI of 10.6. The gene has a
strong ribosomal binding site (AAGGA) and is followed 43 bp
downstream by a rho-independent transcriptional terminator
with the sequence 5�-CCATCGGAAGATTCCGTCCTCCGA
TGG-3�. At the protein level, FhbB lacks potential transmem-
brane-spanning helices and is predicted to be presented on the
surface of the cell, anchored by a lipid moiety (lipidation
signal peptide motif, MKNKKIFTVLFLLAVSALLFTSC) (42).
FHL-1 binding to the surface of T. denticola cultivated in vitro
has been demonstrated previously (25).

FhbB differs from other FH/FHL-1 binding proteins in
terms of its binding specificity (it binds only FHL-1) and pre-
dicted structure. It has a single coiled coil, whereas other
FH/FHL-1 binding proteins of spirochetes contain two or more
coiled coils (16, 23, 27). Multiple coiled coils within a protein
could mediate intramolecular interactions that define or
present the FH/FHL-1 binding pocket. The occurrence of only
a single coiled coil in FhbB raises the possibility that this
domain is involved in an intermolecular interaction that is
necessary for FH/FHL-1 binding. The interaction could be a
direct interaction with FHL-1 or could facilitate FhbB dimer
formation which allows for presentation of the FHL-1 binding
pocket. It is important to note that coiled-coil interactions are

very stable and are resistant to heat and sodium dodecyl sulfate
(17, 46). This could explain why the FhbB protein retains
FHL-1 binding activity even after sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis and immunoblotting.

To determine if fhbB is present in other T. denticola strains,
PCR analyses were conducted. The fhbB gene was successfully
amplified from T. denticola strains 35405, 33520, and GM-1
(Fig. 2A). Sequence analyses of the amplicons revealed that
the gene is highly conserved, suggesting that it has an impor-
tant functional role in T. denticola biology. The fhbB genes
from the 35405 and 33520 strains had identical sequences,
while GM-1 fhbB differed at one nucleotide position (G-to-A
transition), which results in a His-to-Arg change at position 95.
To determine if fhbB has the same orientation relative to its
flanking sequence in other strains, PCR analyses were per-
formed. The binding site for each primer tested is shown in
Fig. 2B. Amplicons that were the same size were obtained from
all three strains tested, indicating that the gene orientation is
conserved. fhbB is located between tde0107, which encodes an
alpha-amylase family protein, and tde0109, which encodes the

TABLE 1. T. denticola ORFs analyzed in this study

ORF
Predicted protein
molecular mass

(kDa)

Highest coiled-coil
formation

probability a

tde0108 11.4 0.702
tde0429 8.5 0.235
tde0940 16.0 0.039
tde1135 13.5 0.295b

tde1190 16.6 0.142c

tde1191 16.3 0.101
tde1361 12.7 0.200 d

tde2448 16.7 0.040 e

a Unless indicated otherwise, probabilities were determined using a 14-amino-
acid window without weighting of the a and d positions of the coiled-coil heptad
repeat sequence (positions a to g).

b For a 28-amino-acid window, the probability was 0.852.
c For a 21-amino-acid window, the probability was 0.269.
d Probability with a and d positions weighted.
e For a 21-amino-acid window (a and d positions weighted), the probability was

0.085.

TABLE 2. Oligonucleotide primers

Primer Oligonucleotide sequencea

TDE0108FLIC..............................GACGACGACAAGATTACTTTC
AAAATGAATACTGCAC

TDE0108RLIC.............................GAGGAGAAGCCCGGTTTACTT
TATCTTTTTGGGTAT

TDE1135FLIC..............................GACGACGACAAGATCTGCACA
AGAAGCGGAATA

TDE1135RLIC.............................GAGGAGAAGCCCGGTTCAATC
TTCTTTTGCTTTTCC

TDE2448FLIC..............................GACGACGACAAGATTAAGAGC
CGCCGAATCGCCGAAC

TDE2448RLIC.............................GAGGAGAAGCCCGGTTTATTT
CTTTTCGATTTTGCG

TDE0429FLIC..............................GACGACGACAAGATTAAAACA
ACCGATACAAGTAAAA

TDE0429RLIC.............................GAGGAGAAGCCCGGTTTAGAT
AGGCTTCAATATAAGC

TDE1191FLIC..............................GACGACGACAAGATTTCTAAG
ACAGCGATAAAGGC

TDE1191RLIC.............................GAGGAGAAGCCCGGTTTAGTA
CTCTCCACTATTGAGC

TDE1190FLIC..............................GACGACGACAAGATTAAAACA
AATGAGAAAAAAAATGCTC

TDE1191RLIC.............................GAGGAGAAGCCCGGTCTAATA
TTCCGTATGCTTAAAATC

TDE1361FLIC..............................GACGACGACAAGATTAAACAA
TTTATTGCCGATATTG

TDE1361RLIC.............................GAGGAGAAGCCCGGTTTAAGC
TCGTAGTCGGTACCATTG

TDE0940FLIC..............................GACGACGACAAGATCAAGACA
AAGCAAATTCAGCC

TDE0940RLIC.............................GAGGAGAAGCCCGGTCTATAA
TTCGATATTAAAAACATTC

FhbB RT F ...................................ACGCGCTTGAGAATGAATTA
FhbB RT R...................................AATCTAATGCAAGGGCTTCAG
FlaA RT F ....................................GCTCAGGTTGATGATCAGG
FlaA RT R....................................GCAATTGATTTGATAACGCCG
TDE0109R1..................................GCTCATCAGCTTGCAAAGGC
TDE0109R2..................................CGATATTCATGACGTTTACTAC
FhbB Up .......................................CTCTTGACAGTACGTATAGTG
FhbB78R .......................................GGGTTTTTTATCCACAATTTG

a Underlining indicates the tail sequences added to allow annealing into the
pET32 Ek/LIC vector.
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alpha subunit of phenylalanyl tRNA synthetase. The localiza-
tion of fhbB between genes that encode housekeeping func-
tions suggests that fhbB is a gene that has a bacterial origin and
is not a gene that was recently acquired by, or subject to, lateral
transfer. This is in contrast to the FH binding OspE proteins of
the Lyme disease spirochetes, which are carried by prophage
(9, 49).

To verify that fhbB is transcribed by strains 35405, 33520,
and GM-1 during anaerobic cultivation in NOS medium
(ATCC medium 1357), spirochetes were cultivated at 37°C in
an anaerobe jar for �8 days, RNA was extracted, and real-time
reverse transcription (RT)-PCR was performed. All methods
used in these analyses have been described previously (49).
Standard curves generated using cloned PCR amplicons al-
lowed calculation of transcript numbers. fhbB was determined
to be highly expressed, and the transcript levels ranged from

0.1% to 0.5% of the transcript levels of flaA (Fig. 3A). There
was no significant difference in the level of fhbB expression
between strains 35405, GM-1, and 33520. In a previous study it
was demonstrated that the composition of the growth medium

FIG. 1. Identification of the T. denticola strain 35405 ORF that encodes the FHL-1 binding protein, FhbB. S-tagged fusion proteins were
generated for potential FHL-1 binding proteins. Expression was verified using horseradish peroxidase (HRP)-conjugated S protein (left panel), and
FHL-1 binding was assessed using the ALBI assay (center panel) (32). As a negative control one blot was screened with primary and secondary
antibodies without FH/FHL-1 added (right panel). The positions of molecular mass markers are indicated on the left, and the ORF designations
are indicated above the lanes. r-BBA68 protein, a Borrelia burgdorferi FH binding protein, served as the positive control.

FIG. 2. PCR analyses of FhbB and its flanking regions in diverse T.
denticola strains. Regions internal to or flanking fhbB were PCR am-
plified from T. denticola strains 35405, 33520, and GM-1. Control
reactions were performed with no DNA template added (Neg.) (A).
The primers used are indicated above the lanes. The primer numbers
correspond to the following primers: primer 1, FhbB Up; primer 2,
TDE0108FLIC; primer 3, FhbB78R; primer 4, TDE0108RLIC; primer
5, TDE0109R1; and primer 6, TDE0109R2. All primer sequences are
shown in Table 2. The target sites for the primers are indicated in
panel B.

FIG. 3. Analysis of fhbB expression using RT-PCR. Real-time RT-
PCR analyses were performed as described in the text. (A) Data for
strains 35405, GM-1, and 33520. (B) RT-PCR performed to assess
fhbB expression by strain 35405 grown in either NOS or OMIZ me-
dium. The amplicons were analyzed by agarose gel electrophoresis in
2% MetaPhor agarose gels.
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can influence protein expression profiles of T. denticola (38).
To assess fhbB expression in the two most commonly used T.
denticola growth media, RNA was extracted from strain 35405
grown in NOS or OMIZ medium (5), and RT-PCR was per-
formed. Detection of the constitutively produced flaA tran-
script served as a positive control, and reactions in which RT
was omitted served as a negative control. Expression of fhbB
was observed in spirochetes cultivated in both media (Fig. 3B).
The constitutive expression of fhbB suggests that FhbB has an
important role in T. denticola biology.

Identification of the gene encoding FhbB is an important
step that will facilitate future analyses of the role of FHL-1
binding in T. denticola pathogenesis. The importance of FH
and/or FHL-1 binding as a microbial virulence mechanism is
becoming increasingly apparent. Numerous viruses, parasites,
and bacteria, including several spirochetes, exploit FH and/or
FHL-1 binding as a means of facilitating C3b cleavage and
hence immune evasion (1, 6, 7, 10, 12–14, 16, 19, 25, 26, 28–32,
35–37). However, we previously demonstrated that while T.
denticola cleaves C3b, this activity is not dependent on FHL-1
binding (25). C3b cleavage by T. denticola appears to be due to
dentilisin, a chymotrypsin-like protease which is one of several
identified proteases produced by T. denticola (47). FHL-1
binding may instead be more important in adherence and tis-
sue invasion, as has been demonstrated for some streptococci
(35) and Actinobacillus (4). We previously demonstrated that
T. denticola binds to SCR7 of FHL-1. Our hypothesis is that T.
denticola binds primarily to cell- or ECM-anchored FHL-1, an
interaction mediated by the RGD motif contained in SCR4, via
FhbB. The outcome of this interaction may facilitate biofilm
and plaque formation and thus development and progression
of periodontal disease. Future analyses will seek to test this
hypothesis.

The GenBank accession numbers for sequences determined
for this study are EF032155 and EF032156.
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