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Diseases such as cancer are often related to collaborative
effects involving interactions of multiple genes within
complex pathways, or to combinations of multiple SNPs.
To understand the structure of such mechanisms, it is
helpful to analyze genes in terms of the purely cooperative,
as opposed to independent, nature of their contributions
towards a phenotype. Here, we present an information-
theoretic analysis that provides a quantitative measure of
the multivariate synergy and decomposes sets of genes into
submodules each of which contains synergistically inter-
acting genes. When the resulting computational tools
are used for the analysis of gene expression or SNP data,
this systems-based methodology provides insight into the
biological mechanisms responsible for disease.
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Introduction

Systems biology is based on a holistic, rather than reductionist,
view of biological systems. Therefore, the concept of synergy is
fundamental and we would like to quantitatively analyze
the ways by which the ‘whole’ may be greater than the ‘sum of
the parts’ when focusing on specific systems of interacting
components, such as genes, with respect to a phenotype, such
as a particular cancer. With the help of high-throughput
technologies, we now have vast amounts of data involving
simultaneous values of biological variables, and we are
presented with an opportunity to analyze such data in terms
of the multivariate correlations among these variables.

For example, given a set of genes, we may wish to quantify
the amount of information that the joint expression state
of each of its subsets provides about a phenotype, such as a
particular cancer, and then compare these amounts to each

other. It is intuitively clear that such analysis can shed light
into the structure of potential pathways that involve these
genes and are responsible for the phenotype. Indeed, if we
find, for example, that the amount of information provided by
the joint expression of all genes in a set is higher than what
could be attributed to additive independent contributions of
its subsets, then this fact provides an indication that the
additional information is due to some cooperative interaction
involving all of the genes within a shared pathway.

Interestingly, although such problems have not yet been
significantly addressed in molecular systems biology, related
questions have been raised and investigated in the field of
neuroscience under quite different contexts, such as asking
how correlations among the joint activities of multiple neurons
are related to a stimulus. In that case, measurements of the
neurons’ spiking patterns are made with the help of multi-
electrode recordings. As a result of this research in neuro-
science, an initial theoretical background has already been laid
out (Brenner et al, 2000; Schneidman et al, 2003b) and can be
directly applied in the field of molecular systems biology,
where, rather than dealing with spike trains we have the
advantage of access to much simpler variables, such as single
expression values of genes or proteins, or SNP data.
Furthermore, we are directly relating the data to a phenotype
such as a particular disease, thus making the practical
significance of this research immediate and potentially
enormous.

We believe that the time is ripe for molecular systems
biology to reap benefits from multivariate analysis. This
research will be consistent with the paradigm shift at which
systems biology is aimed, namely analyzing data on the level
of gene modules, rather than of individual genes. In this
review, we summarize and build on existing knowledge, and
generalize based on recent definitions and methods of
analyzing the multivariate synergy among interacting genes,
which have already been applied on experimental biological
data. Furthermore, because the various statements and
symbols in the literature can be confusing and are occasionally
contradictory or inaccurate, an additional purpose of this
review is to clarify the fundamental concepts for the benefit
of the research community by explaining the precise physical
meaning and potential practical significance, or lack of it, of
various related quantities.

Preliminaries from information theory

In information theory (Cover and Thomas, 2006), the
uncertainty of a random variable X is measured by its entropy
H(X); the uncertainty of a random variably X given knowledge
of another random variable Y is measured by the conditional
entropy H(X|Y); and the uncertainty of a pair of random
variables X, Y is measured by the entropy H(X,Y). These
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quantities are connected by the equation H(X,Y)¼H(X)þ
H(Y|X)¼H(Y)þH(X|Y). See Table I containing definitions of
basic information theoretic quantities and their interrelation-
ships.

Given two random variables X and Y, the amount of
information that each one of them provides about the other
is the mutual information I(X;Y), which is equal to

IðX;YÞ ¼HðXÞ � HðXjYÞ ¼ HðYÞ � HðYjXÞ
¼ HðXÞ þ HðYÞ½ � � HðX;YÞ

Therefore, the physical meaning of I(X;Y) is ‘the reduction of
the uncertainty of X due to knowledge of Y’ (or vice versa) and
this relationship can be depicted in a Venn diagram (Figure 1A)
in which the single-variable entropies H(X), H(Y) are
represented by two overlapping sets, whereas the two-variable
entropy is represented by the union of these sets and the
mutual information common to X and Y is represented by their
intersection. Note that H(X)¼I(X;X), so entropy is the ‘self-
information.’ Also note that conditioning of entropies in Venn
diagrams is indicated by set subtraction, so that, for example,
the set representing H(X|Y) results from subtracting the set
representing H(Y) from the set representing H(X).

The mutual information common to two variables is always
a non-negative quantity, consistent with the intuitively clear
fact that uncertainty can only be reduced on the average as a
result of additional knowledge. It is zero if and only if X and Y
are independent of each other.

Like entropy, mutual information can be conditioned on the
knowledge of another random variable by including this
conditioning on all terms of the definition. For example, given
a third random variable Z, the conditional mutual information
I(X;Y|Z) is equal to H(X|Z)�H(X|Y,Z), which means ‘the
reduction of the uncertainty of X due to knowledge of Y (or
vice versa), when Z is given’. It is zero if and only if X and Y
are conditionally independent of each other (conditioned on
knowledge of Z). In the Venn diagram of Figure 1B, we confirm
that the set representing I(X;Y|Z) results from subtracting the
set representing H(Z) from the set representing I(X;Y).

The above definitions of mutual information and entropy
remain valid when we substitute a random variable by a vector
of random variables. However, the definition of the mutual
information common to more than two variables is not a trivial
generalization of the two-variable case. The mutual informa-

tion common to three variables X, Y, Z can be defined as
(McGill, 1954; Watanabe, 1960; Cover and Thomas, 2006)

IðX;Y;ZÞ ¼ HðXÞ þ HðYÞ þ HðZÞ½ �
� HðX;YÞ þ HðX;ZÞ þ HðY;ZÞ½ � þ HðX;Y;ZÞ

The above equation can be visually confirmed by looking
at the Venn diagram interpretation (Figure 1B): the single-
variable entropies H(X), H(Y), H(Z) are represented by three
overlapping sets whereas the multiple-variable entropies are
represented by the unions of the corresponding sets. The
mutual information I(X;Y;Z) common to the three variables
is the intersection of the three sets. Indeed, any point that
belongs in only one or two of these sets will be cancelled out in
the equation. For example, the number of appearances of any
point that belongs to the first and second set, but not in the
third, will be (1þ 1þ 0)�(1þ 1þ 1)þ 1¼0. Only the points
that belong to all three sets will not be cancelled, because
(1þ 1þ 1)�(1þ 1þ 1)þ 1¼1.

It is easily proved that I(X;Y;Z) is equal to I(X;Y)�I(X;Y|Z).
Therefore, the physical meaning of I(X;Y;Z) is ‘the reduction
of the mutual information common to two variables due to
knowledge of a third variable.’ Or, substituting the mutual
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H (X  )
I(X;Y  )

I(X;Y |Z    )

I(X;Y;Z  )

H(X |Y )

H(X |Y,Z  )

H(Y |X )

A B

Figure 1 Venn diagrams indicating the mutual information common to multiple
variables. (A) Mutual information common to two variables. Arrows stemming
from the perimeter of a circle refer to the area inside the whole circle. Arrows
stemming from the interior of a region refer to the area of that region. The mutual
information I(X;Y) is defined by the intersection of the two sets, whereas the joint
entropy H(X,Y)—not shown—is defined by the union of the two sets. (B) Mutual
information common to three variables. The mutual information I(X;Y;Z) is
defined by the intersection of the three sets. The bivariate synergy of any two of
the variables with respect to the third is equal to the opposite of the mutual
information common to the three variables and therefore positive synergy cannot
be shown in a Venn diagram.

Table I Basic quantities of information theory and their interrelationships. X and Yare random variables with probability mass functions denoted, for simplicity, as p(x)
and p(y)

Symbol Term Formula Physical meaning

H(X) Entropy of X �
P
x

pðxÞ log2 pðxÞ Uncertainty of X

H(X,Y) Joint Entropy of X, Y �
P
x

P
y

pðx; yÞ log2 pðx; yÞ Uncertainty of pair X, Y

H(X|Y¼y) Conditional Entropy of X given Y¼y �
P
x

pðxjyÞ log2 pðxjyÞ Uncertainty of X given Y ¼ y

H(X|Y) Conditional Entropy of X given Y
P
y

pðyÞHðXjY ¼ yÞ Uncertainty of X given Y

I(X;Y) Mutual Information common to
X and Y

P
x

P
y

pðx; yÞ log2
pðx;yÞ

pðxÞpðyÞ Reduction of uncertainty of X due to knowledge
of Y (or vice versa).

Relations confirmed in Venn diagram of Figure 1A:
I(X;Y)¼H(X)�H(X|Y)¼H(Y)�H(Y|X)¼[H(X)+H(Y)]�H(X,Y) H(X,Y)¼H(X)+H(Y|X)¼H(Y)+H(X|Y).

Computational analysis of multivariate synergy
D Anastassiou

2 Molecular Systems Biology 2007 & 2007 EMBO and Nature Publishing Group



information by its own physical meaning, it is ‘the reduction
of ‘the reduction of the uncertainty of one variable due to
knowledge of a second variable’ due to knowledge of a third
variable’. This quantity is symmetric in X, Y and Z and,
contrary to the mutual information common to two variables,
it is not necessarily non-negative (because contrary to
uncertainty itself, ‘reduction of uncertainty’ is not necessarily
reduced due to additional knowledge), a fact that sometimes
is considered ‘unfortunate’ (Cover and Thomas, 2006) for
quantifying information. However, as will be explained in this
review, this is a fortunate fact for our purposes, because it
allows for strictly positive synergy between two of these
variables with respect to the third.

Further generalizing (Fano, 1961), the mutual information
common to n variables, I(X1; X2;y, Xn), can be defined asX
all variables

HðXiÞ�
X

all pairs
of variables

HðXi;XjÞþ
X

all triplets
of variables

HðXi;Xj;XkÞ � :::

þ ð�1Þn�1 HðX1;X2; :::;XnÞ ¼
Xn

r¼1

ð�1Þr�1
X
n

r

� �

k¼1

Hðkth subset

of fXig of size rÞ

Again, the above formula is consistent with the Venn diagram
(in higher-dimensional space) representation of information
(Yeung, 1991). For example, note that

Xn

k¼1

ð�1Þk�1 n
k

� �
¼ 1

which shows that the area common to all sets is present in the
result. It can similarly be shown that the area common to only
some of, but not all, the sets is not present in the result.

It is easily proved that I(X1;X2;y;Xn) satisfies the following
recursive rule:

IðX1;X2; :::;XnÞ ¼ IðX1;X2; :::;Xn�1Þ
� IðX1;X2; :::;Xn�1jXnÞ

ð1Þ

where the conditional mutual information common to multi-
ple variables is defined by simply including the conditioning
in all terms of the original definition.

Therefore, the physical meaning of I(X1;X2;y;Xn) for large
values of n is ‘the reduction of the mutual information
common to n�1 variables due to knowledge of the nth
variable,’ which is equivalent to the mind boggling ‘the
reduction of the reduction of the reduction y of the
uncertainty of one variable due to knowledge of a second
variable due to knowledge y of an nth variable.’ This quantity
often appears in related literature, and we include it in this
review, because it will be useful for clarifying various
alternative suggested definitions of synergy.

Random variables defined from biological
measurements

How can we quantify the amount of information that, for
example, the joint expression levels of n genes G1, G2, y, Gn

provide about a phenotype C, such as a particular cancer?
According to the previous section, information theory has a

ready answer, I(G1,y,Gn;C), as long as we are referring to
random variables. We can use input data from measurements
to define all these quantities as random variables by creating
probabilistic models from relative frequencies. In the case of
SNPs, the data are automatically binary (or, more accurately,
tri-level to differentiate between monoallelic and biallelic
presence), whereas in the case of continuous gene expression
values, we can use a binarization approach to distinguish
whether each gene is ‘on’ or ‘off,’ so that the number of
possible joint expression states becomes manageable (eight in
our case). If, for example, we have a set of expression data for
the n genes from many biological samples (tissues, henceforth
referred to as just ‘samples’) in the presence as well as the
absence of a cancer C, then for each of the 2n binary expression
states, we can count the number N0 of healthy (C¼0) samples
as well as the number N1 of cancerous (C¼1) samples
encountered in that state. We can then use the counts N0 and
N1 to define a probabilistic model from the relative frequen-
cies, which will reflect the statistics of the input expression
data. The larger the input data set from the measurements in
cancer as well as health, the more gene expression variability
the model will be able to include, and the more features the
results will be able to capture.

Once we have the model defined, then we can readily
evaluate all the information-theoretic quantities referred to in
the previous section directly from the counts N0 and N1. For
example, let us assume that we have n genes and K samples.
For each of the 2n binary expression states, we evaluate the
probability P¼(N0þN1)/K of occurrence of that state. For each
state for which P is nonzero, we further evaluate the
probability Q¼N1/(N0þN1) of cancer in that state, defined
by the corresponding binary expression values g1, y, gn. The
conditional entropy H(C|G1¼g1,y,Gn¼gn) for that particular
state will be equal to h(Q), where (see Table I) the function h
is defined by h(q)¼�qlog2q�(1�q)log2(1�q). Therefore,
the conditional entropy H(C|G1,y,Gn) will be equal to
the sum

P
Ph(Q) over all such states. The mutual infor-

mation I(G1,y,Gn;C) is then simply evaluated as
H(C)�H(C|G1,y,Gn). See Figure 2A for simple example.

High-throughput molecular data are known to suffer from
high levels of noise, which may adversely affect the accuracy
of these markers. However, a more fundamental problem in
many cases is the lack of sufficient data, even in noisy form.
These data must be plentiful in the presence as well the
absence of the phenotype to enrich the probabilistic model so
that the resulting random variables are defined in a meaningful
way. Once we have a sufficiently large number of measure-
ments, then the problem of noise becomes alleviated because
the approach is holistic and the deviations from the accurate
values will be averaged out.

This methodology has been used (Varadan and Anastassiou,
2006; Varadan et al, 2006) in actual biological examples. In
a subsequent section of this review, we also provide an
illustrating example with numerical calculations.

In the remainder of this paper, we use the term ‘factors’ and
the symbols G1, G2,y,Gn to refer to random variables
representing quantities such as the expression levels of several
genes or the presence or absence of several SNPs that
contribute towards an outcome. We will also use the term
‘phenotype’ and the symbol C to refer to this outcome, which
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can be, for example, the presence or absence of a particular
cancer.

Bivariate synergy

Given two factors G1, G2 and a phenotype C:

� The information that G1 provides about C is equal to I(G1;C)
� The information that G2 provides about C is equal to I(G2;C)
� The information that G1 and G2 jointly provide about C is

equal to I(G1,G2;C)

The synergy between G1 and G2 with respect to C is defined by

SynðG1;G2;CÞ ¼ IðG1;G2;CÞ � IðG1;CÞ þ IðG2;CÞ½ �
This definition is consistent with the intuitive concept that
synergy is the additional contribution provided by the ‘whole’
compared with the sum of the contributions of the ‘parts.’
It has been used in neuroscience literature (Gawne and
Richmond, 1993; Gat and Tishby, 1999; Schneidman et al,
2003a, b) under different contexts. It involves averaging over
all possible states that the pair of factors can assume; therefore,
it is possible that the potential high synergy in one of these
states will not be noticeable in the single-averaged quantity. If
we wish, we can easily define the synergy of individual states
and focus on these specific states (Brenner et al, 2000) rather

than averaging them. This process may provide additional
insights. However, gene expression often depends on complex
Boolean functions of transcription factors involving many
states responsible for the same outcome. Furthermore,
focusing on individual states will further increase the
sensitivity to the number of input measurements, as some
of these states may appear so few times that any statistical
measurement becomes meaningless. On the other hand, the
averaging in the definition above addresses this concern in an
optimum and balanced manner, as it is weighted according to
the probabilities of the states.

It is easily proved that Syn(G1,G2;C)¼�I(G1;G2;C), the
opposite of the mutual information common to the three
variables G1, G2, C, as was defined in the previous section,
which implies that bivariate synergy is symmetric in G1, G2, C
and also equal to Syn(G1,G2;C)¼I(G1;G2|C)�I(G1;G2), that is,
the synergy of two of the variables with respect to the third
is the ‘gain in the mutual information’ of two of the variables
due to knowledge of the third. A moment’s thought will
confirm that this is consistent with the definition of synergy.
For example, this information gain can also be expressed as
Syn(G1,C;G2)¼I(G1;C|G2)�I(G1;C), in other words if the
information that G1 provides about C is higher if we know G2

than it is if we do not know G2, then this additional information
is the synergy between the two genes with respect to C. Note

C Normal Cancer
G1

G2

G3

G4

G5 G5

G4

G3

G2

G1

This state occurs N 0 = 3 times in normal samples and N 1 = 1 time in cancer 

samples. Thus,

P (G1=off, G2=on,…) = (N0+N1)/K = (3+1)/8 = 0.5

Q (C=1|G1=off, G2=on,…) = N1/(N0+N1) = 1/4 = 0.25

H (C | G1=off,G2=on,…) = – Q log2 Q – (1 – Q ) log2(1–Q ) = h (0.25) = 0.81

Note that for states that appear only once, h (Q ) = h (1) = h (0)  = 0

and that H (C )=1 because there is an equal number of healthy and cancer

samples

Summing over all possible states (5 in this example):

H (C|
|

G1, …, G5) = ΣPh (Q ) = 0.5 x 0.81+0+0+0+0 = 0.41

I (G1, ...., G5;C ) = H (C ) – H (C G1,…,G5) = 1− 0.41= 0.59

C

G2

G1 I (G1;C ) = 0
I (G2;C ) = 0

I (G1,G2;C ) = 1
Syn(G1,G2;C ) = I (G1,G2;C ) – [I(G1;C)+I(G2;C )] = +1

CancerNormal

CancerNormal

C

G2

G1 I (G1;C ) = 1
I (G2;C ) = 1

I (G1,G2;C ) = 1
Syn(G1,G2;C ) = I (G1,G2;C ) – [I (G1;C )+I (G2;C )] = –1

Bivariate synergy

Mutual information on a disease stateA

B

Figure 2 Examples of numerical evaluation of mutual information and synergy. In both cases, they should be seen as illustrations of the concept and not as
representative of actual biological examples, in which many samples are needed for meaningful modeling. Black squares indicate a gene being ‘on’ and white squares
indicate a gene being ‘off.’ (A) Evaluation of mutual information between a set of five genes and cancer from four normal and four cancerous samples. (B) Evaluation of
the synergy between two genes with respect to cancer, derived from four normal and four cancerous samples. Two extreme cases are shown, the first with maximum
synergy þ 1, and the second with minimum synergy �1 (redundancy).
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that synergy is zero when the two quantities I(G1;G2|C) and
I(G1;G2) cancel by being equal to each other. The former is zero
when G1 and G2 are ‘conditionally independent,’ whereas the
latter is zero when they are ‘activity independent’ (Schneid-
man et al, 2003b). Therefore, neither kind of independence
alone guarantees zero synergy (Han, 1980). We may also wish
to normalize this quantity by dividing by H(C), in which case
synergy will be bounded by þ 1 and –1, as in the following
cases (Figure 2B).

An example of extreme bivariate positive synergy is the
following: assume that each of the genes G1 and G2 is equally
(50% of the time) expressed in both the presence and absence
of cancer. At first glance, it would appear that the two genes are
totally unrelated to C, because I(G1;C)¼I(G2;C)¼0. Indeed,
these genes would never be found high up in any typical
individual ‘gene ranking’ computational method! However,
upon scrutinizing the second-order statistics, we may find
that, in all cancerous samples either both genes are expressed
or both are not expressed, whereas in all healthy samples one
of the two is expressed but not the other. In that case, C is
determined with absolute certainty from the joint state of the
two genes and I(G1,G2;C)¼1, therefore the synergy is equal
to þ 1.

An example of extreme bivariate negative synergy (redun-
dancy) is the following: assume that half of the samples are
cancerous with both G1 and G2 expressed and the other half
of the samples are healthy and neither of the two genes is
expressed. In that case, C is determined with absolute certainty
by the single expression of either of the two genes, so
I(G1;C)¼I(G2;C)¼I(G1,G2;C)¼1, and the synergy is equal to –1.

Multivariate synergy

The extension of these concepts to systems of multiple
interacting genes is important in molecular systems biology,
one reason being that pathways often involve multiple genes,
such as in the formation of multi-protein complexes serving
as pathway components.

One way of generalizing the definition of bivariate synergy
to include n contributing factors with respect to a phenotype
(Chechik et al, 2002) is to compare the contribution of the full
set with the additive contributions of the single individual
factors according to the quantity

IðG1;G2; :::Gn;CÞ �
Xn

i¼1

IðGi;CÞ

The advantage of this definition is its simplicity, but it clearly
fails to consider the various ways by which ‘parts’ may
cooperatively define the ‘whole’ if there is positive synergy
within some subsets of the full set.

There have been two other different definitions suggested in
the literature comparing the correlations among the n genes to
the correlations observable among at most n�1 genes. They
are both related to the mutual information I(G1;G2;y;Gn;C)
common to multiple variables, defined earlier. However, the
physical meaning of either of the resulting quantities is
complicated and not useful for our purposes. These definitions
are described in Supplementary text 1 together with examples
demonstrating that they are inappropriate for our applications.

The following definition of the multivariate synergy for a set
of n factors G1,G2,y,Gn, with respect to a phenotype C was
recently (Varadan et al, 2006) proposed:

SynðG1;G2; :::;Gn;CÞ ¼IðG1;G2; :::;Gn;CÞ
� max

all partitions
intofSig

X
i

IðSi;CÞ ð2Þ

where partition is defined as a collection {Si} of disjoint
subsets Si whose union is the full set, that is,S

i Si ¼ fG1; :::;Gng and
T
i

Si ¼ ;. For example, for n¼3,

SynðG1;G2;G3;CÞ

¼ IðG1;G2;G3;CÞ � max

IðG1;CÞ þ IðG2;G3;CÞ
IðG2;CÞ þ IðG1;G3;CÞ
IðG3;CÞ þ IðG1;G2;CÞ
IðG1;CÞ þ IðG2;CÞ þ IðG3;CÞ

8>>><
>>>:

ð3Þ

This is a natural generalization of the bivariate synergy,
because it is also consistent with the intuitive concept that
synergy is the additional amount of contribution for a
particular task provided by an integrated ‘whole’ compared
with what can best be achieved after breaking the whole into
‘parts’ by the sum of the contributions of these parts.

The partition of the set of factors that is chosen in this
formula is the one that maximizes the sum of the amounts of
mutual information connecting the subsets in that partition
with the phenotype, and we will refer to it as the ‘maximum-
information partition’ of the set {G1,G2, y, Gn} with respect
to the phenotype C.

As was the case with the bivariate synergy, we may wish to
normalize by dividing this quantity by the entropy H(C), in
which case the maximum possible synergy will be þ 1. In case
of extreme redundancy, such as when G1¼G2¼?¼Gn¼C, the
synergy can become as low as�(n�1). Examples of both cases
appear in Supplementary text 1.

Note that the synergy, as defined above, refers to the
combined cooperative effect of all n factors. If, for example,
one of these factors is totally independent of all the other
factors as well as the phenotype, then the synergy of the full set
of n factors will be zero, even if the remaining n�1 factors form
a synergistic set. In that case, that synergistic set will readily be
identified by the maximum information partition, and can then
be independently analyzed with the same methodology, as
explained in the next section.

The tree of synergy

Assuming that the set of measurements is rich enough to
generate a reasonably meaningful model of random variables,
positive synergy indicates some form of direct or indirect
interaction by participating in common pathways. Finding
the maximum information partition is helpful towards
deciphering such pathways, because the subsets in the
maximum information partition are natural candidates
of synergistic submodules, or pathway components. In turn,
each of these subsets may undergo the same analysis, resulting
in a hierarchical decomposition of the gene set into
smaller modules. This decomposition is graphically
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depicted by a tree, referred to as ‘the tree of synergy,’ defined as
follows:

The tree of synergy of a set of factors {G1,G2,y,Gn} with
respect to a phenotype C is a rooted and not necessarily binary
tree with n leaves, each of which represents one of the factors
Gi. Each intermediate node of the tree represents a subset of
factors, those that are represented by the leaves of the clade
formed by the node, and the root represents the whole set.
The maximum-information partition, as defined above, of the
whole set, is reflected by the branching of the root, so that
the nodes that are directly stemming from the root represent
the subsets defined by the maximum-information partition.
Some of these nodes may be leaves, representing a single
factor. If they are not leaves, then they represent a subset of
factors, which has its own maximum-information partition,
defined and evaluated as above, with respect to the phenotype.
This methodology is repeated for all such subsets, until the full
tree is formed. The root of the tree is labeled with the value of
the synergy of the full set, and each intermediate node is also
labeled with the value of the synergy of the corresponding
subset. These values at the intermediate nodes are all non-
negative numbers; otherwise, the definition of synergy would
be contradicted. However, the root itself may be labeled with
negative synergy (as in the example of the next section). In
other words, the original full set of factors is not necessarily
synergistic, but all its subsets that are present in the tree of
synergy are synergistic.

The tree of synergy naturally reveals high-synergy
subsets. To illustrate this fact, consider the case of n¼3. For
easier explanation, we omit the phenotype from the symbols,
so that equation (3) is equivalently rewritten in simpler
notation as

Syn123 ¼ I123 � maxðI1 þ I23; I2 þ I13; I3 þ I12; I1 þ I2 þ I3Þ ð4Þ

Using the same simplified notation, we can write the
formulas for the three bivariate synergies of the corresponding
subsets:

Syn12 ¼ I12 � ðI1 þ I2Þ; Syn13 ¼ I13 � ðI1 þ I3Þ; Syn23

¼ I23 � ðI2 þ I3Þ

There are four possibilities: If the first term I1þ I23 in Equation
(4) defines the maximum-information partition, then this
implies that I1þ I23pI2þ I13, I1þ I23pI3þ I12 and
I1þ I23pI1þ I2þ I3, from which it follows that Syn23XSyn13,
Syn23XSyn12 and Syn23X0. In other words, the set {G2,G3} is
the maximum-synergy subset of size 2, and its synergy is non-
negative. We use identical symmetric reasoning for the next
two possible cases. Finally, if the fourth term (I1þ I2þ I3)
defines the maximum-information partition, then this implies
that Syn12p0, Syn13p0 and Syn23p0.

The conclusion is that the tree of synergy for three factors
always automatically includes the pair of factors with
maximum synergy in its intermediate node, as long as that
synergy is positive, otherwise it directly branches into the
three leaves.

If the number of factors under consideration is small,
synergistic decomposition can be made using exhaustive
search by enumerating all partitions of the set. As the number
of factors increases, the total number of partitions, given by the
Bell number (Kreher and Stinson, 1999), increases exponen-

tially, but so is the number of required measurements for
a meaningful model of random variables, which is currently
limited, thus making computational complexity not a serious
problem in the near future. Even considering only pairs,
triplets and quadruplets of factors, in which case the complex-
ity is manageable, provides a significant benefit in molecular
systems biology, shifting away from the old paradigm of ‘one-
gene-one-disease’.

Illustrating example

Examples of trees of synergy in a real application with
experimental biological data have been already presented
(Varadan et al, 2006). Here, we illustrate the capabilities
with a clarifying example simulating a hypothetical ‘toy
problem’ scenario: assume that the products of two genes G1

and G2 interact by forming a dimer serving as a transcription
factor required for the expression of a tumor suppressor
protein and that, as a result of this mechanism, a particular
cancer results from the lack of expression (perhaps due to
mutations) of at least one of these two genes. Furthermore,
assume that this cancer independently triggers the expression
of another gene, G3, which is normally not expressed. As a
result, G3 is highly correlated with the presence of cancer,
although it does not participate in the pathways responsible for
the disease.

The following simulation strategy is one simple way to
generate hypothetical binary microarray expression data for
these three genes compatible with the above scenario,
assuming binary gene expression levels:

� In healthy samples, the probability of G3¼0 is 80% and
of G3¼1 is 20%.

� In cancerous samples, the probability of G3¼0 is 20% and
of G3¼1 is 80%.

And independently,

� In healthy samples, the probability of both G1 and G2 to be 1
is 95%, whereas the remaining three joint states (00, 01 and
10) are equally likely.

� In cancerous samples, the probability of both G1 and G2 to be
1 is 5%, whereas the remaining three joint states (00, 01 and
10) are equally likely.

A compatible state-count table (Figure 3A) was simulated
under these assumptions, representing 100 healthy and 100
cancerous samples (precise values of counts are not important
as slight variations will not change the qualitative outcome of
this analysis). Note that the states 001, 011, 101, highlighted in
red typeface, are those in which cancer is predominant
(N1cN0) and correspond to the Boolean logic ((NOT G1) OR
(NOT G2)), AND G3, as expected from the assumptions. A
methodology for deriving Boolean functions from state-count
tables has previously been presented (Varadan and Anastas-
siou, 2006).

Using the resulting relative frequencies to define the random
variables for the expression levels of the genes and the
phenotype, we find, using simplified notation as in equation
(4), the values for mutual information between gene subsets
and cancer (Figure 3B). A simple MATLAB program deriving
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these values appears as Supplementary text 2. We can apply
equation (4) to these values to identify the maximum-
information partition and the value of the synergy. The
resulting tree of synergy (Figure 3C) accurately decomposes
the set of three genes into, on the one hand, the subset of the
first two interacting genes G1 and G2 and, on the other hand,
the third independent gene G3. The synergy between these two
sets, indicated at the root of the tree, is negative and equal to
I123�(I12þ I3)¼�0.1971; in other words, their redundancy was
detected and thus they were properly isolated from each other.
This is desirable, because, according to our assumptions, only
the first of these sets plays a causative role in the phenotype.
However, as indicated in the tree, the set of the two genes G1

and G2 has positive synergy, equal to I12�(I1þ I2)¼þ 0.0582,
consistent with the assumption that they interact with each
other with respect to cancer. Although mechanistic analysis of
synergy detects correlations without differentiating between
cause and effect, when coupled with additional biological
knowledge it is clearly helpful towards inferring responsible
pathways.

Discussion

Analyzing the correlations among multiple contributing
factors, such as gene expression levels and SNPs, can provide
much needed insight into the structure of the causative factors,
including biological mechanisms responsible for disease. This
review summarized recent results on such techniques aiming
to quantify the degree of cooperative interactions among such
multiple factors, and to properly decompose them into smaller
synergistic sets reflecting the structure of these interactions.
This methodology works best in conjunction with approaches
that first use optimization methods for searching over subsets
to identify potential modules of multiple factors that jointly
provide maximum information about the phenotype (Varadan
and Anastassiou, 2006). After identifying such a module,
analysis of the synergy among its members provides further
valuable input into the problem of inferring related pathways
that include these factors.

The concepts and the methodology presented in this review
are complementary to those of existing techniques of analyz-
ing expression data, such as variations of clustering (Eisen
et al, 1998) and support vector machine-based (Boser et al,
1992) methods. For example, the aim of most existing methods
of selecting sets of genes associated with disease is the ability
to correctly classify between health and disease, or between
different disease types. This ability can be quantified as the
amount of information that the expression state of the gene set
provides about the presence of a disease, that is, only the first
term of the definition of synergy in equation (2). This is, of
course, an important task. An additional important task,
however, is to extract, out of this information, the part that is
due to the purely cooperative nature among the genes in the set
as a whole. This part results after subtracting the maximum
possible information about the presence of disease attributed
to independent contributions of subsets under all possible
partitions of the gene set.

This distinction can be illustrated by a simple example. If we
identify a pair of genes G1 and G2 with high value of I(G1,G2;C),
where C designates the presence of a cancer, then this pair can
be an appropriate choice for a classifier for cancer. However,
the good classification performance may be due to the
independent individual contributions of the two genes and
does not necessarily imply that there is joint cooperative
contribution. Indeed, if the synergy I(G1,G2;C)�[I(G1;C)þ
I(G2;C)] is not a positive number, then the genes’ contributions
are not cooperative, and we would have probably found these
genes anyway using any individual ‘gene ranking’ method,
because the values of I(G1;C) and I(G2;C) would be high. If, on
the other hand, the synergy of a gene pair is a large positive
number, then we will have good reason to believe that the two
genes ‘interact,’ directly or indirectly, with respect to the
presence of cancer. Gene selection based on search of high-
synergy subsets can be a powerful tool for identifying protein–
protein interactions with respect to a phenotype, and goes
further than traditional approaches, because it can also
identify high-synergy subsets of larger sizes.

Other existing techniques for the analysis of gene interac-
tions use graphical models such as artificial neural networks,
Boolean networks or Bayesian networks. In these models, the
representative graphs are constructed from input data using
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Figure 3 From the ‘state-count table’ to the ‘tree of synergy.’ (A) An example of
a state-count resulting from hypothetical microarray measurements of three
genes G1, G2, G3 in both the presence and absence of a particular cancer C. N0

and N1 are the counts of each state in the absence and presence of cancer,
respectively. (B) The amounts of mutual information between each subset of the
set of three genes and the presence of cancer, with simplified notation (see text).
(C) The tree of synergy resulting from these sets making repeated use of the
formula defining multivariate synergy. This decomposition separates the full set
into two redundant subsets, one of which is the synergistic pair of genes G1, G2,
consistent with the assumptions under which the state-count table was simulated.

Computational analysis of multivariate synergy
D Anastassiou

& 2007 EMBO and Nature Publishing Group Molecular Systems Biology 2007 7



specialized learning algorithms attempting to capture the
structure of multiple relationships among genes and pheno-
types. Again, the concepts and methods presented in this
review play complementary roles. To take a particular
example, consider a Bayesian network approach (Pearl,
1988) in which multivariate probability distributions are
represented graphically so that each node in the graph
represents a gene and one of the nodes represents the class
label (such as the presence of cancer). Defining a graph
structure that is optimally consistent with input data, such as
gene expression levels, is a hard problem, and it is often
necessary to use pre-existing knowledge about pathways to
generate such a structure. Assuming that the Bayesian network
has been defined, the ‘Markov blanket’ (defined as the
minimal set of variables that shield the node from the rest of
the variables) of the class label node can be a set of genes likely
to be associated with the presence of cancer. Analyzing this set
in terms of its synergistic decomposition will provide valuable
complementary information that can help refine the structure
and properties of the Bayesian network. More generally,
synergy provides a novel numerical measure to evaluate the
cooperativity of interactions among multiple genes found
using other computational methods, as well as suggesting
possible ways to ‘fine-tune’ structures and memberships of
sets to improve the biological accuracy of the resulting models.

The main strength of the analysis of synergy in gene sets
is the potential of deciphering the structures of pathways
associated with a phenotype. It identifies sets of interacting
genes ab initio, that is, without using pre-existing biological
knowledge. However, once these sets are identified, additional
biological knowledge is needed not only because it can identify
known pathways that are compatible with the found genes and
their synergistic decomposition, but also to address certain
limitations of the methodology.

The main such limitation is the inability to identify the
causal relationship between the phenotype and high-synergy
modules of genes: It is not clear which is the cause and which
is the effect, and it is possible that the synergistic decomposi-
tion will reveal a mixed set of modules, some of which are
causative and some not, as was the case in the hypothetical
illustrating example in the previous section.

Another limitation is the fact that the decomposition of gene
sets from the ‘tree of synergy’ cannot account for overlapping
biological pathways that may all contribute towards the
phenotype. This inability is a direct consequence of the
requirement that partitions of the full set include disjoint
subsets. In such cases, synergistic decomposition is likely to still
reveal the dominant pathway, whereas additional biological
knowledge can be of help to compensate for this limitation.

Finally, when analyzing microarray data, it is preferable to
avoid binarizing the gene expression levels to preserve full
information. We are currently working on extending our
computational methodology to measure synergy directly from
the set of continuous expression levels.

What is missing is the large amount of publicly available
measurements required for any meaningful definition of
multivariate correlations. For example, it would be desirable
and relatively cost-effective to analyze numerous standardized
microarray measurements from biopsies of not only cancerous
samples, but also those determined to be free of cancer serving

as controls—ideally thousands of such experiments in each
case. We hope that such efforts will materialize, for example
merged within existing complementary cancer initiatives
involving sequencing. In that case, we believe that employing
multivariate synergy methodologies, as those described in this
review, will provide novel tools valuable to medical research.

Supplementary information

Supplementary information is available at the Molecular
Systems Biology website (www.nature.com/msb).
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