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The assessment of microbial diversity and distribution is a major concern in environmental microbiology.
There are two general approaches for measuring community diversity: quantitative measures, which use the
abundance of each taxon, and qualitative measures, which use only the presence/absence of data. Quantitative
measures are ideally suited to revealing community differences that are due to changes in relative taxon
abundance (e.g., when a particular set of taxa flourish because a limiting nutrient source becomes abundant).
Qualitative measures are most informative when communities differ primarily by what can live in them (e.g.,
at high temperatures), in part because abundance information can obscure significant patterns of variation in
which taxa are present. We illustrate these principles using two 16S rRNA-based surveys of microbial
populations and two phylogenetic measures of community � diversity: unweighted UniFrac, a qualitative
measure, and weighted UniFrac, a new quantitative measure, which we have added to the UniFrac website
(http://bmf.colorado.edu/unifrac). These studies considered the relative influences of mineral chemistry, tem-
perature, and geography on microbial community composition in acidic thermal springs in Yellowstone
National Park and the influences of obesity and kinship on microbial community composition in the mouse gut.
We show that applying qualitative and quantitative measures to the same data set can lead to dramatically
different conclusions about the main factors that structure microbial diversity and can provide insight into the
nature of community differences. We also demonstrate that both weighted and unweighted UniFrac measure-
ments are robust to the methods used to build the underlying phylogeny.

Understanding differences in the composition of microbial
communities is of major importance in microbial ecology. Ad-
vances in sequencing technology have allowed many microbial
communities to be characterized using gene sequences ampli-
fied directly from environmental samples. However, methods
for analyzing these sequences have lagged far behind the rate
of data acquisition. Two important parameters of communi-
ties, including microbial communities, are � diversity (the di-
versity within each sample, e.g., the number of species ob-
served in an environment), and � diversity (the partitioning of
biological diversity among environments or along a gradient,
e.g., the number of species shared between two environments)
(Table 1) (31). Here, we focus on � diversity, which can be
measured in many different ways. These measures can be
broadly divided into two categories: qualitative measures,
which use the presence/absence of data to compare community
composition, and quantitative measures, which also take the
relative abundance of each type of organism into account (Ta-
ble 1). Examples of commonly used qualitative measures of �
diversity include the Sörensen and Jaccard indices; quantita-
tive measures include the Sörensen quantitative index and the
Morisita-Horn measure (see reference 16 for a review).

Although quantitative and qualitative measures of diversity
are tightly correlated in a range of theoretical distributions

governing species abundance (4, 8, 19), empirically, these types
of measures are often uncorrelated and can provide different
but equally illuminating views of diversity (27). Most direct
comparisons of quantitative and qualitative measures to date
have focused on � diversity, the diversity within each sample.
These studies have provided overwhelming evidence that
quantitative and qualitative measures of diversity can paint
markedly different pictures of diversity over a range of taxa and
spatial scales. For example, in treeless Appalachian spider
communities, rare, transient species dominated qualitative
measures of � diversity, but ecological factors such as the
availability of flying insect prey determined which species were
abundant in a given community and thus dominated the quan-
titative measures (28). In human-modified grassland plots,
qualitative � diversity was primarily influenced by levels of
phosphorus and potassium, but quantitative � diversity was
primarily influenced by levels of calcium, the carbon-to-nitro-
gen ratio, and organic matter (15). Other studies of plant
diversity in alpine tundra (1), shrub-steppe (17), and tallgrass
prairie (23) and of phytoplankton diversity (32) have also
found important and biologically meaningful differences in
quantitative and qualitative � diversity. Although these studies
all focused on � diversity, we expect that similar differences
between quantitative and qualitative diversity will also be
found in � diversity and, therefore, that a combination of
qualitative and quantitative approaches for measuring � diver-
sity is also desirable.

Most � diversity measures, including those listed above,
treat each species or operational taxonomic unit (OTU; typi-
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cally defined by a sequence similarity threshold) in the sample
as equally related. Newer � diversity measures that incorporate
phylogenetic information are more powerful because they ac-
count for the degree of divergence between sequences (13, 18,
29, 30). Phylogenetic � diversity measures can also be either
quantitative or qualitative depending on whether abundance is
taken into account. The original, unweighted UniFrac measure
(13) is a qualitative measure. Unweighted UniFrac measures
the distance between two communities by calculating the frac-
tion of the branch length in a phylogenetic tree that leads to
descendants in either, but not both, of the two communities
(Fig. 1A). The fixation index (FST), which measures the
distance between two communities by comparing the genetic
diversity within each community to the total genetic diversity of
the communities combined (18), is a quantitative measure that
accounts for different levels of divergence between sequences.
The phylogenetic test (P test), which measures the significance
of the association between environment and phylogeny (18), is
typically used as a qualitative measure because duplicate se-
quences are usually removed from the tree. However, the P
test may be used in a semiquantitative manner if all clones,
even those with identical or near-identical sequences, are in-
cluded in the tree (13).

Here we describe a quantitative version of UniFrac that we
call “weighted UniFrac.” We show that weighted UniFrac be-
haves similarly to the FST test in situations where both are

applicable. However, weighted UniFrac has a major advantage
over FST because it can be used to combine data in which
different parts of the 16S rRNA were sequenced (e.g., when
nonoverlapping sequences can be combined into a single tree
using full-length sequences as guides). We use two different
data sets to illustrate how analyses with quantitative and qual-
itative � diversity measures can lead to dramatically different
conclusions about the main factors that structure microbial
diversity. Specifically, qualitative measures that disregard rel-
ative abundance can better detect effects of different founding
populations, such as the source of bacteria that first colonize
the gut of newborn mice and the effects of factors that are
restrictive for microbial growth such as temperature. In con-
trast, quantitative measures that account for the relative abun-
dance of microbial lineages can reveal the effects of more
transient factors such as nutrient availability.

MATERIALS AND METHODS

Weighted UniFrac. Weighted UniFrac is a new variant of the original un-
weighted UniFrac measure that weights the branches of a phylogenetic tree
based on the abundance of information (Fig. 1B). Weighted UniFrac is thus a
quantitative measure of � diversity that can detect changes in how many se-
quences from each lineage are present, as well as detect changes in which taxa
are present. This ability is important because the relative abundance of different
kinds of bacteria can be critical for describing community changes. In contrast,
the original, unweighted UniFrac (Fig. 1A) is a qualitative � diversity measure
because duplicate sequences contribute no additional branch length to the tree
(by definition, the branch length that separates a pair of duplicate sequences is
zero, because no substitutions separate them).

The first step in applying weighted UniFrac is to calculate the raw weighted
UniFrac value (u), according to the first equation:

u � �
i

n

bi � �Ai

AT
�

Bi

BT
�

Here, n is the total number of branches in the tree, bi is the length of branch i,
Ai and Bi are the numbers of sequences that descend from branch i in commu-
nities A and B, respectively, and AT and BT are the total numbers of sequences
in communities A and B, respectively. In order to control for unequal sampling
effort, Ai and Bi are divided by AT and BT.

If the phylogenetic tree is not ultrametric (i.e., if different sequences in the
sample have evolved at different rates), clustering with weighted UniFrac will
place more emphasis on communities that contain quickly evolving taxa. Since
these taxa are assigned more branch length, a comparison of the communities
that contain them will tend to produce higher values of u. In some situations, it
may be desirable to normalize u so that it has a value of 0 for identical commu-
nities and 1 for nonoverlapping communities. This is accomplished by dividing u
by a scaling factor (D), which is the average distance of each sequence from the
root, as shown in the equation as follows:

D � �
j

n

dj � �Aj

AT
�

Bj

BT
�

Here, dj is the distance of sequence j from the root, Aj and Bj are the numbers
of times the sequences were observed in communities A and B, respectively, and
AT and BT are the total numbers of sequences from communities A and B,
respectively.

Clustering with normalized u values treats each sample equally instead of

TABLE 1. Measurements of diversity

Measure Measurement of � diversity Measurement of � diversity

Only presence/absence of taxa considered Qualitative (species richness) Qualitative
Additionally accounts for the no. of times that

each taxon was observed
Quantitative (species richness and evenness) Quantitative

FIG. 1. Calculation of the unweighted and the weighted UniFrac
measures. Squares and circles represent sequences from two different
environments. (a) In unweighted UniFrac, the distance between the
circle and square communities is calculated as the fraction of the
branch length that has descendants from either the square or the circle
environment (black) but not both (gray). (b) In weighted UniFrac,
branch lengths are weighted by the relative abundance of sequences in
the square and circle communities; square sequences are weighted
twice as much as circle sequences because there are twice as many total
circle sequences in the data set. The width of branches is proportional
to the degree to which each branch is weighted in the calculations, and
gray branches have no weight. Branches 1 and 2 have heavy weights
since the descendants are biased toward the square and circles, respec-
tively. Branch 3 contributes no value since it has an equal contribution
from circle and square sequences after normalization.
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treating each unit of branch equally: the issues involved are similar to those
involved in performing a multivariate analysis using the correlation matrix to
treat each variable equally independent of scale or, using the covariance
matrix, to take the scale into account. Scaling by D also allows for comparison
with unweighted UniFrac values, which also always have a value between 0
and 1.

Multivariate analyses and tests of robustness to sequencing effort. Weighted
UniFrac can be used to compare many communities simultaneously using stan-
dard multivariate statistical methods. In this respect, it resembles unweighted
UniFrac (13), FST (18), and other � diversity measures that can be treated as
distance metrics (16). In the case studies below, we use a hierarchical clustering

method called unweighted pair group method with arithmetic averages (UPGMA)
(25) to cluster the community samples. It should be noted that this method is
used only to relate the community samples to one another; it is not used to build
the phylogenetic tree that relates the sequences. UPGMA sequentially joins the
least different samples to create a tree structure describing the differences be-
tween communities. We also use principal coordinates analysis (PCoA) (7), in
which a distance matrix is used to plot the n samples in (n � 1)-dimensional
space. The vectors in this space, or factors that describe as much variation as
possible, can be plotted as axes in two dimensions for visualization or re-
gressed on environmental variables (e.g., chemistry or temperature) using
general linear model regressions to determine which environmental factors

FIG. 2. PCoA analysis of hot spring sediment samples with FST and unweighted, weighted, and normalized weighted UniFrac using a variety
of trees. Shown is a plot of the first two principal coordinate axes (factors) for PCoA using each tree-building method and a UniFrac algorithm.
Rows show the effects of different tree-building methods; columns show the effects of applying unweighted UniFrac (first column), weighted
UniFrac (second column), and weighted UniFrac with the branch length normalization (third column). (a) The legend describes which symbol
applies to which sample. Fe-containing springs have solid symbols; springs that contain only S have hollow symbols. Temperature (°C) is denoted
by the shape of the symbol. (b) PCoA clustering using FST values as distances. (c through e) Neighbor-joining tree from NEIGHBOR. (f through
h) and (i through k) Two representative parsimony trees from DNAPARS. (l through n) ARB parsimony insertion tree. (o through q) RAxML
maximum likelihood tree. (r through t) RAxML parsimony guide tree, no branch lengths. (u through w) MrBayes consensus tree.
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have the largest impact on community composition. PCoA is analogous to a
related, widely used technique called principal components analysis (PCA).
The distinction is that PCA begins with a table of the number of times each
phylotype was observed in each environment, whereas PCoA begins with a
table of distances between each pair of environments. The output of PCoA is
a list of factors (labeled factor 1, factor 2, etc. in descending order of
importance) and the factor weighting for each sample (allowing each sample
to be plotted in the factor space).

Because microbial communities are usually too complex to sample completely,
we measured the robustness of the UPGMA and PCoA results to sequencing
effort using a sequence jackknifing technique in which the UPGMA and PCoA
clusters are regenerated using a subset of the sequences. Specifically, the same
number of sequences are randomly selected from each environment for many
replicate trials. Nodes in the UPGMA cluster that are recovered in a large
percentage of the jackknife trials are considered robust to sampling effort, par-
ticularly if only a small proportion of the data was subsampled from each
environment during each jackknife replicate. The positions of the points in
jackknifed PCoA scatterplots are the average for the jackknife replicates and are

displayed with ellipses representing the interquartile range (IQR) in each axis. If
the IQRs are small, the same result would likely be achieved with a different
sample of sequences from the same distribution, but if the IQRs are large we
might expect to see different relationships.

Case studies. We chose two studies that compared the community compo-
sition of related environments using 16S rRNA genes sequenced directly from
environmental samples (20, 21). The first study examined the relative influ-
ences of mineral chemistry, temperature, and geography on microbial com-
munity composition in acidic thermal springs in Yellowstone National Park
(18a). The second study examined the influences of obesity and kinship on
microbial community composition in the mouse gut (11).

By analyzing the data from each study with both unweighted UniFrac (a
qualitative measure) and weighted UniFrac and FST (both quantitative mea-
sures), we show that quantitative and qualitative � diversity measures can lead to
substantially different conclusions about the main factors that structure microbial
diversity. In both studies, the results from the weighted and unweighted analyses
suggest that different factors affect the presence/absence and relative abundance
of microbial lineages.

FIG. 2—Continued.
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RESULTS

Study 1: acid thermal springs in Yellowstone National Park.
Mathur et al. (18a) assessed the relative contributions of min-
eral chemistry, temperature, and geographical location on bac-
terial community composition in acidic thermal springs in Yel-
lowstone National Park. Sediment was sampled from two
sulfur-rich springs in the Amphitheatre Springs (AS) area and
an iron-rich spring located �2 km away in the Roaring Moun-
tain (RM) area. In each spring, sediment was sampled at tem-
peratures of 60°C, 65°C, and 70°C. In addition, samples were
taken from an AS spring that had both iron- and sulfur-rich
sediments as well as mixed iron-sulfur sediments at 75°C. The
springs all had similarly low pH levels (�1.5).

Mathur et al. (18a) generated 16S rRNA gene libraries of
between 65 and 96 sequences representing between 8 and 53
unique sequences for the 12 samples. Based on the analysis of
this sequence information, Mathur et al. concluded that min-
eral chemistry was by far the most important factor for con-
trolling community composition and that temperature had a
secondary effect. The clearest statistical evidence for this con-
clusion resulted from PCoA of pairwise FST values. Factor 1
from the PCoA accounted for 85.7% of the variation in the
data and correlated strongly with chemistry. Specifically, sul-
fur-rich springs clustered apart from springs rich in iron or iron
and sulfur. Factor 2 explained only 7.8% of the variation and
was correlated with temperature in the iron-rich samples.

The strong correlation with chemistry detected using the
quantitative FST values was primarily due to differences in the
relative abundances of bacterial lineages rather then the types
of microorganisms present. Comparing the FST analysis to the
results of PCoA and hierarchical clustering with both weighted
and unweighted UniFrac demonstrated that the FST results
were consistent with the results of weighted UniFrac but not
unweighted UniFrac (Fig. 2), as expected because both FST

and weighted UniFrac are quantitative measures.
To test whether the algorithm used to build the phyloge-

netic tree affects the result, we applied weighted and un-
weighted UniFrac to seven different phylogenetic trees (Fig.
2), as follows: (i) a neighbor-joining tree, in which we used the
DNADIST program of PHYLIP 3.62 (6) with the F84 model of
nucleotide substitution to create a distance matrix, which we
used as input to PHYLIP’s NEIGHBOR program (Fig. 2c to
e); (ii) two representative maximum parsimony trees, in which

we used two equally parsimonious trees (the first and the last
in the file) from the DNAPARS program of PHYLIP 3.62
(Fig. 2f to k); (iii) an ARB parsimony insertion tree where we
inserted the sequences into a tree containing �10,000 small-
subunit rRNA sequences (an augmented version of the ARB
database described in reference 9), using the parsimony inser-
tion tool of ARB (14), and then removed all but the sequences
from this study (Fig. 2l to n); (iv) the maximum likelihood tree
and the parsimony guide tree of RAxML-HPC 6.0 (26), in
which we generated these using the general time-reversible
model of nucleotide substitution (Fig. 2o to t); and (v) a tree
generated with MrBayes 3.5 (24) where we sampled trees from
100,000 generations after 500,000 generations of burn-in on
four Markov chains and built the consensus tree from this
sample (Fig. 2u to w). All of the trees were rooted with an
archaeal outgroup. For all but the ARB parsimony insertion
tree (Fig. 2l to n trees), the ends of the alignments were
trimmed prior to the analysis so that the aligned sequences
were all the same length. For the UniFrac and FST analyses,
hypervariable regions of the 16S rRNA molecule were ex-
cluded using a lane mask, “lanemaskPH,” provided in a pub-
licly available ARB database (9).

We evaluated the similarities of the seven phylogenetic trees
using both the nodal distance algorithm (NDA) (2) and a
partition metric (22) (Table 2). The NDA value is the sum of
the differences in distance between each pair of sequences in
the phylogenetic tree (2). We scaled the branch lengths so that
they summed to 1 in each of the seven trees. The partition
metric counts the number of tree nodes (partitions) that are
not shared between the two trees (22) (Table 2). We divided
the result by the total number of partitions so that the values
are expressed as fractions.

We applied unweighted and weighted UniFrac with and
without branch length normalization to each tree (Fig. 2).
PCoA of the pairwise FST and weighted UniFrac measure-
ments produced almost identical results (Fig. 2). As observed
by Mathur et al. (18a), environmental chemistry explained the
majority of genetic variability among the samples. Factor 1
correlated strongly with the chemistry of the springs and ex-
plained 70.6 to 91.8% of the variation for the different tests
(Fig. 2). Factor 2 explained between 3.1 and 20.7% of the
variation and, as observed by Mathur et al. (18a), correlated
with the temperature in the Fe samples. Specifically, 60°C and

TABLE 2. Pairwise comparisons of the phylogenetic trees evaluated in this studya

Phylogenetic
tree type

Phylogenetic tree type

NJ MP1 MP2 ARB RAxML RAxML pars MrBayes

NJ 142.1 143.0 310.6 198.0 1024.3 333.9
MP1 0.60 17.5 252.7 155.6 1125.6 248.6
MP2 0.62 0.10 246.0 147.8 1125.5 246.3
ARB 0.71 0.70 0.67 287.8 1266.2 316.0
RAxML 0.67 0.60 0.59 0.75 1167.5 189.9
RAxML pars 0.68 0.57 0.56 0.73 0.59 1320.5
MrBayes 0.71 0.46 0.44 0.73 0.61 0.67

a Shown are pairwise comparisons of the phylogenetic trees evaluated in Fig. 2 using the NDA (boldface type; upper triangle of matrix; results are arbitrary values
with greater values indicating greater dissimilarity) and a partition metric (lower triangle of matrix; results are fractions indicating dissimilarity, ranging from 0 to 1).
Methods are as follows: NJ, neighbor joining, as implemented in NEIGHBOR; MP1 and MP2, maximum parsimony, as implemented in DNAPARS; ARB, parsimony
insertion, as implemented in Arb; RAxML, maximum likelihood, as implemented in RAxML; RAxML pars, RAxML parsimony insertion guide tree; MrBayes, Bayesian
tree as implemented in MrBayes. All values along the diagonal are 0 for both methods (because each tree is identical to itself).
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65°C samples from the Fe springs clustered together, as did
70°C and 75°C samples. This temperature effect was more
pronounced in the weighted UniFrac analysis than for FST

(Fig. 2). Regression analysis of these two PCoA factors on
environmental variables confirmed these patterns (data not
shown), as did hierarchical clustering (see Fig. 4).

Sequence jackknifing of the PCoA point locations and the

hierarchical clusters illustrated that these results were robust
to sample size (Fig. 3 and Fig. 4). When only 50 of the 65 to 96
sequences were randomly selected from each sample 100
times, almost all of the nodes in the hierarchical clustering
were supported 100% of the time (Fig. 4a). These well-sup-
ported nodes included the nodes grouping the sulfur-rich sam-
ples, the iron-rich samples, and the warmer and cooler iron-
rich samples. In addition, the average PCoA point locations for
the jackknife replicates were the same as those for the entire
data set, and the IQRs for these point locations were extremely
small (Fig. 3b).

In contrast, PCoA and hierarchical clustering of unweighted
UniFrac values did not show a strong effect of mineral chem-
istry on differences between microbial communities. Using un-
weighted UniFrac measurements to cluster greatly diminished
our ability to discriminate between samples. Factors 1 and 2
combined accounted for only about 30% of the variance on
average (compared to about 90% for the weighted analysis)
(Fig. 2), and sequence jackknifing using 50 sequences from
each sample resulted in larger IQRs for the PCoA point loca-

FIG. 3. Jackknifing of PCoA analysis of hot spring sediment sam-
ples with unweighted and weighted UniFrac. Shown is a plot of the first
two principal coordinate axes (factors) for PCoA with the neighbor-
joining tree. Point locations are the average location in the 100 jack-
knife replicates. Only 50 randomly selected sequences from each sam-
ple were used in each replicate (the range of sequences per sample was
65 to 96). Gray ellipses represent the IQR for the 100 jackknife rep-
licates. The 95% confidence intervals for the point locations were also
calculated and were considerably smaller than the IQRs (data not
shown). The symbols are the same as those shown in Fig. 2.

FIG. 4. Hierarchical clustering of hot spring sediment samples with
weighted and unweighted UniFrac. The percentage support for nodes
supported at least 70% of the time with sequence jackknifing is indi-
cated. The name of each sample indicates the spring (e.g., A1, A2, and
A3 are different springs from the Amphitheatre Springs area, and RM
is from the Roaring Mountain area), whether the sample is sulfur rich
(S), iron rich (Fe), or both (FeS), and the temperature. The names and
branches are colored black for S samples and gray for Fe and FeS
samples. (a) Weighted UniFrac with the neighbor-joining tree and (b)
unweighted UniFrac with the neighbor-joining tree.
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FIG. 5. Analysis of mouse cecal microbial communities with weighted and unweighted UniFrac. Genotypes are ob/ob for homozygotes for the
mutant leptin allele that confers obesity, ob/� for heterozygotes, and �/� for wild types. All mothers are ob/�. (a) Plot of the first two principal
coordinate axes for PCoA with unweighted UniFrac. Symbols represent individual animals. The rectangles highlight the family of mother 2 and
the families of mothers 1 and 3, who are sisters. (b) The same plot for weighted Unifrac. The rectangle highlights the majority of the ob/ob mice.
The arrows point to outliers: an ob/ob mouse outside of the ob/ob cluster (black triangle) and an ob/� mouse inside the ob/ob cluster (white square).
(c) Same plot for sequence jackknifing of unweighted UniFrac with a maximum of 200 sequences from each mouse for 100 replicates. The symbols
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tions than for weighted UniFrac (Fig. 3a). In addition, only two
nodes in the hierarchical clustering were recovered �50% of
the time (Fig. 4b). Although sulfur- and iron-rich samples still
generally grouped together in the hierarchical clustering, sam-
ple RMFe60, the coolest of all of the iron-rich samples, now
clustered with other 60°C and 65°C samples rather than the
other iron-rich samples, in a jackknife-supported node. This
change indicated that temperature had a greater effect on the
clustering with unweighted UniFrac. In the weighted analysis,
factor 1 correlates significantly with temperature (r2, 0.34 to
0.49; mean r2, 0.39; P, �0.05 in all cases; corresponding r2

values for factor 1 in the weighted UniFrac range from 0.08 to
0.17 [mean 0.11] were not significant) and is less clearly asso-
ciated with mineral chemistry than factor 1 of weighted Uni-
Frac values. This result indicates that the strong correlations
with chemistry detected by PCoA of FST and weighted UniFrac
measurements depended entirely on changes in the relative
abundance of the phylogenetic lineages rather than the types
of lineages present. In contrast, when the presence/absence of
data alone was considered, temperature played a more impor-
tant role. Thus, a primary advantage of analyzing the same
data set with both a qualitative and a quantitative diversity
measure (in this case, unweighted and weighted UniFrac) is
the ability to identify the relative importance of phylogenetic
lineage and abundance on the variation in diversity between
environments.

The UniFrac results were not sensitive to the method used
to build the phylogeny. For both weighted and unweighted
UniFrac, the results were generally similar for the seven phy-
logenetic trees, even though the trees had considerable differ-
ences in both topology (the partition metric shows that 10 to
75% of the clades were unique to one or the other tree) and
branch length (generally high NDA values; see Table 2). De-
spite these differences, weighted UniFrac always separated the
samples by chemistry, and unweighted UniFrac always pro-
duced a first factor that correlated significantly with tempera-
ture. These results suggest that both weighted and unweighted
UniFrac analyses are robust to differences in the trees pro-
duced by popular tree-building methods. The one tree-building
method that is clearly the most different from the remainder is
the RAxML parsimony tree (which lacks branch lengths). This
loss of information about the extent of divergence may lead to
different results. For these samples, applying the normalization
for differential branch lengths generally had little effect (com-
pare the second and third columns of graphs in Fig. 2). The
normalization did appear to increase the variability of the
spread of the sulfur-rich samples along factor 2 depending on
the tree-building method, especially for likelihood and Bayes-
ian trees, perhaps indicating that it is less robust than weighted
UniFrac without normalization to differences in branch length
estimates.

Study 2: obesity and gut microbiota. Although in the exam-
ple above, weighted UniFrac identified clearer patterns of vari-
ation between samples than unweighted UniFrac, this is not
always the case. In the analysis of the effects of obesity and
kinship on the microbial population of mouse gut microbiota,
quantitative and qualitative � diversity measures again provide
completely different perspectives on the main factors that im-
pact microbial community composition. Here, unweighted
UniFrac identifies clearer patterns of variation. In their study,
Ley et al. sequenced bacterial 16S rRNA genes from the distal
ceca of obese and nonobese mice who were the offspring of
three different mothers (11). Each mother was heterozygous
for a mutation in the gene for the hormone leptin, which affects
appetite and causes obesity in homozygous mutants (10, 33).
Each mother was mated to a heterozygous male, and litters
were produced that contained siblings with each of the three
possible genotypes. The littermates were kept in the same cage
as their mother until they were weaned at 3 weeks and then
kept in their own cages for an additional 5 weeks before being
sacrificed. Bacterial 16S rRNA gene clone libraries with be-
tween 111 and 484 sequences were produced from the cecal
microbial communities for each of the three mothers and for
16 of the offspring (11).

We calculated pairwise values using both weighted and un-
weighted UniFrac and used both hierarchical clustering and
PCoA to cluster the mice based on this sequence information
(Fig. 5). Unweighted UniFrac revealed a clear association be-
tween microbial diversity and kinship: the mice clustered al-
most perfectly by mother. The two mothers who were sisters
(M1 and M3) clustered together with their offspring. An un-
related mother (M2) and her offspring formed a separate clus-
ter. This result was reliably obtained using both hierarchical
clustering and PCoA (Fig. 5) (11). Sequence jackknifing
showed that these results were robust to sample size. When 200
sequences were randomly selected from each of the 17 mice
with between 200 and 484 sequences, both the node that
grouped M1 and M3 with their offspring and the node that
grouped M2 with most of her offspring were recovered 87 out
of 100 times (Fig. 5e). The two mice represented by less than
200 sequences (M2A-1 and M2A-2) were the only mice that
did not group with their mother (Fig. 5e). In addition, none of
the IQRs for point locations for M1 and M3 and their offspring
overlaps those of M2 and her offspring in the jackknifed PCoA
plot (Fig. 5c).

In contrast, when we used weighted UniFrac to account for
the abundance information, there was no strong association
with kinship. Instead, there was a greater correlation with the
obesity genotype (Fig. 5). Individual mice fell into two major
clusters, and all but one of the obese mice fell within the first
of the two clusters, suggesting that taking the abundance of
each type of sequence into account revealed similarities in the

are the average values for the 100 replicates, and the gray ellipses represent the IQR of the point locations. (d) Sequence jackknifing with weighted
UniFrac with a maximum of 200 sequences from each mouse for 100 replicates. (e) Hierarchical cluster diagram for unweighted UniFrac. The
percentage support for nodes supported at least 70% of the time with sequence jackknifing is indicated. The main clustering is by mother. (f)
Hierarchical cluster diagram for weighted UniFrac. The clustering by mother is much less clear, and there is more clustering by ob/ob genotype
(and hence by obesity phenotype).
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bacterial communities in the obese mice that were not detected
solely by an examination of phylogenetic lineages. This inter-
pretation is supported by the observation that obese mice
contained significantly more organisms from the phylum Fir-
micutes and significantly fewer bacteria from the Cytophaga-
Flexibacter-Bacteroides clade, suggesting that the genotype that
leads to obesity has a significant impact on the microbial com-
munity (11). Interestingly, one of the ob/ob homozygous mu-
tants was a runt but still clustered with the obese mice, sug-
gesting that the ob/ob genotype, rather than raw nutrient
throughput, is the predominant force affecting the cecal mi-
crobial community.

DISCUSSION

In both case studies, the use of weighted and unweighted
measures of � diversity revealed markedly different factors
influencing the microbial communities. The original, un-
weighted UniFrac measure is well suited to detecting differ-
ences in the presence or absence of lineages of bacteria in
different communities. In the thermal spring study, unweighted
UniFrac clustered the samples mainly by temperature, suggest-
ing that the main effect was whether lineages could survive in
each of the different springs. In the obesity study, unweighted
UniFrac clustered the different mice almost perfectly by
mother. Because the mice were kept in the same cage with
their mother until they were weaned and because they all have
the same genetic background, the result may have been heavily
influenced by founder effects. Although this result was easily
explained after the fact (mice in the same cage often eat each
others’ feces, providing a direct pathway for shared microbial
communities), we found it surprising at the time we performed
the analysis.

In contrast, our new weighted UniFrac measure is well
suited to detecting differences in abundance even when the
overall groups of organisms that are present in each sample
remain the same. In the thermal spring study, weighted Uni-
Frac clustered the samples primarily by the chemistry of each
spring; in the mouse obesity study, weighted UniFrac grouped
most of the obese mice together in one cluster. Thus, we expect
that weighted UniFrac will be suitable for studying transient
changes in microbial communities related to nutrient availabil-
ity and may also be suited to the analysis of seasonal changes
and changes under the influence of different pollutants. We
have made an implementation of the weighted measure avail-
able through the UniFrac website at http://bmf.colorado.edu
/unifrac by selecting the “Use Abundance Weights” option,
allowing researchers to run both weighted and unweighted
analyses in the context of a convenient Web interface (12).

We demonstrated that neither weighted nor unweighted
UniFrac is sensitive to the methodology used to build the
underlying phylogenies, which is important because each phy-
logenetic method has its own strengths and weaknesses (5).
Weighted UniFrac performs similarly to FST, another quanti-
tative measure of � diversity, but has the advantage over FST

that it is applied to a phylogenetic tree rather than to a se-
quence alignment. It can thus be applied to phylogenetic trees
that are generated from nonoverlapping sequence, such as
trees generated based on top BLAST hits in viral metagenomic
analyses (3) or from different regions of the rRNA molecule

using ARB’s parsimony insertion tool (14). Weighted UniFrac
will thus be an important tool for large-scale comparisons
across multiple community samples collected by different re-
searchers at different times. Unfortunately, information about
the abundance of each sequence in the sample and about
whether clones were prescreened for diversity by restriction
fragment length polymorphisms or related techniques is typi-
cally not available in public databases such as GenBank. Now
that methods are available to analyze such data on a global
scale, the development of resources that collect this informa-
tion is more critical than ever.

We conclude that both quantitative and qualitative measures
of � diversity have specific niches in the analysis of microbial
communities and that using both types of measures will often
be critical for understanding the factors that underlie microbial
diversity.
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