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Abstract
Concentration gradients of morphogens are known to be instrumental in cell signaling and tissue
patterning. Of interest here is how the presence of a competitor of BMP ligands affects cell signaling.
The effects of Sog on the binding of Dpp with cell receptors are analyzed for dorsal-ventral
morphogen gradient formation in vertebrate and Drosophila embryos. This prototype system
includes diffusing ligands, degradation of morphogens, and cleavage of Dpp-Sog complexes by
Tolloid to free up Dpp. Simple and biologically meaningful necessary and sufficient conditions for
the existence of a steady state gradient configuration are established, and existence theorems are
proved. For high Sog production rates (relative to the Dpp production rate), it is found that the steady
state configuration exhibits a more intense Dpp-receptor concentration near the dorsal midline.
Numerical simulations of the evolution of the system show that, beyond some threshold Sog
production rate, the transient Dpp-receptor concentration at the dorsal midline would become more
intense than that of the steady state, before subsiding and approaching a nonuniform steady state of
lower magnitude. The magnitude of the transient concentration has been found to increase by several
fold with increasing Sog production rate. The highly intense Dpp activity at and around the dorsal
midline is consistent with available experimental observations and other analytical studies.
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1. Introduction
The proper functioning of tissues and organs requires that each cell differentiate appropriately
for its position. In many cases, the positional information that instructs cells about their
prospective fate is conveyed by concentration gradients of morphogens bound to cell receptors.
Morphogens are signaling molecules that, when bound to cell receptors, assign different cell
fates at different concentrations [1], [2]. Morphogen action is of special importance in
understanding development because it is a highly efficient way for a population of uncommitted
cells in an embryo to create complex patterns of gene expression in space. This role of
morphogens has been the prevailing thought in tissue patterning for over half a century, but
only recently have there been sufficient experimental data and adequate analytical studies for
us to begin to understand how various useful morphogen concentration gradients are formed
[3], [4].

Dorsal-ventral (back-to-belly) patterning in vertebrate and Drosophila (fruit fly) embryos is
now known to be regulated by bone morphogenetic proteins (BMP). The BMP activity is
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controlled mainly by several secreted factors including the antagonists chordin and short
gastrulation (Sog). In Drosophila, seven zygotic genes have been proposed to regulate dorsal-
ventral patterning. Among them, decapentaplegic (Dpp) encodes BMP homologues that
promote dorsal cell fates such as amnioserosa and inhibits development of the ventral central
nervous system. The chordin homologue Sog is expressed ventrally and promotes central
nervous system development. The phenotype of Sog loss-of-function mutants is intriguing; as
expected for a Dpp antagonist, ventral structures are lost but, in addition, the amnioserosa is
reduced. This result is paradoxical, as the amnioserosa is the dorsal-most tissue, and thus
apparently a BMP antagonist is required for maximal BMP signaling [5], [6], [7], [8].

In principle, morphogen concentration gradients can be generated through the production of
morphogens at particular sources, followed by their diffusion and degradation in appropriate
regions [4], [9], [10], [11], [12]. In the above Dpp/Sog system, the production of Dpp is pretty
much uniform in the dorsal region and absent in the ventral region, while the opposite is true
for Sog. However, the Dpp activity has a sharp peak around the midline of the dorsal region
in the presence of its “inhibitor” Sog. Mutation of Sog results in a reduction and a broadening
of Dpp activity around the midline of the dorsal region. As the system contains many variables,
the question of what leads to a sharp concentration peak is difficult to tackle by traditional
experimental means.

Recently, Eldar et al. [13] studied a more complex morphogen system that includes the effects
of Sog (and other morphogens) on Dpp activities. By performing massive computer
calculations to search for molecular networks that support robustness, they found that the
presence of the BMP inhibitor Sog stimulates intense Dpp activity at the dorsal midline
resulting in highly nonuniform Dpp-receptor concentration in space for the the patterning
process. They also showed that the Dpp concentration gradient itself is robust to changes in
gene dosage. Two conditions were stipulated in their model to produce agreement with
experimentally observed gradient formation. First, the steady state of the system is achieved
by shutting off the production of Dpp through setting the production rate to zero 10 minutes
after the initiation of the system [14], and there is no degradation of Dpp-receptor complex in
the model. Second, the model requires immobility of free Dpp molecules; i.e., Dpp does not
diffuse, but diffusion of the Dpp-Sog complexes and other ligands can occur.

For formation of morphogen gradients in a wing imaginal disc (a structure in the larva that will
become the wing of the adult fly), Lander, Nie, and Wan [4] and Lou, Nie, and Wan [9] have
demonstrated the important biological roles of diffusion for Dpp, and degradation for the Dpp-
receptor complex. Without degradation, the steady state of the system is not achievable unless
ligand production is shut off after a while, as in [14]. Eldar et al., in a recent paper [15], have
also studied how degradation of ligand affects robustness of morphogen gradients. Most
recently, the diffusion coefficient of Dpp has been measured in vivo using FCS (fluorescence
correlation spectroscopy) techniques [16], and it was found that the magnitude of diffusion
coefficient for Dpp is close to the magnitude of the diffusion coefficient for the Dpp-Sog
complex used in [14] and hence not negligible.

Given the rather special restrictions on the Dpp/Sog system in [13] and [14], it is desirable to
investigate the possibility of an alternative and simpler known biological mechanism for the
generation of the intense Dpp activities around the dorsal midline. In this paper, we will extend
the dynamic Dpp/Sog system formulated in [17] for morphogen activities in dorsal-ventral
patterning by allowing for diffusion of ligands, degradation of the morphogens, and the
cleavage of Dpp-Sog complexes by the enzyme Tolloid to free up a fraction τ of Dpp and to
degrade part of Sog.
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In this study, we will establish a biologically meaningful necessary and sufficient condition
for the existence of a steady state. This condition requires a balance of the production of ligands,
strength of degradation, and rate of cleavage of Dpp-Sog complex by Tolloid, with no
restrictions on the diffusion coefficients of the ligands. To gain insight into the dependence of
the morphogen activities on various biological parameters, we will obtain a perturbation
solution of the steady state gradients with a biologically relevant assumption that the Sog
production rate is high compared to that of Dpp [13], [14]. The solution indicates that the
requirement for complete immobility of Dpp is not necessary for a biologically realistic Dpp-
receptor gradient that is intense in Dpp activity at the dorsal midline. Finally, we will perform
numerical simulations for the dynamics of the system. It is found that the cleavage of Sog-Dpp
complex by Tolloid produces a transient peak of the Dpp-receptor concentration around the
dorsal midline that is significantly stronger than the corresponding concentration at the steady
state. The dependence of the peak on various biological parameters, including Sog production
rate and diffusion coefficients, is also investigated. The overall features of the various
concentrations of the model are consistent with experimental observations [5], [6], [7], [8]. A
more complete model including more biological components and its comparison with new
experiments on robustness of morphogen gradients will be presented in a separate paper [18].

2. Mathematical formulation
For an analytical and computational study of the biological phenomenon of interest, a system
of partial differential equations and auxiliary conditions is formulated to capture the essential
features of the dynamics of the two interacting morphogens. This approach was first applied
to study the development of the Drosophila wing imaginal disc [19], [20], [4]. The three basic
biological processes involving Dpp in the wing disc are diffusion for free Dpp molecules, their
reversible binding with receptors, and degradation of the bound Dpp. The main purpose was
to investigate the role of diffusion in the formation of a Dpp-receptor concentration gradient
in the wing disc. That system was extended to include the effect of Sog on Dpp activities in a
dorsal-ventral configuration [17] in an embryo, with the cleavage of Dpp-Sog complexes by
Tolloid implicitly incorporated into the system through the complete recovery of Dpp after
cleavage (while the Sog components degrade completely). The cleavage-recovery
phenomenon has been suggested by previous experimental studies [21], [22]. Here we consider
an even more general system than that in [17] by allowing fractional recovery through the
fraction parameter τ, 0 ≤ τ ≤ 1, with τ = 1 corresponding to complete recovery.

The setting for dorsal-ventral patterning in a Drosophila embryo during development is
different and more complex than that considered in [4]. As shown in the sketch of the dorsal-
ventral cross section of the embryo in Figure 1, Dpp is produced only in the dorsal region (with
the rate vL(x)), while Sog is produced only in the ventral region (with the rate vS(x)). For a one-
dimensional study of the dynamics of Sog and Dpp in the presence of cell receptors, we have
idealized the dorsal-ventral annular cross-section of the embryo as a ring and introduced an
artificial cut of the ring at the ventral midline to map the cut ring onto the line segment
[−Xmax, Xmax], with X = 0 corresponding to the dorsal midline. Let [L], [S], [LS], [LR] denote
the concentrations of Dpp, Sog, Dpp-Sog complexes, and Dpp bound to receptors, respectively.
The first three diffuse with coefficients of diffusion DL, DS, and DLS, respectively, while the
concentration for the immobile and undegradable receptor is fixed at R0 and uniformly
distributed in [−Xmax, Xmax]. The system of equations governing the morphogen dynamics of
such a system consists of the following four coupled second order differential equations, three
of them being nonlinear partial differential equations (PDE) of the reaction-diffusion type:
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∂ L
∂T = DL

∂2 L

∂X 2 − Kon L (R0 − LR ) − Jon L S

+Koff LR + (Joff + τJdeg) LS + vL (X ),

(1)

∂ LR
∂T = Kon L (R0 − LR ) − (Koff + Kdeg) LR , (2)

∂ LS
∂T = DLS

∂2 LS

∂X 2 + Jon L S − (Joff + Jdeg) LS , (3)

∂ S
∂T = DS

∂2 S

∂X 2 − Jon L S + Joff LS + vS(X ) (4)

for −Xmax < X < Xmax and T > 0. The coefficients {Kon, Jon}, {Koff, Joff }, {Kdeg, Jdeg} are the
binding rate constants, the off rate constants, and the degradation rate constants of Dpp and
Sog, respectively. With the morphogen activities symmetric about the ventral (as well as dorsal)
midline, we must have the following symmetry (no flux) conditions at the two ends of the
solution domain:

X = ± Xmax : ∂ L
∂X = ∂ LS

∂X = ∂ S
∂X = 0.

The number of independent parameters may be reduced by suitable normalization. Let

x = X
Xmax

, t =
D0T

Xmax
2 , (5)

{h L , hLS} =
Xmax

2 R0
D0

{Kon, Jon}, (6)

{ f L , f LS, gL , gLS} =
Xmax

2

D0
{Koff, Joff, Kdeg, Jdeg}, (7)

{VL (x), VS(x)} =
Xmax

2

R0D0
{vL (X ), vS(X )}, (8)

{ρL , ρS, ρLS} = { DL
D0

,
DLS
D0

,
DS
D0

}, (9)

{A, B, C, D} = { L
R0

, LR
R0

, LS
R0

, S
R0

}. (10)

In these relations, it would seem natural to choose the normalizing diffusion coefficient D0 to
be the maximum of the three diffusion coefficients. However, it turns out to be more appropriate
to choose D0 = DS to facilitate an appreciation of the implication of the solution. At this time,
we will leave D0 unspecified, but will see in section 4 why it is expeditious to specify it as
DS. In terms of these normalized quantities, (1)–(4) may be written as

A,t = ρL A,xx − hL A(1 − B) − hLSAD + f L B + ( f LS + τgLS)C + VL (x), (11)
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B,t = hL A (1 − B) − ( f L + gL )B, (12)

C,t = ρLSC,xx + hLSAD − ( f LS + gLS)C, (13)

D,t = ρSD,xx − hLSAD + f LSC + VS(x) (14)

for −1 < x < 1 and t > 0, with ( ),z = ∂( )/∂z for the temporal and spatial derivatives of the
dependent variables A, B, C, D.

3. Existence of steady state solutions
In this section, we examine the existence of time-independent (or steady state) solutions of the
system (11)–(14) subject to the no flux conditions at the two end points, which can now be
written in terms of the normalized unknowns as

x = ± 1 : A,x = C,x = D,x = 0 (t > 0). (15)

With the steady state solution independent of time, (12) becomes an algebraic equation and
can be solved for B in terms of A:

B = A
αL + A , αL =

gL + f L
hL

. (16)

The expression for B is then used to eliminate it from (11), leaving the following three
simultaneous equations for the three unknowns A, C, and D:

ρL A,xx −
gL hL A

f L + gL + hL A − hLSAD + ( f LS + τgLS)C + VL = 0, (17)

ρLSC,xx + hLSAD − ( f LS + gLS)C = 0, (18)

ρSD,xx − hLSAD + f LSC + VS = 0 (19)

for −1 < x < 1 subject to the boundary conditions (15).

Throughout this section we assume the following:

(A1) fL, fLS, gL, gLS, hL, and hLS are continuous positive functions in [−1, 1];ρL, ρLS, and ρS are
positive constants; VS, VL are nonnegative integrable functions that satisfy ∫−1

1 VL > 0 and

∫−1
1 VS > 0; and τ is a constant satisfying 0 ≤ τ ≤ 1.

If VL(x) and VS(x) are continuous, we seek a classical solution of (15)–(19); i.e., A, C, and D
are twice continuously differentiable in [−1, 1] that satisfy (15)–(19).

Theorem 3.1
Suppose that (A1) holds and VL, VS are continuous in [−1, 1]. Then (15)–(19) has a positive
classical solution if and only if both of the following inequalities hold:

∫−1
1 VL (x)dx > (1 − τ)∫−1

1 VS(x)dx, (20)
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∫−1
1 VL (x)dx < (1 − τ)∫−1

1 VS(x)dx + ∫−1
1 gL (x)dx. (21)

Since ∫−1
1 VL (x) > 0,  the first condition is trivially satisfied for τ = 1 (full recovery of Dpp),

and the second is a distributed version of the necessary and sufficient condition for existence
in [9], [10], [11], [12] (that the Dpp production rate must be slower than the degradation rate
of the Dpp-receptor complexes). For 0 ≤ τ < 1, these two conditions may be combined to give
a similar condition on a nonnegative “effective” Dpp production rate [VL - (1 - τ )VS] (see
section 5).

Lemma 3.2
If (15)–(19) has a positive classical solution, then (20) and (21) must hold.

Proof—Adding up (17) and (18) and integrating over [−1, 1], we obtain with the help of (15)

∫−1
1 VL = ∫−1

1 gL hL A

f L + gL + hL A + (1 − τ)∫−1
1 gLSC. (22)

Similarly, adding up (18) and (19) and integrating over [−1, 1], we get

∫−1
1 gLSC = ∫−1

1 VS. (23)

It follows from (22) and (23) that

∫−1
1 VL = ∫−1

1 gL hL A

f L + gL + hL A + (1 − τ)∫−1
1 VS. (24)

For A > 0 in [−1, 1], we have

0 < ∫−1
1 gL hL A

f L + gL + hL A < ∫−1
1 gL , (25)

which along with (24) implies (20)–(21).

In view of Lemma 3.2, we’ll assume that (20)–(21) holds for the rest of this subsection. Our
goal is to show that if VL and VS are continuous, then the condition (20)–(21) implies that (15)–
(19) has at least a positive classical solution. The idea is to introduce some parameter and
consider the following system of equations:

ρL Ã,xx + λF1(x, Ã, C̃, D̃) = 0, − 1 < x < 1, (26)

ρLSC̃,xx + λF2(x, Ã, C̃, D̃) = 0, − 1 < x < 1, (27)

ρS D̃,xx + λF3(x, Ã, C̃, D̃) = 0, − 1 < x < 1, (28)

Ã,x = C̃,x = D̃,x = 0 at x = − 1, 1, (29)

where λ ∈ (0, 1] and Fi (i = 1, 2, 3) is given by
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F1(x, Ã, C̃, D̃) = −
gL hL Ã

f L + gL + hL Ã − hLS ÃD̃ + ( f LS + τgLS)C + VL , (30)

F2(x, Ã, C̃, D̃) = h LS ÃD̃ − ( f LS + gLS)C̃, (31)

F3(x, Ã, C̃, D̃) = − hLS ÃD̃ + f LSC̃ + VS. (32)

We establish some a priori estimates for nonnegative classical solutions of (26)–(29).

LEMMA 3.3
Let (Ã, C̃, D̃) be any nonnegative classical solution of (26)–(29). If λ > 0, then Ã (x) > 0, C̃ (x)
> 0, and D ̃ (x) > 0 for every x ∈ [−1, 1].

Proof—Similar to (23) we have ∫−1
1 gLS C̃ = ∫−1

1 VS . Hence C̃ ≥ 0, C̃ ≡⃥ 0. By (27) and (31) we
have

− ρLSC̃,xx + λ( f LS + gLS)C̃ = λhLS ÃD̃ ≥ 0, − 1 < x < 1. (33)

This together with C̃,x(−1) = C̃,x(1) = 0, via the maximum principle [23], implies that C̃(x) >
0 for every x ∈ [−1, 1]. Since VL ≡⃥ 0 and VS ≡⃥ 0, similarly by (26)–(29) and the maximum
principle we can show that Ã > 0 and D ̃ > 0 in [−1, 1].

LEMMA 3.4
There exists some constant M >0, independent of λ, such that for any 0 < λ ≤1 and any positive
classical solution (Ã, C̃, D ̃) of (26)–(29) we have

Ã
L ∞ + C̃

L ∞ + D̃
L ∞ ≤ M. (34)

The proof of Lemma 3.4 is postponed to the appendix. Lemmas 3.3 and 3.4 enable us to define
Leray–Schauder degree (see, e.g., [24]) for a certain operator whose Fixed points correspond
to positive solutions of (26)–(29).

Set E = {C[−1, 1]}3 and CN
2 − 1, 1 = {u ∈ C 2 − 1, 1 : u,x( − 1) = u,x(1) = 0}. For any

positive constant γ, let L γ
−1 denote the inverse of the operator

L γ : = − γ d 2

dx 2 + I : CN
2 − 1, 1 → C − 1, 1 , where I denotes the identity map from C[−1,

1] to itself.

For every λ ∈ [0, 1], define operator T(λ): E → E by

T (λ)(Ã, C̃, D̃) = (L ρL
−1 Ã + λF1

+(x, Ã, C̃, D̃)

L ρLS
−1 C̃ + λF2(x, Ã, C̃, D̃)

L ρS
−1 D̃ + λF3(x, Ã, C̃, D̃)

), (35)

where
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F1
+(x, Ã, C̃, D̃) =

− gL hL A

f L + gL + hL A+
− hLSAD + ( f LS + τgLS)C + VL , (36)

A+ = max(A, 0). By standard regularity theory and the embedding theorem, we see that T(λ) is
well defined and continuous, and the operator T ̃: [−1, 1]× E → E, defined by T ̃ (λ, Ã, C̃, D ̃) =
T(λ)( Ã, C̃, D ̃), is continuous and compact. For M given in (34), define

Ω = {(Ã, C̃, D̃)∈E : 0 < Ã(x), C̃(x), D̃(x) < M + 1 ∀ x∈ − 1, 1 }.

Ω is an open and bounded subset of E. By Lemmas 3.3 and 3.4, we see that for any λ ∈ (0, 1],
[I − T(λ)]−1 {(0, 0, 0)}∉∂Ω. Hence the Leray–Schauder degree, deg (I − T(λ), Ω, (0, 0, 0)), is
well defined for 0 < λ ≤ 1. Moreover, by the homotopy invariance of the Leray–Schauder degree
[24], deg (I − T(λ),Ω, (0, 0, 0)) is a constant function for 0 < λ ≤ 1. To complete the proof of
Theorem 3.1, we need the following result.

PROPOSITION 3.5
There exists δ > 0 such that deg (I − T(λ),Ω, (0, 0, 0)) = 1 for λ ∈ (0, δ).

The detail of the proof of this proposition is not particularly relevant to the proof of Theorem
3.1 and will be given in an appendix of this paper. Assuming Proposition 3.5, we can now
complete the proof of Theorem 3.1.

Proof of Theorem 3.1—By Lemma 3.2, it suffices to establish the sufficiency part. By
Proposition 3.5, for every 0 < λ ≤ 1, deg (I − T(λ),Ω, (0, 0, 0)) = 1. In particular, deg (I − T
(1),Ω, (0, 0, 0)) ≠ 0. This implies that there exists (Ã, C̃, D ̃) ∈ Ω such that (I − T(1))(Ã, C̃, D ̃)
= (0, 0, 0). By standard regularity theory we see that Ã, C̃, D ̃ ∈ C2[−1, 1] and is thus a positive
classical solution of (15)–(19).

Specific morphogen systems of interest include those with morphogen production rates that
are discontinuous in the spatial variable (see section 4). When VL and VS are bounded and
measurable, we will be seeking C1,1 solutions of (15)–(19), i.e., functions A,C,D that are
differentiable in [−1, 1]; have derivatives A,x, C,x, and D,x Lipschitz continuous in [−1, 1]; and
satisfy (15) and for every x ∈ [−1, 1]

ρL A,x + ∫−1
x F1 = ρLSC,x + ∫−1

x F2 = ρSD,x + ∫−1
x F3 = 0. (37)

THEOREM 3.6
Suppose that (A1) holds and that VL and VS are bounded measurable. Then (15)–(19) has a
positive C1,1 solution if and only if (20)–(21) holds.

Proof—Suppose that (15)–(19) has a positive C1,1 solution. Setting x = 1 in (37) and applying
the same argument as in the proof of Lemma 3.2, we see that (20)–(21) must hold. On the other
hand, if (20)–(21) holds, we can choose a uniformly bounded sequence of continuous positive
functions VL

n(x) andVS
n(x) such that VL

n(x) → VL  and VS
n(x) → VS  a.e., and

0 < ∫−1
1 VL

n − (1 − τ)VS
n < ∫−1

1 gL . By Theorem 3.1 (17)–(19), with VL and VS being replaced

by VL
n and VS

n, respectively, there is a sequence of positive classical solutions, denoted by
An, Cn, and Dn. As for Lemma 3.4, we can show that there exists some positive constant M,
independent of n, such that ‖An‖L∞ + ‖Cn ‖L∞ + ‖Dn‖L∞ ≤ M. Furthermore,

A,xx
n

L ∞ , C,xx
n

L ∞ , and C,xx
n

L ∞  are uniformly bounded. By passing to a
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subsequence if necessary, (An, Cn, Dn) converge to some functions (A,C,D) in C1, and A,C,D
satisfy (15) and are nonnegative solutions of (37). From (37) we see that A,x, C,x,D,x are
Lipschitz continuous in [−1, 1]. By similar argument as in Lemma 3.3 (but instead using the
maximum principle for weak solutions of (15)–(19)), we see that A,C,D are all positive in
[−1, 1]. This completes the proof of Theorem 3.6.

Remark 3.7—Note that C ∈ C2[−1, 1]. If VL and VS are piecewise continuous, then A and
D are also piecewise twice continuously differentiable in [−1, 1].

4. Approximate steady state solutions for VL ≪ VS
In previous studies [13], [14], the constant (in both space and time) Dpp production rate, v̄L,
in the dorsal region was estimated to be significantly smaller than the constant Sog production
rate, v̄S, in the ventral region. In [14], the ratio of the two production rates, defined as ε ≡ v̄L/
v̄S, is 0.008 for its baseline study. The robustness of the solutions with respect to variations of
v̄S is studied for fixed v̄L [13].

For v̄L ≪ v̄S, so that ε ≪ 1, we obtain below a perturbation solution for the steady state of (15)–
(19), with τ = 1 for simplicity. For τ < 1, perturbation solution procedure applies only if (20)–
(21) hold. Similar to [14], we assume

VL (x) = V̄ L H ( 12 − x), VS(x) = V̄ SH (x − 1
2 ), (38)

where (V̄ L , V̄ S ) = (v̄L , v̄S )Xmax
2 / (R0D0) and H(z) is the unit step function.

With V̄L ≪ V̄S, we expect D(x), C(x) = O(V̄S), O(V̄S), although the latter may be a smaller
fraction of V̄S. On the other hand, we have A(x) = O(V̄L) at most, in fact quite a bit smaller since
free Dpp should eventually be bound to Sog or receptors, given that Sog is produced at a much
higher rate. For these reasons, we set

A(x) =
V̄ L

μL
2 a(x), C(x) =

V̄ S
f LS + gLS

c(x), D(x) = V̄ Sd(x), (39)

where μL
2 = gL / αL  and aL = (fL + gL)/hL. Then (17)–(19) become

V̄ L
V̄ S

ρL

μL
2 a″ − a

1 + βL a + H ( 12 − x) − μD
2ad + c = 0, (40a)

ρLSc″ + ( f LS + gLS) μD
2ad − c = 0, (40b)

ρSd ″ − μD
2ad − c − (1 − σLS)c + H (x − 1

2 ) = 0, (40c)

where ()′ = d()/dx, βL = V̄L/gL, σLS = fLS/(fLS+gLS) < 1, and μD
2 = h LSαL V̄ L / gL . Using

symmetry about x = 0, we need only to consider solutions for 0 < x < 1 with the boundary
conditions at x = 0 being again no flux for all three unknowns a, b, and c.

The form of (40a)–(40c) suggests that we seek a perturbation solution of {a, c, d} in ε:
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{a(x; ε), c(x; ε), d(x; ε)} = ∑
n=0

∞
{an(x), cn(x), dn(x)}ε n. (41)

For moderate values of V̄L so that μD
2 is not small compared to unity, the three leading term

coefficients are determined by

μD
2a0d0 − c0 = 0, (42a)

ρLSc0
″ + ( f LS + gLS) μD

2a0d0 − c0 = 0, (42b)

ρSd0
″ − μD

2a0d0 − c0 − (1 − σLS)c0 + H (x − 1
2 ) = 0. (42c)

The complementary case, μD
2 ≪ 1,  can also be analyzed but is not relevant for our biological

system.

Upon combining (42a) and (42b) we get

ρLSc0
″ = 0. (43)

The no flux boundary conditions at x = 0, 1 require c0(x) ≡ σ0 for some constant σ0. To determine
σ0, we note that (23) is still valid and requires

1
2 V̄ S = ∫01Vs(x)dx = gLS∫01C(x)dx = V̄ S

gLS
f LS + gLS

∫01c(x)dx (44)

so that σ0 = 1/2(1 − σLS), i.e.,

(1 − σLS)c0(x) = 1
2 , 0 ≤ x ≤ 1. (45)

To determine d0(x), we use (42a) and (42c) to obtain

ρSd0
″ − (1 − σLS)c0 + H (x − 1

2 ) = 0. (46)

Upon integration and application of boundary conditions at x = 0, 1, as well as the continuity
condition at x = 1/2 for d0, we obtain

ρSd0(x) = {δ0 + x 2

4
(x ≤ 1

2 ),
δ0 − 1

8 + 1
2 (x − x 2

2 ) (x ≥ 1
2 ),

(47)

where δ0 is an undetermined constant. By (42a) we have also

1 − σLS
ρS

μD
2a0(x) =

1 − σLS
ρS

c0(x)

d0(x) = { 12 1

(δ0 + 1
4 x 2) (x < 1

2 ),
1
2

1

δ0 − 1
8 + 1

2 x − 1
4 x 2 (x > 1

2 ).
(48)
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It is rather fortuitous to have a0′(0) = a0′(1) = 0 because d0 and c0 satisfy no flux conditions at
the two end points so that there are no boundary layers adjacent to the two ends.

It remains to determine δ0. We note that (24) still holds, particularly when τ = 1. In that case,
(24) becomes

G(δ0) ≡ ∫01
a0(x)

1 + βL a0(x) dx = 1
2 . (49)

It is easy to see that G(δ0) is strictly monotone decreasing in δ0 and that G(δ0) → 0 as δ0 →
∞. Hence G(δ0) =

1
2  has at most one positive root, and it has one positive root if and only if

G(0) > 1
2 . Note that G(0) can be explicitly computed, and thus G(δ0) =

1
2  determines δ0.

Altogether, we have as the corresponding leading terms for the concentrations

A(x) ∼
(1 − σLS)μD

2a0(x)/ ρS

R0Jon,eff/ (DS/ Xmax
2 )

, (50)

B(x) ∼
ΓLS(1 − σLS)μD

2a0(x)/ ρS

1 + ΓLS(1 − σLS)μD
2a0(x)/ ρS

, (51)

C(x) ∼ 1
2

v̄S
JdegR0

, (52)

D(x) ∼
v̄S/ R0

DS/ Xmax
2 ρSd0(x) , (53)

where

Kon,eff ≡
KdegKon

Kdeg + Koff
, Jon,eff ≡

JdegJon
Jdeg + Joff

, ΓLS =
Kon,eff
Jon,eff

DS

KdegXmax
2 . (54)

In Figure 2, the perturbation solutions (50)–(53) are plotted against the numerical solutions
obtained through temporal evolution (which will be discussed in the next section). The relative
difference between the two solutions is 1.5% for A, 1.4% for B, 4.3% for C, and 2.9% for D
for ε = v̄L/v̄S = 0.0133 and μD

2 = 18.4. This illustrates the approximation and accuracy of the
perturbation solution for ε ≪ 1.

More interesting is the dependence of the leading term solutions (51)–(53) on the biological
parameters. The simplest of the four is the uniformly distributed concentration of Dpp-Sog
complexes in (53): it depends only on the production rate of Sog per receptor, which is uniform
in the ventral region. Free Sog D(x) is proportional to the quadratic function defined in (47)
with a magnitude of v̄S/R0 modified by the diffusion coefficient of Sog. That D(x) is inversely
proportional to DS is not surprising, since faster diffusion of Sog would move more of it into
the dorsal region for binding with the available Dpp there. Note that ρSd0(x) is independent of
the choice of normalizing diffusion coefficient D0 and the effects of all biological parameters
are felt by ρSd0(x) only implicitly through the parameter δ0.
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Less expected is the dependence of A(x) and B(x) on the biological parameters. From (51), we
see that if ΓLS = O(1), the amplitude of B(x) is determined mainly by ΓLS. For ΓLS ≫ 1, we
have B(x) ~1, except possibly for a region adjacent to the ventral midline x = 1. In either case,
the amplitude of B(x) does not depend explicitly on either of the two production rate parameters
v̄s/R0 or v̄L/R0; the effects of these two parameters on B(x) are felt only through δ0.

The situation is similar for A(x). It seems unreasonable that A(x) does not tend to zero with
v̄L/R0 (with the same observation applied to B(x) as well). However, we see from a closer
examination of (40a) that μD

2 = h LSαL V̄ L / gL  tends to zero with v̄L/R0. For sufficiently
small v̄L/R0, the first approximation relation (42a) would give c0(x) = 0. In that case, c(x) should
be rescaled (by an additional factor μD

2) for a proper perturbation solution, while the solution
of this section ceases to be applicable. In other words, to apply the perturbation solution
{a0(x), c0(x), d0(x)} obtained above, we must have v̄L/R0 sufficiently small so that V̄L V̄S =
v̄L/v̄S ≪ 1 but not too small so that μD

2 = h LSαL V̄ L / gL  is not small compared to unity.

5. Numerical solutions for evolutions
The system (1)–(4) can be solved by finite difference schemes [25]. The diffusion terms are
approximated by the second order central difference. The temporal evolution is approximated
through the fourth order Adams–Moulton predictor-corrector method. The overall accuracy
for the method is second order in space and fourth order in time.

For a typical calculation, the time step is chosen to be Δt = 2 × 10−4 seconds, and the number
of points to discretize the entire dorsal and ventral region is N = 64. Smaller time step and
larger number of points have been used to check the accuracy and convergence of the
calculations.

Similar to [13], the span of both the dorsal region and the ventral region is chosen to be
175μm, i.e., Xmax = 175μm. Unlike [13], the diffusion constants for Dpp, Sog, and Dpp-Sog
are taken to be the same with D0 = DL = DLS = DS = 20μm2/second [4], so that ρL = ρS = ρLS
= 1 (except for changes indicated in Figures 7 and 8). In this study, the synthesis rates for Dpp
and Sog remain the same for all time. In particular, vL(X) is always chosen to be a nonzero
constant, v̄L, in the dorsal region and zero in the ventral region, while vS(X) is the opposite,
with vS(X) = v̄S in the ventral and zero in the dorsal region.

The dynamics of the system without Sog is very similar to that in [4], even though the ligand
is produced from a localized source in [4] while the ligand is produced in the whole dorsal
region for the system (1)–(4). For realistic ranges of the biological parameters of the problem,
this system typically evolves quickly and monotonically to a steady state within a half hour,
with the Dpp-receptor concentration almost uniform around the dorsal region. This behavior
is consistent with the experimental observation of [8]. At x = 0 the steady state is approximately
equal to v̄L/(KdegR0).

Without Sog, the solution at any fixed x is found to be an increasing function of time. This
feature is also observed for cases where Sog is synthesized at a slow rate or at a rate comparable
to the Dpp production rate. The situation is different if the Sog production rate is significantly
larger than the Dpp production rate, which is the most biologically relevant case [13]. In Figure
3, time evolution of a typical system for large v̄S is plotted. It is observed that the spatial
distributions of Dpp and the Dpp-receptor complex continue to have maximum concentrations
at the middle of the dorsal region, x = 0, at any instance in time (see the left-hand panels).
However, the various morphogen concentrations at x = 0 (the center of the dorsal region) peak
at an early time, then oscillate, with the amplitude of oscillations decaying until the
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concentrations reach their steady state (see the right-hand panels). Therefore we record two
interesting curves for Dpp-receptor concentration: the transient solution with the largest value
at the dorsal midline and the steady state solution.

In Figure 4(a), the steady state for Dpp-receptor concentration of our system (from the same
numerical simulations for Figure 3) are plotted. With Sog (v̄S ≠ 0), the Dpp-receptor in the
dorsal region generally has sharper gradient and larger concentration than those without Sog
(v̄S = 0). For the transient solution at its maximal peak magnitude, the concentration with Sog
is at least double that without Sog around the middle region. These are consistent with the
experimental observation in [8].

In steady state, the system with or without Sog has the same total amount of Dpp-receptor
complex for τ = 1. This can be shown by simply adding the right-hand sides of (11)–(13) and
(13)–(14), respectively, and then integrating them through the whole domain:

∫−1
1 gL Bdx = ∫−1

1
(VL (x) − (1 − τ)VS(x))dx. (55)

This relationship is independent of the presence of Sog when τ = 1. In other words, the effect
of inhibitor on Dpp-receptor concentration in the steady state is a spatial redistribution, not an
increase or decrease in total concentration aggregated over the entire embryo if all degraded
Dpp-Sog complexes, [LS], are cleaved to free up Dpp and degrade only the Sog component.

For the transient solution, the presence of Sog clearly helps build up the Dpp-receptor
complexes in terms of both gradient and concentration, as shown in Figure 3. In Figure 4(b),
we study how the transient peak of Dpp-receptor and the steady state at the dorsal midline (x
= 0) depend on v̄S. The steady state for B without Sog at x = 0 is 0.25, and its value is plotted
at the y-axis in Figure 4(b). For a small amount of Sog, the transient peaks are not high, and
the steady state has the largest value at x = 0, as shown for v̄S/R0 < 0.01. Also, B(x = 0) at steady
state increases as v̄S increases, and the transient peak begins to deviate from the steady state
around v̄S/R0 = 0.01. As v̄S increases by one order of magnitude from 0.015 to 0.1, the transient
peak increases from 0.34 to 0.99, while the steady state only from 0.32 to 0.34. Once v̄S/R0
becomes large enough, the variation of the transient peak is more sensitively dependent on
variation of v̄S/R0 than that of the steady state at x = 0. The dependence of the transient peak
on other parameters such as Jon and Jdeg have been investigated previously in [17] for τ = 1.

When τ < 1, so that only a portion of the degraded Dpp-receptor complex is cleaved to free up
Dpp, the dynamics of the system strongly depends on the size of τ when the steady state
condition (20)–(21) holds. It is not surprising that for smaller τ, i.e., less free Dpp released from
the degraded [LS], the transient and steady peaks of Dpp-receptor complex are lower, as shown
in Figure 5(a) for τ = 0.995 and 0.99. However, for τ = 0.99, the concentration of Dpp-receptor
complex around the dorsal region is much lower with Sog than without Sog, as shown in Figure
5(a). As demonstrated in (55), a small change of τ will result in a large change of [LR] at steady
state for a large v̄S, which is the case for Figure 5(a). In essence, veff ≡ v̄L − (1−τ) v̄S can be
regarded as an effective production rate for Dpp.

When the effective production rate veff becomes negative, that is, the condition (20)–(21) does
not hold, then the system can no longer sustain a steady state. For this situation, the
concentrations of both free Dpp and the Dpp-receptor complex are typically very low, and the
Dpp-receptor complex reaches the peak before Sog diffuses into the dorsal region from the
ventral side and takes over the reaction with Dpp. With the availability of a large amount of
Sog and its fast association rate with Dpp, Dpp-Sog reaction dominates. It is interesting to note
in Figure 5(b) that as τ varies from 0.98 to 0, the time for Dpp and Dpp-receptor complex to
reach their peaks barely changes. This critical time (to reach the peak) is mainly determined
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by the coefficient of diffusion DS, which controls the speed of Sog movement into the dorsal
zone.

In [14] (hence also in [13]), degradation for [LR] is not allowed in the system (Kdeg = 0);
therefore the condition (20)–(21) does not hold for any v̄L > 0. In order to achieve steady state
in [13], [14], the models there turned off production of Dpp after 10 minutes (T* = 10 minutes).
The effect of the choice of T* and the biological background for the choice T* = 10 minutes
were not discussed in [13] and [14]. In Figure 6, we study how our system reacts to the choice
of T* if Kdeg = 0. It is found that the evolution of [LR] at the dorsal midline becomes monotone,
unlike the case in Figure 3, and as expected, the time to reach steady states strongly depends
on the choice of T*. In Figure 6, the steady states for [LR] are shown for T* = 5, 8, 10, 12,
15, 20, 30, 45, 60 minutes. The concentration of [LR] varies almost linearly with respect to
T* until the receptors are close to being fully occupied when T* is large.

Finally, we investigate the effect of diffusion. In Figure 7, Dpp-receptor complexes as functions
of time and space are shown for five different choices of diffusion constants. Case (a) has all
three diffusion constants the same as in Figure 3, cases (b)–(d) have one of the diffusion
constants being 1% of the corresponding value in case (a), and the case (e) has two constants
at 1% of the corresponding values in case (a). Similarly in Figure 8, some of the diffusion
constants are 10-fold larger than others.

As shown in case (b) of both Figures 7 and 8, the magnitude of the diffusion co-efficient for
Dpp has very little effect on the broadness and intensity of Dpp activity at the dorsal midline.
This is consistent with the behavior of the leading term perturbation solution. A larger diffusion
for Dpp reduces the peak of transient Dpp-activity at the midline slightly and broadens it
slightly. On the other hand, a decrease in diffusion constant for Dpp-Sog complexes, as in cases
(d) and (e), significantly broadens the Dpp activity around the midline for both peak transient
and steady state distributions, with the height of only the transient peak reduced significantly
but with almost the same steady state at x = 0. The time to steady state and transient peaks
seems to be insensitive to the change of the diffusion constants for Dpp or the Dpp-Sog
complex.

As predicted by the perturbation solutions, varying the diffusion coefficient for Sog changes
the Dpp activity around the dorsal midline significantly. As shown in Figure 7(c), a smaller
diffusion of Sog relative to the diffusion of Dpp leads to more concentrated transient Dpp
activity around the dorsal midline, but it takes much longer to reach the steady state, with a
monotone increase of Dpp activity around the dorsal midline (i.e., there is no transient peak).
On the other hand, larger diffusion of Sog relative to the diffusion of Dpp weakens and broadens
the Dpp activity, as in Figure 8(c).

6. Conclusions
The dynamics of Dpp activities in the presence of the inhibitor Sog is analyzed herein to initiate
a study of dorsal-ventral morphogen gradient formation in vertebrates and Drosophila
embryos. Here we investigate a prototype morphogen system with typical ligand diffusion and
degradation, but now with the additional feature of cleavage of Dpp-Sog complexes by Tolloid
to free up Dpp. Among the principal results of our investigation is the establishment of a simple
and biologically meaningful necessary and sufficient condition for the existence of a steady
state gradient in the system. This condition requires a balance of the production rates of ligands,
degradation rate of ligand-receptor complex, and rate of cleavage of ligand-inhibitor complex.
For high Sog production rates (relative to the Dpp production rate), a perturbation solution has
been obtained in terms of elementary functions. This solution exhibits an intense Dpp-receptor
concentration near the dorsal midline. Numerical simulations of the evolution of the system
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confirmed these features of the steady state behavior. In addition, a transient peak of Dpp-
receptor concentration at the dorsal midline was found to be even more intense prior to steady
state, reaching more than twice the level of the steady state at its peak amount. This transient
peak is more sensitively dependent on variation of the production of Sog than the steady state
peak. The high Dpp-receptor concentration around the dorsal midline and other features of the
system are consistent with experimental observations.

Acknowledgements

The authors acknowledge the very helpful discussions with A. Lander and L. Marsh. Part of this work was done when
Y. L. was visiting the Department of Mathematics of UCI, and he would like to express appreciation for the hospitality
he received.

References
1. Wolpert, L.; Beddington, R.; Brockes, J.; Jessel, T.; Lawrence, P.; Meyerowitz, E. Principles of

Development. 2. Oxford University Press; Oxford, UK: 2002.
2. Teleman AA, Strigini M, Cohen SM. Shaping morphogen gradients. Cell 2001;105:559–562.

[PubMed: 11389824]
3. Gurdon JB, Bourillot PY. Morphogen gradient interpretation. Nature 2001;413:797–803. [PubMed:

11677596]
4. Lander A, Nie Q, Wan FYM. Do morphogen gradients arise by diffusion? Dev Cell 2002;2:785–796.

[PubMed: 12062090]
5. Bier E. A unity of opposites. Nature 1999;398:375–376. [PubMed: 10201364]
6. Ashe HL, Levine M. Local inhibition and long-range enhancement of Dpp signal transduction by Sog.

Nature 1999;398:427–431. [PubMed: 10201373]
7. Oelgeschlager M, Larrain J, Geissert D, Robertis EM. The evolutionarily conserved BMP-binding

protein twisted gastrulation promotes BMP signalling. Nature 2000;405:757–762. [PubMed:
10866189]

8. Ross J, Shimmi O, Vilmos P, Petryk A, Kim H, Gaudenez K, Hermanson S, Ekker A, O’Connor M,
Marsh JL. Twisted gastrulation is a conserved extracellular BMP antagonist. Nature 2001;410:479–
483. [PubMed: 11260716]

9. Lou Y, Nie Q, Wan FYM. Nonlinear eigenvalue problems in the stability analysis of morphogen
gradients. Stud Appl Math 2004;113:183–215.

10. Lander A, Nie Q, Vargas B, Wan FYM. Aggregation of a distributed source in morphogen gradient
formation. Stud Appl Math. 2005to appear.

11. Lander A, Nie Q, Wan FYM. Spatially distributed morphogen production and morphogen gradient
formation. Math Biosci Eng. 2005to appear.

12. Lander A, Nie Q, Wan FYM. Internalization and end flux in morphogen gradient formation. J Comput
Appl Math. 2005to appear.

13. Eldar A, Dorfman R, Weiss D, Ashe H, Shilo B, Barkai N. Robustness of the BMP morphogen gradient
in Drosophila embryonic patterning. Nature 2002;419:304–308. [PubMed: 12239569]

14. Eldar A, Dorfman R, Weiss D, Ashe H, Shilo B, Barkai N. Supplement—Robustness of the BMP
morphogen gradient in Drosophila embryonic patterning. Nature 2002;419:304–308. [PubMed:
12239569]

15. Eldar A, Rosin D, Shilo BZ, Barkai N. Self-enhanced ligand degradation underlies robustness of
morphogen gradients. Dev Cell 2003;5:635–646. [PubMed: 14536064]

16. Wang Z, Marcu O, Berns MW, Marsh JL. In vivo FCS measurements of ligand diffusion in intact
tissues. Proc SPIE 2004;5323:177–183.

17. Kao, J.; Nie, Q.; Teng, A.; Wan, FYM.; Lander, A.; Marsh, IL. Proceeding of the 2nd MIT Conference
on Computational Mechanics. 2. Elsevier Press; New York: 2003. Can morphogen activity be
enhanced by its inhibitors?; p. 1729-1734.

18. Mizutani C, Nie Q, Wan FYM, Zhang Y, Vilmos P, Bier E, Marsh L, Lander A. Origin of the BMP
activity gradient in the Drosophila embryo. Devel Cell. 2005to appear.

LOU et al. Page 15

SIAM J Appl Math. Author manuscript; available in PMC 2007 March 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



19. Crick FC. Diffusion in embryogenesis. Nature 1970;225:40–42.
20. Kerszberg M, Wolpert L. Mechanisms for positional signalling by morphogen transport: A theoretical

study. J Theoret Biol 1998;191:103–114. [PubMed: 9593661]
21. Piccolo S, Agiusa E, Lu B, Goodman S, Dale L, De Robertis E. Cleavage of chordin by Xolloid

metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer
activity. Cell 1997;91:407–416. [PubMed: 9363949]

22. Marques G, Musacchio M, Shimell MJ, Stapleton KW, Cho K, O’Connor M. Production of a Dpp
activity gradient in the early Drosophila embryo through the opposing actions of the Sog and TLD
proteins. Cell 1997;91:417–426. [PubMed: 9363950]

23. Protter, MH.; Weinberger, HF. Maximum Principle in Differential Equations. 2. Springer-Verlag;
Berlin: 1984.

24. Smoller, J. Shock Waves and Reaction-Diffusion Equations. 2. Springer-Verlag; New York: 1994.
25. Strikwerda, JC. Finite Difference Schemes and Partial Differential Equations. Wadsworth & Brooks/

Cole Advanced Books & Software; Pacific Grove, CA: 1989.

Appendix A

Proof of Lemma 3.4
We show that there exists M1 > 0 such that ‖C̃‖L∞ ≤ M1. As in the proof of Lemma 3.3,
‖C̃‖L1 ≤ M2 for some constant M2 > 0. Integrating (27) in (−1, 1), we get

∫−1
1 hLS ÃD̃ = ∫−1

1
( f LS + gLS)C̃, (56)

which implies that ∫−1
1 ÃD̃ ≤ M3∫−1

1 C̃ ≤ M2M3 for some M3 > 0. Integrating (27) from −1 to
x, we get

ρLSC̃,x + λ∫−1
x hLS ÃD̃ − ( f LS + gLS)C̃ = 0, − 1 < x < 1. (57)

Hence

ρLS C̃,x L ∞ ≤ hLS L ∞ ∫−1
1 ÃD̃ + f LS + gLS L ∞ ∫−1

1 C̃ ≤ M4 (58)

for some constant M4 > 0. This along with ∫−1
1 C̃ ≤ M2 implies the L∞ bound of C̃, which is

independent of λ.

Next we show that there exists some constant M5 > 0 such that ‖Ã‖L∞ ≤ M5. To this end, adding
up (26) and (27) and integrating from −1 to x, we get

ρL Ã,x + ρLSC̃,x = λ∫−1
x gL hL Ã

f L + gL + hL Ã + (1 − τ)gLSC̃ − VL , (59)

which implies that

Ã,x L ∞ ≤ M6( C̃,x L ∞ + gL L ∞ + ρLS L ∞ ∫−1
1 C̃ + VL L ∞ ) : = M7. (60)
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We claim that there exists some constant M8 > 0 such that ∫−1
1 Ã ≤ M8. To establish this

assertion, we argue by contradiction: if not, passing to a subsequence if necessary, we may
assume that ∫−1

1 Ã → + ∞ . This together with (60) implies that

∣ Ã(x)

∫−1
1 Ã

− 1 ∣ ≤

Ã,x L ∞

∫−1
1 Ã

≤
M7

∫−1
1 Ã

→ 0 ∀ − 1 ≤ x ≤ 1. (61)

Hence Ã → +∞ uniformly. Similar to (24) we have

∫−1
1 VL = ∫−1

1 gL hL Ã

f L + gL + hL Ã + (1 − τ)∫−1
1 VS. (62)

By (61) we have ∫−1
1 gL h L Ã

f L + gL + h L Ã → ∫−1
1 gL , which together with (62) implies that

∫−1
1 VL = ∫−1

1 gL + (1 − τ)∫−1
1 VS . However, this contradicts (21). Therefore ∫−1

1 Ã is uniformly
bounded for λ ∈ (0, 1]. This together with (60) yields ‖Ã‖L∞ ≤ M5 for some M5 > 0.

Finally we show that there exists some constant M9 > 0 such that ‖D ̃‖L∞ ≤ M9. We argue by
contradiction: suppose not; passing to a subsequence if necessary, we may assume that
‖D ̃‖L∞ → ∞ and λ → λ ̂ ∈ [0, 1]. Set D̂(x) = D̃(x)

D̃
L ∞

. Then D ̂ satisfies D ̂,x(−1) = D ̂,x(1) =

0, ‖D ̂‖L∞ = 1, and

ρLS D̂,xx + λ − hLS ÃD̂ +
f LSC̃ + VS

D̂
L ∞

= 0, − 1 < x < 1. (63)

Since ‖Ã‖L∞, ‖Ã,x‖L∞ are uniformly bounded, we may assume that Ã(x) → A*(x) uniformly in
[−1, 1]. From (62) and (20) we see ∫−1

1 Ã ≥ M10 > 0 for some constant M10. Hence A* ≢ 0 since

∫−1
1 A ∗ ≥ M10 > 0. By standard regularity theory we may assume that D ̂(x) → D*(x) in

C1[−1, 1], and D* is a weak solution of

ρLSD,xx
∗ − λ̂hLSA∗D∗ = 0, − 1 < x < 1, D,x

∗ ( − 1) = D,x
∗ (1) = 0. (64)

Moreover, D* ≥ 0 in [−1, 1] and ‖D*‖L∞ = 1. If λ ̂ > 0, since A* ≢ 0, A* ≥ 0, by the maximum
principle we see that D* ≡ 0, which contradicts ‖D*‖L∞ = 1; if λ ̂ = 0, then it follows from (64)
that D* ≡ 1, i.e., D ̂(x) → 1 uniformly. Dividing (56) by ‖D ̃‖L∞, we have
∫−1

1 h LS ÃD̂ = ∫−1
1 ( f LS + gLS )C̃/ D̃

L ∞ . Then we obtain ∫−1
1 h LSA∗ = 0,  which implies

that A* ≡ 0. Contradiction! This completes the proof of (34).

When λ = 0, (Ã, C̃, D ̃) is a solution of (26)–(29) if and only if Ã, C̃, and D ̃ are all constants. It
turns out that a particular triple, denoted by (Â, Ĉ, D ̂), is special, where Â, Ĉ, D ̂ are defined as
follows: by (20)–(21) it is easy to see that there is a unique positive constant, denoted by Â,
such that

∫−1
1 gL hL Â

f L + gL + hL Â = ∫−1
1 VL − (1 − τ)∫−1

1 VS. (65)
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Set

D̂ =
∫−1

1
( f LS + gLS)∫−1

1 VS

Â∫−1
1 hLS∫−1

1 gLS

, Ĉ =
∫−1

1 VS

∫−1
1 gLS

. (66)

Lemma A.1
Suppose that (20)–(21) holds. Let (Aλ, Bλ, Cλ) denote positive solutions of (26)–(29). Then as
λ → 0+, (Aλ, Bλ, Cλ) → (Â, Ĉ, D ̂) uniformly.

Proof
By Lemma 3.4, (Aλ, Bλ, Cλ) are uniformly bounded. By standard regularity theory and the
embedding theorem, passing to a subsequence if necessary, we may assume that (Aλ, Bλ, Cλ)
→ (Â, Ĉ, D ̂) uniformly, where Ā, C̄, and D ̄ satisfy Āxx = C̄xx = D ̄

xx = 0, and Āx = C̄x = D ̄
x = 0

at x = −1, 1. Therefore Ā, C̄, D ̄ are all nonnegative constants. Passing to the limit in (62) (with
Ã being replaced by Aλ), we have Ā =Â. Similarly we can show that Ĉ = C̄ and D ̂ = D ̄. Since
the limit (Â, Ĉ, D ̂) is unique, the convergence (Aλ, Bλ, Cλ) → (Â, Ĉ, D ̂) is true for the whole
sequence, and the limit is uniform in x.

Lemma A.2
There exists some constant δ1 > 0 such that if 0 < λ ≤ δ1, (26)–(29) has a unique positive solution.

Proof

Set X = {u ∈ C[−1, 1] : ∫−1
1 u(x)dx = 0}, Z = {u ∈ X : u,x(−1) = u,x(1) = 0}, and define the

projection operator P : C[−1, 1] → X by Pu = u − ∫−1
1 u(x)dx. For (λ, A0, a0, C0, c0, D0, d0) ∈

R1 × (Z × R1)3, define F : R1 × (Z × R1)3 → (X × R1)3 by

F (λ, A0, a0, C0, c0, D0, d0) = (
ρL A0,xx + λPF1

+(x, A0 + a0, C0 + c0, D0 + d0)

∫−1
1 F1

+(x, A0 + a0, C0 + c0, D0 + d0)dx

ρLSC0,xx + λPF2(x, A0 + a0,C0 + c0, D0 + d0)

∫−1
1 F2(x, A0 + a0, C0 + c0, D0 + d0)dx

ρSD0,xx + λPF3(x, A0 + a0, C0 + c0, D0 + d0)

∫−1
1 F3(x, A0 + a0, C0 + c0, D0 + d0)dx

) (67)

By the definition of Â, Ĉ, D ̂, F(0, Â, Ĉ, D ̂, 0, 0, 0) = (0, 0, 0, 0, 0, 0). The Fréchet derivative
of F with respect to (A0, a0, C0, c0, D0, d0) at (λ, A0, a0, C0, c0, D0, d0) = (0, Â, 0, Ĉ, 0, D ̂, 0)
is given by
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D(A0,a0,C0,c0,D0,d0)
F ∣(0,Â,0,Ĉ,0,D̂,0) = (ρL

d 2

dx 2 0 0 0 0 0

0 ρLS
d 2

dx 2 0 0 0 0

0 0 ρS
d 2

dx 2 0 0 0

∗ ∗ ∗

∗ ∗ ∗ M3×3
∗ ∗ ∗

), (68)

where M3×3 is the 3 × 3 matrix

(∫−1
1 − gL hL ( f L + gL )

( f L + gL + hL Â)2
− hLSD̂ ∫−1

1
( f LS + τgLS) − (∫−1

1 hLS)Â

(∫−1
1 hLS)D̂ − ∫−1

1
( f LS + gLS) (∫−1

1 hLS)Â

− (∫−1
1 hLS)D̂ ∫−1

1 f LS − (∫−1
1 hLS)Â

). (69)

Since the operator d 2

dx 2 , subject to the no flux boundary condition, is an isomorphism from

Z to X, we see that the operator D(A0,a0,C0,c0,D0,d0)F|(0, Â, 0, Ĉ, 0, D ̂, 0) is invertible from (Z ×
R1)3 to (X × R1)3 if and only if the matrix M3×3 is invertible. It is straightforward to check that
the determinant of M3×3 is equal to

(∫−1
1 hLS)D̂ ⋅ ∫−1

1
( f LS + gLS) ⋅ (∫−1

1 hLS)Â(1 − γ2)( − γ1), (70)

where γ1, γ2 are defined as

γ1 =

∫−1
1 gL hL ( f L + gL )

( f L + gL + hL Â)2

(∫−1
1 hLS)D̂

, γ2 =
∫−1

1 f LS

∫−1
1

( f LS + gLS)
. (71)

Since γ1 > 0 and 0 < γ2 < 1, M3×3 is nondegenerate.

By the implicit function theorem, there exists δ2 > 0 such that if 0 < λ = δ2, there is a unique
solution to F = 0, denoted by (Aλ(x), aλ(x), Cλ(x), cλ(x), Dλ(x), dλ(x)), in some neighborhood of
(Â, 0, Ĉ, 0, D ̂, 0). As λ → 0+, (Aλ, aλ, Cλ, cλ, Dλ, dλ) → (Â, 0, Ĉ, 0, D ̂, 0) uniformly. In particular,
for 0 < ≤ = δ2, (Aλ+aλ, Cλ+cλ, Dλ+dλ) is the unique positive solution of (26)–(29) in some
neighborhood of (Â, Ĉ, D ̂). This and Lemma A.1 imply that, for 0 < λ ≪ 1, (26)–(29) has a
unique positive solution.

Lemma A.3
Let (A*, C*, D*) denote the unique positive solution of (26)–(29) for 0 < λ ≪ 1. Then for 0 <
λ ≪ 1, the Fréchet derivative of T(λ) with respect to (Ã, C̃, D ̃) at (A*, C*, D*), denoted by
D(Ã, C,̃ D̃)T(λ) | (A*,C*,D*), has no eigenvalue greater than or equal to 1.
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Proof
By (35), D(Ã, C,̃ D̃)T(λ)| (A*,C*,D*)(ϕ1, ϕ2, ϕ3) is given by

(L ρL
−1 { 1 + λ

∂F1
∂ Ã (x, A∗, C ∗, D∗) ϕ1 + λ

∂F1
∂C̃ ϕ2 + λ

∂F1
∂ D̃ ϕ3}

L ρLS
−1 {λ ∂F2

∂ Ã ϕ1 + 1 + λ
∂F2
∂C̃ ϕ2 + λ

∂F2
∂ D̃ ϕ3}

L ρS
−1{λ ∂F3

∂ Ã ϕ1 + λ
∂F3
∂C̃ ϕ2 + λ

∂F3
∂ D̃ + 1 ϕ3} ),

where 
∂Fi
∂ Ã ,

∂Fi
∂ C̃ ,

∂Fi
∂ D̃  (i = 1, 2, 3) are evaluated at (x, A*, C*, D*).

We argue by contradiction: suppose that Lemma A.3 fails. Passing to a subsequence if
necessary, we may assume that for 0 < λ ≪ 1 the operator D(Ã, C,̃ D̃)T(λ)|(A*,C*,D*) has
eigenvalue μ = μ(λ) ≥ 1, with the corresponding eigenfunction (ϕ1, ϕ2, ϕ3) normalized by
‖ϕ1‖L∞+‖ϕ2‖L∞+‖ϕ3‖L∞ = 1. Then (ϕ1, ϕ2, ϕ3) satisfies

− μρL
d 2ϕ1

dx 2 + (μ − 1)ϕ1 = λ
∂F1
∂ Ã ϕ1 +

∂F1
∂C̃ ϕ2 +

∂F1
∂ D̃ ϕ3 , (72)

− μρLS
d 2ϕ2

dx 2 + (μ − 1)ϕ2 = λ
∂F2
∂ Ã ϕ1 +

∂F2
∂C̃ ϕ2 +

∂F2
∂ D̃ ϕ3 , (73)

− μρS
d 2ϕ3

dx 2 + (μ − 1)ϕ3 = λ
∂F3
∂ Ã ϕ1 +

∂F3
∂C̃ ϕ2 +

∂F3
∂ D̃ ϕ3 , (74)

(ϕ1),x
= (ϕ2),x

= (ϕ3),x
= 0 at x = − 1, 1, (75)

where 
∂Fi
∂ Ã ,

∂Fi
∂ C̃ ,

∂Fi
∂ D̃  (i = 1, 2, 3) in (72)–(74) are evaluated at (Ã, C̃, D ̃) = (A*, C*, D*).

It is easy to see that μ(λ) → 1 as λ → 0+, and the corresponding eigenfunctions (ϕ1, ϕ2, ϕ3) →
(ϕ̄1, ϕ̄2, ϕ̄3) uniformly, where (ϕ̄1, ϕ̄2, ϕ̄3) are constants satisfying |ϕ̄1|+ |ϕ̄2|+|ϕ̄3| = 1. Set μ(λ)
= 1+λμ1(λ). Since μ(λ) ≥ 1, we have μ1(λ) ≥ 0. Integrating (72)–(74), we get

∫−1
1 ∂F1

∂ Ã − μ1 ϕ1 + ∫−1
1 ∂F1

∂C̃ ϕ2 + ∫−1
1 ∂F1

∂ D̃ ϕ3 = 0, (76)

∫−1
1 ∂F2

∂ Ã ϕ1 + ∫−1
1 ∂F2

∂C̃ − μ1 ϕ2 + ∫−1
1 ∂F2

∂ D̃ ϕ3 = 0, (77)

∫−1
1 ∂F3

∂ Ã ϕ1 + ∫−1
1 ∂F3

∂C̃ ϕ2 + ∫−1
1 ∂F3

∂ D̃ − μ1 ϕ3 = 0. (78)

We first prove that μ1 (λ) is uniformly bounded for all 0 < λ ≪ 1. If not, passing to a subsequence
if necessary, we may assume that as λ → 0+, μ1 (λ) → +∞. Divide (76) by μ1; passing to the
limit, we find that ϕ̄1 = 0. Similarly, ϕ̄2 = ϕ̄3 = 0. However, this contradicts |ϕ̄1| + |ϕ2| + |ϕ̄3| =
1. Therefore μ1(λ) is nonnegative and uniformly bounded. Passing to a subsequence if
necessary, we may assume that μ1(λ) → μ̄1 ≥ 0 as λ → 0+.
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Passing to the limit in (76)–(78), by Lemma A.1, (M3×3 − μ̄1 I3×3) (ϕ̄1, ϕ̄2, ϕ̄3) = (0, 0, 0). Since
(ϕ̄1, ϕ̄2, ϕ̄3) ≠ (0, 0, 0), |M3×3 − μ̄1 I3×3| = 0. However, direct calculation yields that |M3×3−
μ̄1 I3×3| is equal to

− (∫−1
1 hLS)D̂ ⋅ ∫01( f LS + gLS) ⋅ (∫−1

1 hLS) Â
⋅ {(γ1 +

μ̄1

(∫−1
1 hLS)D̂ ) ⋅ (1 +

μ̄1

∫−1
1

( f LS + gLS) ) ⋅ μ̄1

(∫−1
1 hLS)Â

+ (1 − τ)(1 − γ2) +
μ̄1

∫−1
1

( f LS + gLS)
⋅

μ̄1

∫−1
1 hLS Â

+(γ1 +
μ̄1

(∫−1
1 hLS)D̂ ) ⋅ (1 − γ2 +

μ̄1

∫−1
1

( f LS + gLS) )},
which is negative since μ̄1 ≥ 0, γ1 > 0, 0 ≤ τ ≤ 1, and γ2 < 1. Contradiction! This completes the
proof of Lemma A.3.

Proof of Proposition 3.5
By Lemma A.2, for 0 < λ ≪ 1, T(λ) has a unique fixed point. By Lemma A.3, 1 is not an
eigenvalue of D(Ã, C,̃ D̃) T(λ)|(A*, C*, D*). Hence deg (I − T(λ), Ω, (0, 0, 0) = (−1)β, where β is
the number of eigenvalues (counting algebraic multiplicity) of D(Ã, C,̃ D̃) T(λ)|(A*, C*, D*), which
is greater than 1. By Lemma A.3 we see that β = 0. Hence deg (I − T(λ), Ω, (0, 0, 0) = 1 for 0
< λ ≪ 1.
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Fig. 1.
Cross section of a Drosophila embryo, and the reaction schemes with rate constants.
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Fig. 2.
Comparisons between the numerical steady states (solid lines) and the perturbation solutions
(dashed lines). The parameters are v̄L = 8 × 10−4s−1μM, Kon = 0.4s−1, Koff = 4 × 10−6s−1,
Kdeg = 3.2 × 10−3 s−1, v̄S = = 6 × 10−2 s−1μM, Jon = 6s−1μM, Joff = 10−5s−1, Jdeg = 6 ×
10−2s−1, τ = 1.

LOU et al. Page 23

SIAM J Appl Math. Author manuscript; available in PMC 2007 March 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
The dynamics of solutions with SOG at every 5 minutes; o in the left-hand panels marks the
steady-state solutions. All parameters are the same as for Figure 2.
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Fig. 4.
Effect of Sog on the transient and steady state solutions. (a) [LR] as a function of space; (b)
[LR] at dorsal midline as a function of v̄s. Parameters are as in Figure 3.
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Fig. 5.
Effect of τ on the steady state solutions. Parameters are as in Figure 3 except for τ. (a) Cases
with steady states; (b) cases without steady states.
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Fig. 6.
v̄L is set to zero at different times. (a) [LR] at the dorsal midline at steady state as a function
of the time for turning off v̄L; (b) [LR] at steady states as a function of space for different times
of turning off v̄L, as shown in (a). Other parameters are as in Figure 3 except that Kdeg = 0.
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Fig. 7.
Effect of smaller diffusion constants on the transient peak and steady state. For the left-hand
panels, solid line: transient peak; dotted line: steady state. Parameters are as in Figure 3 except
for diffusion constants.
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Fig. 8.
Effect of larger diffusion constants on the transient peak and steady state. For the left-hand
panels, solid line: transient peak; dotted line: steady state. Parameters are as in Figure 3 except
for diffusion constants.
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