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Abstract
Peripheral neuropathy, and specifically distal peripheral 
neuropathy (DPN), is one of the most frequent and 
troublesome complications of diabetes mellitus. It is the 
major reason for morbidity and mortality among diabetic 
patients. It is also frequently associated with debilitating 
pain. Unfortunately, our knowledge of the natural history 
and pathogenesis of this disease remains limited. For a 
long time hyperglycemia was viewed as a major, if not 
the sole factor, responsible for all symptomatic presenta-
tions of DPN. Multiple clinical observations and animal 
studies supported this view. The control of blood glu-
cose as an obligatory step of therapy to delay or reverse 
DPN is no longer an arguable issue. However, while 
supporting evidence for the glycemic hypothesis has ac-
cumulated, multiple controversies accumulated as well. 
It is obvious now that DPN cannot be fully understood 
without considering factors besides hyperglycemia. Some 
symptoms of DPN may develop with little, if any, cor-
relation with the glycemic status of a patient. It is also 
clear that identification of these putative non-glycemic 
mechanisms of DPN is of utmost importance for our un-
derstanding of failures with existing treatments and for 
the development of new approaches for diagnosis and 
therapy of DPN. In this work we will review the strengths 
and weaknesses of the glycemic hypothesis, focusing on 
clinical and animal data and on the pathogenesis of early 
stages and triggers of DPN other than hyperglycemia.
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INTRODUCTION
Diabetes mellitus is a complex of  metabolic disorders 
associated with insufficiency of  insulin secretion, insulin 
action or both, and is manifested by hyperglycemia[1-3]. 
Diabetes is diagnosed when fasting blood glucose 
exceeds 6.9 mmol/L, or casual or 2-h glucose in a glucose 
tolerance test exceeds 11 mmol/L[4]. Control of  blood 
glucose in vertebrate organisms is accomplished essentially 
by the action of  two pancreatic hormones, i.e., insulin and 
glucagon, with the participation of  epinephrine, ACTH, 
growth hormone and glucocorticoids occurring under 
special circumstances, such as stress. Insulin is released by 
islet beta cells in response to an increase of  blood glucose 
(usually after a meal). It suppresses glucose production and 
stimulates the uptake and storage of  glucose in skeletal 
muscle and liver (Figure 1). It also suppresses lipogenesis 
in the fat tissue and stimulates amino-acid synthesis in 
skeletal muscle. During a fasting state, when blood glucose 
is low or during stress requiring mobilization of  energy, 
insulin secretion is suppressed and glucagon is released 
into the circulation by pancreatic a cells, opposing the 
action of  insulin to increase the release of  stored energy 
resources for use by the organism (Figure 1)[5,6]. 

The metabolic effects of  insulin are mediated by 
activation of  its cognate receptors that are expressed in 
target tissues (skeletal muscle, liver, fat) in large excess 
compared to the amount needed for normal regulation 
of  glucose metabolism (spare receptors[7-10]). This lays a 
background for and signifies the paramount importance of  
the glucose control mechanisms. Indeed, in type 1 diabetes, 
which is usually associated with idiopathic autoimmune 
attack and destruction of  islet beta cells, more than 90% 
of  islet cells need to be destroyed or less than 10% of  
insulin production should remain for overt hyperglycemia 
to manifest[11]. Similarly, in type 2 diabetes, associated in its 
early stages with decreased sensitivity of  insulin-responsive 
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tissues to the action of  the hormone (insulin resistance) 
and compensatory hyperinsulinemia, no clinical diabetes 
develops before muscle and fat tissue sensitivity to 
insulin is decreased below 50%-35% of  normal[9]. In rats, 
and similarly in humans, plasma insulin may vary over 
the range of  1 to 4 ng/mL with fasting blood glucose 
exceeding the diabetic threshold of  6.9 mmol/L (solid 
line in Figure 2)[12-17] only in rare cases. In most cases, 
insulin must decrease to less than 0.5 ng/mL level (15% 
of  control, 3.5 ng/mL level) in order to manifest overt 
hyperglycemia and diabetes.

Such a large safety factor for glucose control is of  
critical biological importance; however, clinically the 
impairment of  insulin signaling in this disease process 
starts long before it manifests in overt hyperglycemia. With 
the discovery of  insulin and improvement in techniques 
for blood glucose measurement, diabetes is not a life 
threatening disease by itself[18]. Therefore the long pre-
clinical progression of  diabetes could be a relatively minor 
issue; however, diabetes is associated with a variety of  life 
threatening complications, among which distal peripheral 
neuropathy (DPN), cardio-vascular disease (CVD), 
retinopathy and renal disease are most frequent[2]. The 
problem is signs of  these complications are frequently 
present prior to overt hyperglycemia and diabetes (Figure 2). 
Realization of  this fact led to the definition of  pre-diabetes 
as a state with moderate impairment of  blood glucose 
control and high risk of  development of  overt diabetes, 
retinopathy and CVD[3,19]. Pre-diabetes is diagnosed when 
fasting blood glucose exceeds 5.6 mmol/L and/or 2-h 
glucose in a glucose tolerance test (GTT) exceeds 6.9 mM 
(impaired fasting glucose (IFG) and impaired glucose 
tolerance (IGT) dashed and solid horizontal lines in Figure 
2, respectively)[4]. 

Establishing the correct lower limit for diagnosis of  
pre-diabetes is important because it determines whether 
clinical tests for complications should be performed and 
recommendations in life style and diet modifications 
should be presented to patients. In a recent study of  
young adult men, it was shown that fasting glucose 
exceeding 4.82 mmol/L constitutes an independent 
risk factor for developing type 2 diabetes in otherwise 
healthy subjects[20]. In another study of  adult healthy 
men without diabetes or pre-diabetes, progressive loss of  

β-cell function and decrease in the first-phase of  insulin 
secretion were detected at fasting glucose between 5.0 
and 5.4 mmol/L[21]. Another clinically important issue is 
to understand the pathogenesis of  diabetic complications, 
starting with pre-diabetic patients. This knowledge is 
required for early detection, prognosis and treatment of  
diabetic complications. Here we will discuss data and 
hypotheses for the triggers and progression of  one such 
complication, which is distal peripheral neuropathy.

DISTAL PERIPHERAL NEUROPATHY
The prevalence of  peripheral neuropathy in diabetic 
subjects approaches 70% and about 50% of  these are 
cases of  DPN[22-24]. The disease usually progresses to 
involve cardiac autonomic nerves, and as a result it is a 
major factor in mortality of  diabetic subjects. DPN is also 
the major reason for loss of  protective limb mechanical 
sensations, traumatic ulceration injures and therefore 
amputations[23,24]. Finally, about 11% of  DPN cases are 
associated with chronic pain symptoms that severely 
diminish the quality of  life and are frequently associated 
with depression[22,23]. The etiology of  DPN is unknown 
and prediction of  progression and treatments of  the 
symptoms of  DPN are limited[22,25-27].

Perhaps the largest problem associated with DPN, 
complicating its classification and treatment, is the variety 
of  clinical presentations of  this disease (Figure 3)[28-30]. 
Aside from a generally bilateral manifestation, distal to 
proximal advance and prevalence of  sensory over motor 
impairment signs and symptoms, any two randomly 
selected cases of  DPN may have nothing in common 
at the time of  diagnosis and, to the extent it is known, 
their history and the pattern of  their future progression 
may be very different. There are two broad categories of  
sensory symptoms of  DPN, positive and negative[26,29]. 
Positive symptoms include pain, paresthesias and aberrant, 
exaggerated sensitivity to normally painless or moderately 
painful stimuli (allodynia and hyperalgesia). Negative 
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Figure 1  Hormonal regulation of systemic blood glucose.
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Figure 2  Relationships between rat plasma insulin and fasting blood glucose 
concentrations. Data are from normal and streptozotocin-injected adult Sprague-
Dawley rats (the authors’ unpublished observations). STZ-rats having moderate 
pancreatic impairment and moderately decreased plasma insulin (vertical dashed 
lines) do not develop overt hyperglycemia.
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symptoms consist of  loss of  sensory perception in one or 
several modalities. Motor symptoms, if  present, manifest 
as muscle weakness, and thus they are also negative. 
Finally, a classical electrophysiological, and also negative, 
sign of  DPN is a decrease in nerve conduction velocity 
(NCV) and amplitude of  compound action potentials 
(APs) in peripheral sensory and motor nerves[23,24,26,27,31]. 
Furthermore, three categories of  DPN, acute painful 
remitting neuropathy, chronic painful neuropathy and 
painless neuropathy with ulcer can be outlined as separate 
clinical entities[24,32,33]. The relationships among these 
entities, however, if  any exist, are not known. Within each 
of  these groups, signs of  demyelination of  large peripheral 
fibers (decrease in NCV) may or may not co-exist with 
signs and symptoms of  large fiber axonopathy (decrease in 
amplitude of  compound APs, loss of  vibration sensation 
and/or loss of  stretch reflexes). Loss of  warm and cold 
perception, impairment of  unmyelinated and small 
myelinated fibers, may or may not co-exist with signs of  
large fiber abnormalities[24,31,32,34-36]. Furthermore, the pain 
normally conducted by small unmyelinated peripheral 
axons may or may not be present at the same time with 
any of  the above mentioned symptoms[22-24,26,36,37]. Finally, 
the modalities of  pain and the degree of  involvement of  
autonomic nervous system impairment constitute another 
large set of  variables[22,24,33,38-40]. 

From exper iments in animals, and by analog y 
with other neuropathies, it can be suggested that the 
pathogenesis of  negative symptoms and signs of  DPN 
is likely to be associated with demyelination and axonal 
atrophy and degeneration[41,42]. Failure of  re-innervation 
will make these symptoms essentially irreversible[42-44]. 
Mechanisms of  neuropathic pain, paresthesias and 

hyperalgesia are less understood[27,40]. However, it is 
generally accepted that abnormally intense spontaneous 
input from primary afferent fibers to the spinal cord 
is a primary trigger of  these symptoms[24,27,45,46]. At 
least three usually overlapping conditions, resulting in 
such abnormal activity of  peripheral axons, are well 
established. First is impairment of  endoneurial circulation 
and following it ischemia[47,48]. Second is impairment 
of  axon-glia relationships and segmental or paranodal 
demyelination[49,50]. The third condition is an axonal injury 
and following it Wallerian degeneration and neuroma[51,52]. 
In addition, increased excitability of  regenerating, and 
therefore not yet properly myelinated, nerve fibers may 
add to the generation of  aberrant peripheral discharge and 
pain[53,54]. At least at advanced stages, evidence for axonal, 
glial and vascular injuries are detectable in most cases of  
DPN[41,55].

Further insight into the pathogenesis of  DPN is 
provided by its diffuse, bilateral presentation and distal 
to proximal progression. The former suggests that 
systemic rather then local conditions underlie the clinical 
pathology, while the latter could indicate two possibilities 
(Figure 4). First, DPN may be a manifestation of  dying 
back degeneration, with the primary insult consisting of  
the impairment of  synthesis or efferent axonal transport 
of  proteins, therefore affecting the function of  the longest 
axons in the body that are most dependent on these 
mechanisms[42]. Failure of  protein synthesis, including 
synthesis of  some important neurotrophic molecules, in 
diabetes could result in impaired nerve regeneration and 
dying back axonopathy[43,44,55,56]. Alternatively, accumulation 
of  the effects of  multiple injuries randomly located along 
the axon, for example demyelinating injures, may result 
in a clinical picture that is practically indistinguishable 
from dying back neuropathy[41,42,57]. The longest axons 
in the body will most likely be hit by a critical number 
of  such local insults and their function will fail first. 

Positive sensory symptoms:
Chronic or Acute/Remitting:
	 Spontaneous: 
		        Painless paresthesias: 
   	 numbness, tingling, pricking, burning, or 
		        creeping
		        Pain/dysesthesia: burning, 	
		        electric, sharp, or dull/aching
	 Evoked pain/dysesthesia: allodynia or
		        hyperalgesia, mechanical/
	 tactile 	       or thermal

Negative sensory signs/symptoms:
Decrease in sensory nerve amplitude/conduction 
velocity
Decrease or loss of perception:
	 Vibratory stimuli
	 Thermal stimuli (warming or cooling)
	 Tactile perception (light touch)
	 Nociception (hypoalgesia):
		  Thermal (heat or cold)
		  Mechanical (pin-prick)
Loss of tendon reflexes

Motor signs/symptoms
Decrease in motor nerve amplitude/conduction 
velocity
Muscle wasting

Figure 3  Signs and symptoms of distal peripheral neuropathy. Categories of 
symptoms most frequently manifested in humans with diabetes are given in bold.

Figure 4  Hypotheses on distal-to-proximal progression of DPN. In normal PNS 
(top), neurons synthesize proteins in the cell body and transport them down the 
axon at the rate determined by axonal structural and functional needs. Impairment 
of synthesis or axonal transport of proteins will result in dying-back neuropathy, 
in which neurons with longest processes are affected first (middle). Alternatively, 
the neuropathy may result from effect of random local insults to the axon, with 
probability of accumulation of a critical number of such insults being higher for 
neurons having longer axons (bottom). Short arrows indicate non-specified axonal 
or neuronal injuries. Long solid or dashed arrows indicate normal or compromised 
axonal transport (respectively).

Normal PNS

Dying-back axonopathy

Accumulated effect of random local insults
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Micro-vascular disease followed by local impairment 
of  blood supply to the nerve fascicules may be a basis 
for random demyelinating insults progressing later to 
axonal degeneration [58-60]. It is also conceivable that 
both mechanisms are operating at the same time. Both 
demyelination and axonal degeneration were detected 
in human DPN by electrophysiological tests and biopsy 
studies[24,41,61]. Peripheral axons are the longest in the 
human body, and this might be an important factor 
explaining PNS involvement superseding the CNS 
complications. Another potentially important reason 
for the high vulnerability of  PNS to diabetic injury is 
the relatively weak anti-oxidative defenses of  peripheral 
neurons (see Section 3). 

While the discussion above appears to encompass all 
the major features of  DPN, multiple questions related 
to the pathogenesis of  DPN remain unresolved. Thus 
whether or not dying back axonopathy or multiple local 
injuries or both mechanisms lead to the disease, it is 
not clear why, in most cases of  neuropathy, sensory 
symptoms prevail over signs of  impairment to motor 
axons innervating the same distal areas of  the human 
body. Furthermore, neither of  these mechanisms explains 
a variety of  clinical presentations of  DPN nor answers the 
question of  why some diabetic patients live without any 
symptoms of  DPN for years[62]. Finally, major questions 
that remain to be answered include identifying pathogenic 
triggers of  DPN, pathogenesis of  individual symptoms, 
and relationships among different symptoms and signs of  
the disease[22,24]. 

To illustrate the importance of  the latter question, two 
hypothetical scenarios of  DPN are shown in Figure 5. In the 
first scenario (Figure 5, top), there is a single pathogenic 
process triggering and maintaining the disease. The course 
of  the disease and its clinical manifestations at the time of  
diagnosis and neurological evaluation (ovals in the Figure 5) 
will be determined by the duration of  DPN and individual 
differences in the genetic backgrounds of  patients. 
From the point of  view of  the symptoms revealed by 
a neurological exam, the second scenario (Figure 5, 
bottom) is identical to the first one; the critically important 
difference, however, is that different sets of  symptoms 
in this scenario are triggered and driven by entirely 
independent pathogenic mechanisms (symptoms “a”, “c”, 
and “d” vs symptom “b”). Some of  the branches of  the 
pathogenic process (“b” in the first scenario) may enter an 
irreversible stage. Therefore, the early detection of  DPN is 
an obligatory condition for the successful treatment of  this 
disease. The cartoons demonstrate also that identification 
of  all participating triggering mechanisms and symptoms 
associated with them is another critical step for the 
efficient treatment of  DPN.

CHRONIC HYPERGLYCEMIA AND
PATHOGENESIS OF DPN
DPN follows both type 1 and type 2 diabetes, and systemic 
hyperglycemia is the most obvious symptom that these 
types of  the disease have in common[24,63,64], suggesting 
hyperglycemia as a universal trigger for DPN. Indeed, 

insulin treatment or treatment with insulin-sensitizing 
drugs to control hyperglycemia reverses some symptoms 
of  DPN and delays its progression in general[65,66]. The 
Diabetes Control and Complications Trial (DCCT) 
data show that strict control of  hyperglycemia in type 1 
diabetes patients without clinical neuropathy decreased 
development of  DPN in 60% of  cases over 5 years of  
follow up study[67,68]. Well within the framework of  the 
glycemic hypothesis, the failure to prevent all cases of  
DPN could be explained by the fact that glucose control 
can never be perfect. Type 1 and 2 patients are, on average, 
euglycemic for only about 62% of  the day, while during 
the remaining 30% and 8% of  the day they have various 
degrees of  hyperglycemia and hypoglycemia, respectively[69]. 
Therefore, to avoid hypoglycemic crisis, the acceptable 
target value for blood glucose in controlled subjects is 
usually set to values above normal (6.7 to 10 mmol/L in 
DCCT and 6 mmol/L in U.K. Prospective Diabetes Study; 
of  type 2 diabetic patients[65,68]). Another explanation for 
incomplete efficacy of  glucose control is that, after long-
standing diabetes, some neuropathic mechanisms may 
enter either an irreversible stage or a stage of  progression 
that is already independent of  the original trigger. With 
the limitations imposed by generally late diagnosis of  
diabetes and DPN[24,70,71], slowing of  NCV, paraesthesia 
and painful symptoms appear to be the earliest (closest to 
the initiating pathogenic insult) manifestations of  DPN. 
Therefore, it appears to be in good agreement with the 
glycemic hypothesis that in patients with newly diagnosed 
diabetes, NCV slowing and paresthesias (hyperglycemic 
neuropathy) can be frequently completely recovered with 
the establishment of  euglycemia[31,42].

Further support for the glycemic hypothesis comes 
from research in animals, specifically rat models of  type 
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Figure 5  Hypothetical branching (top) and multi-trigger (bottom) pathogenesis 
of DPN. In the first scenario (top) all manifestations of the disease result from 
the unique branching pathogenic process, and symptom “b” discovered at the 
time of neurological exam B is not corrected by treatment because it has already 
progressed to an irreversible stage (dashed lines). Earlier diagnosis and institution 
of treatment (at time A) may critically change the outcome of therapy in this 
scenario. Alternatively (lower scenario), several independent factors may trigger 
and maintain the progression of DPN. In this case the therapy may fail to treat 
symptoms not because they are irreversible, but because the correct cause of the 
pathology is not identified and is not treated (dashed lines).
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1 diabetes (STZ-induced or spontaneous in BB-rats) 
and spontaneous type 2 diabetes in Zucker fatty rats[66,72] 
that appear to be the best studied animal models with 
regard to neuropathy. The short life span of  rodents 
severely limits evaluation of  chronic human diseases in 
these animals. Another limitation is that in behavioral 
tests, evoked pain manifested by limb withdrawal can be 
tested, but neither spontaneous pain nor changes in non-
nociceptive sensory thresholds can be reliably measured 
in animals. Nonetheless, in general agreement with both 
clinical data on the earliest signs and symptoms of  human 
DPN and the glycemic hypothesis, slowing of  sensory[73-76] 
and motor[74,75,77-83] NCV and manifestations of  evoked 
pain (hyperalgesia[75,84-87] and allodynia[85]) were shown to 
develop within the first month of  onset of  hyperglycemia 
in diabetic rats. With a longer time allowed (six to twelve 
months of  diabetes) signs of  axonopathy, demyelination 
and nerve degeneration can also be detected in diabetic 
animals[56,74,80,82,88-90]. Finally, early in the course of  diabetes 
in rat models impairment of  endoneurial blood flow 
and micro- and macrovascular reactivity are reported by 
many investigators[75,91-94]. Skin and arterial blood flow is 
abnormal early in diabetic patients[95-98], but no reduction 
in sural nerve blood flow was detected in humans with 

diabetes and mild DPN[99]. Thus, it is not clear whether 
impaired endoneurial blood flow represents a rat-specific 
component of  DPN or if  it is missed in humans because 
of  its transient character and usually late detection of  
DPN in diabetic patients. In agreement with the glycemic 
hypothesis, all abnormalities found in rat models are 
reversible with normalization of  blood glucose in insulin 
replacement experiments, and some of  them (decreased 
pain pressure threshold) can be induced in normal rats by 
chronic in vivo perfusion of  a DRG, or a segment of  sciatic 
nerve with hyperglycemic solution[100,101].

Finally, support for the glycemic hypothesis is provided 
also by studies of  cellular pathology associated with 
experimental diabetes. These studies show that practically 
all signs and symptoms of  DPN observed in animal 
models may be linked to hyperglycemia-induced metabolic 
impairment of  nerve, glial and endothelial cells in PNS. A 
detailed description of  these studies is beyond the scope 
of  the present work and can be found in a number of  
recent reviews[94,102-109]. The purpose of  Figure 6 is only 
to provide a brief  outline of  cell metabolic abnormalities 
associated with diabetes and emphasize the findings 
directly relevant to the following discussion of  triggers of  
early DPN.

Figure 6  Hyperglycemia, derangement of cell metabolism and oxidative/nitrosative stress. Hyperglycemia associates with accumulation of fructose-6-phosphate and 
hexosamine pathway (1) to N-acetylglucosamine, accumulation of dihydroxyacetone phosphate and associated activation of PKC (2), activation of polyol sugar pathway (3), 
and glucose autoxidation and non-enzymatic protein glycation (4). These metabolic events are either regular physiologically important components cell metabolism (1, 2 and 3) 
or are normally under strict control of intrinsic intracellular defense mechanisms (4). However, under conditions of chronic hyperglycemia activation of these pathways leads 
to a global derangement of the cell and tissue homeostasis, which culminates in an uncontrolled cascade of abnormal protein modifications, oxidative/nitrosative stress and 
pro-inflammatory conditions.
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Although the scheme in Figure 6 is simplified and 
omits many essential steps for the cascade of  events [the 
poly (ADP-ribose) polymerase (PARP)[108]; activation and 
consequences of  lipid peroxidation[110] are not shown], 
it clearly demonstrates the complexity of  this cascade. 
Some events appear to be more specific to one type of  
cell than to another, and there is as yet no agreement on 
which events (for example activation of  polyol pathway[111] 
or abnormally intensified oxidative phosphorylation[106]) 
plays a leading role in cellular impairment. Nonetheless, 
most of  the data available indicate that all the various 
pathways act ivated by hyperglycemia converge in 
generation of  excess reactive oxygen species (ROS). This 
process eventually overwhelms the intrinsic anti-oxidant 
mechanisms of  the cell and ends in oxidative/nitrosative 
stress and pro-inflammatory conditions in the tissues[112-115]. 
The efficacy of  treatment with anti-oxidants in correction 
of  DPN in animals and humans supports this view[116-119].

In diabetic animals, oxidative stress injury develops in 
parallel in all major cellular elements of  PNS. Injury to glial 
cells is responsible for the demyelination component of  
DPN, which may explain the decrease in NCV and painful 
manifestations of  the disease. Oxidative stress in neurons 
might be responsible for axonopathy, impaired regenerative 
capacity of  axons and negative symptoms of  DPN. Glial 
cell injury will affect the nerve neurotrophism adding to the 
progression of  neuronal defects. Finally, oxidative stress 
and impairment of  nitric oxide (NO) production in the 
endothelium of  epi- and endoneurial blood vessels results 
in impairment of  endoneurial circulation and endoneurial 
hypoxia, exaggerating and speeding up the direct effect 
of  hyperglycemic conditions on glial cells and neurons. 
Oxidative stress is pro-inflammatory, which affects the 
production of  cytokines by glial cells, and provokes the 
recruitment of  immune response cells into the affected 
tissue. This might be another important component of  the 
pathogenesis and progression of  DPN. Thus, combining 
these data and observations lays the foundation for a view 
of  the natural history of  DPN similar to that depicted in 
Figure 7 according to an expanded view of  the glycemic 
hypothesis.

Perhaps the most attractive aspect of  such a view 
of  the pathogenesis of  DPN is that while it suggests 
a unifying trigger and mechanism (hyperglycemia and 
oxidative stress) for all symptoms of  DPN, it nevertheless 
remains flexible enough to leave room for individual 
variability in the rates of  progression and spectrum of  
manifestations of  the disease. Indeed, the actual effects of  
uniform pro-oxidative and pro-inflammatory conditions 
may differ sharply depending on differences of  individual 
cells and tissues in their intrinsic anti-oxidant defenses 
and individual organisms in their immune defenses. 
The injuries to a single myelinating or non-myelinating 
Schwann cell, endothelial cell or neuron will unlikely 
have even subclinical significance. The death of  several 
myelinating cells will result in a decrease of  NCV in a 
given axon and injury to several endothelial cells may 
cause the closure of  a given capillary. Yet there are many 
axons and there is regeneration of  damaged axons, and 
there are many capillaries and regeneration of  damaged 
and collateral capillaries. It is only after cellular defenses 

against the oxidative stress are overwhelmed in many cells 
that the sub-clinical signs of  the disease may be expected 
to appear, and it is anticipated to take an even longer time 
before clinical manifestations will themselves appear. In 
agreement with this, en mass CNS cells appear to have a 
much higher capacity for anti-oxidative mechanisms than 
do PNS cells and this might be one of  the reasons why 
diabetic neuropathy affects the CNS much later than it 
affects peripheral nervous functions[90,113,120]. 

DIFFICULTIES OF THE GLYCEMIC HYPOTHESIS
While apparently logical and consistent with many 
clinical observations and the results of  animal studies, the 
glycemic hypothesis cannot completely explain all the data. 
Thus, experiments in rodents consistently demonstrate 
that the polyol pathway (conversion of  glucose to sorbitol 
by aldose reductase and then to fructose by sorbitol 
dehydrogenase; pathway 3 in Figure 6) is an important 
source of  reactive oxygen species, and inhibition of  aldose 
reductase prevents or reverses many signs of  DPN seen 
in diabetic animals[121]. The same treatment in humans, 
however, has shown questionable efficacy so far[27,53,122,123]. 
Other problems include the failure of  a pre-clinical slowing 
of  NCV[24,124] or increase in glycosylated hemoglobin[22] 
(HA1c, integral measure of  persistent hyperglycemia; 
pathway 4 in Figure 6) to predict development or severity 
of  symptoms of  DPN. Also, the finding of  an inverse 
correlation between hyperglycemia and pain severity in 
diabetic patients with remitting painful neuropathy at 
presentation[33] is inconsistent with the glycemic hypothesis. 
These and other similar inconsistencies certainly could be 
attributed to the complexity of  the disease, differences 
in studied patient populations, or inadequate design 
of  drug trials in terms of  timing, duration or dose[121]. 
Similarly, the lack of  absolute efficacy in glucose control 
in preventing DPN in humans with diabetes [68] could 
also be explained within the framework of  the glycemic 
hypothesis considering the difficulty of  maintaining blood 
glucose concentrations within the relatively narrow range 
of  normal values, which suggests that the actual threshold 
for neuropathic effects of  hyperglycemia is lower than was 
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Endoneurial circulation

Hypoxia, ischemia

Glial cells

     Demyelination
impaired neurotrophism
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neuronal degeneration 

 Pain, decreased NCV,
impaired regeneration

Neurons

Figure 7  Pathogenesis of DPN with hyperglycemia as a major trigger of PNS 
injury.
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previously thought. Therefore, recent findings of  increased 
incidence of  DPN in patients with pre-diabetes, many of  
whom have an impaired glucose tolerance (IGT) but not 
fasting hyperglycemia[22,25,70,71,125-127], appear to present the 
most serious challenge for the glycemic hypothesis.

The possibility that PNS injury may be triggered by 
exaggerated and prolonged postprandial hyperglycemic 
ep isodes, wi thout necessar i l y requ i r ing chronic 
hyperglycemia, should be considered to reconcile the 
glycemic hypothesis with observations of  DPN in glucose 
intolerant patients[70,128-130]. Indeed, indices of  large fiber 
function (ankle and knee reflexes and vibratory perception 
thresholds) were shown to decay with impairment 
of  glucose tolerance in humans without diabetes and 
neuropathy[131]. Furthermore, pain is a frequent symptom 
of  pre-diabetic DPN. An acute glucose infusion, which 
could be considered as an analog to a postprandial glucose 
surge, decreased thresholds to electrical stimulation 
in healthy adult volunteers [132] and decreased pain 
pressure thresholds in type 1 diabetic patients without 
clinical neuropathy[133]. In the latter study, however, no 
association between acute hyperglycemia and heat pain, 
warmth/cooling or vibration perception thresholds, was 
found[133]. Inconsistent with the idea that postprandial 
glucose changes have a neuropathic effect, no correlation 
was detected between short-term fluctuations in blood 
glucose and pain scores or heat pain thresholds in the 
study of  type 1 and type 2 diabetic subjects with painful 
neuropathy[134]. Furthermore, no correlation between the 
number of  glycemic excursions and the number of  painful 
episodes was found in the study of  type 1 patients with 
painless neuropathy[135]. 

Difficulties with the glycemic hypothesis are not 
unique to the human clinic. Thus in the STZ-rat model of  
diabetes, NCV could be corrected by a low level of  insulin 
therapy below that required to correct hyperglycemia[89,136]. 
Pain pressure and von Frey filament thresholds studied 
in the same model demonstrate no correlation with the 
degree of  hyperglycemia[84,101,137]. Furthermore, aldose 
reductase inhibitors (blockers of  the polyol sugar pathway; 
Figure 6), given at doses sufficient to correct nerve sorbitol 
and fructose and heat pain thresholds, do not correct von 
Frey filament threshold in STZ-hyperglycemic rats[138,139]. 
As another example, pain pressure thresholds in type 2 
diabetic Zucker rats could be corrected with insulin-like-
growth factor Ⅱ (IGF-Ⅱ) that has no effect on blood 
glucose[86]. All these examples are taken from experiments 
in overtly diabetic and hyperglycemic animals. Therefore, 
formally the possibility remains that hyperglycemia was 
the triggering event for the observed abnormalities, but 
it is not required for the progression and maintenance of  
these pathologies. Whether DPN develops in pre-diabetic 
rats as it does in humans has not yet been studied. Since 
previous work has focused on diabetes, little attention has 
been devoted to the development of  pre-diabetic animal 
models and studies of  DPN in these models. Nonetheless, 
neuropathic decreases of  mechanical and thermal 
nociceptive thresholds[140] and slowing of  motor NCV[141] 
were observed in studies in Zucker-fatty rats. Since these 
are insulin-resistant but normoglycemic animals (type 
2 pre-diabetes) the impaired glucose tolerance could 

be responsible for DPN in these animals. Recently, we 
described decreased pain pressure threshold in rats that 
were injected with STZ but remained normoglycemic[84]. 
These rats also had normal glucose tolerance, maintained 
normal levels of  HbA1c, and normal concentrations of  
sorbitol in the nerve, suggesting that not only fasting but 
casual glucose also was maintained within physiological 
limits (Figure 8). 

Thus there is solid evidence that hyperglycemia 
is an important factor of  DPN. However, there are 
also both clinical and animal studies indicating that in 
addition to chronic and/or postprandial hyperglycemia, 
other pathogenic mechanisms must exist that trigger 
and maintain at least some of  the symptoms of  DPN. 
Identification of  these factors is of  critical importance 
for our understanding of  both the natural history of  pre-
diabetic DPN and the pathogenesis of  diabetic DPN in 
general[27,88]. 

INSULIN SIGNALING AND DPN
In t h e s e a r ch fo r t r i g g e r s o f  DPN o the r t h an 
hyperglycemia, it is important to note that successful 
reversion or postponing of  DPN in clinical glucose 
control trials does not necessarily prove the glucose 
hypothesis[142]. Glucose metabolism is regulated by insulin 
via type B receptors (IR-B) abundantly expressed by liver, 
skeletal muscle and fat cells. Insulin receptors, however, 
are also expressed in central and peripheral nervous 
systems[143,144]. Furthermore, in PNS the highest densities 
of  IRs are located on endothelial cells, paranodal loops of  
Schwann cells and medium and small size primary sensory 
neurons[143,144]. All these locations are strategically critical 
points of  PNS function considering what is known about 
the pathogenic mechanisms of  DPN. While the nervous 
system has mostly type A receptors (IR-A), the insulin 
affinities of  these and IR-B receptors are similar (K0.5 is 
3 to 6 ng/mL[145]) and well within the range of  circulating 
concentrations of  insulin (1 to 6 ng/mL[12-17]). Thus, it is 
very possible that correction of  insulin levels in treatments 
for Type 1 diabetes or insulin-sensitizing therapy in cases 
of  type 2 diabetes not only corrects glucose metabolism, 
but also has independent effects on the function of  PNS. 
Serious consideration of  this hypothesis is warranted, 
first because it provides an explanation for at least some 
failures of  glycemic controls to reverse DPN, and second 
because it may explain the development of  DPN in pre-
diabetic patients.

Insulinopenia (Type 1 diabetes and pre-diabetes)
As described in the Introduction, overt type 1 diabetes 
is preceded by a state of  partial pancreatic damage and 
moderate insulinopenia in which insulin production is 
still satisfactory for blood glucose control[11]. The type 
1 pre-diabetic state is probably short and little is known 
about neuropathy in these patients. The results of  a 
recently completed follow-up to DCCT study of  type 1 
diabetic patients, however, has shown that regardless of  
the level of  glycemic control, neuropathy is less prevalent 
in the group of  patients that maintained intensive vs. 
conventional insulin therapy[146]. Further support for the 
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possibility of  a direct role of  insulinopenia in DPN comes 
from experiments in the STZ-rat model of  type 1 diabetes. 
It was demonstrated that local insulin application to the 
nerve prevents motor NCV slowing in STZ-hyperglycemic 
rats[147]. Similarly, systemic[136] or intrathecal[89] application 
of  insulin can correct sensory and motor NCV in STZ-
treated rats without having an effect on hyperglycemia. 
Finally, in our experiments in rats that were injected with 
STZ and developed moderate insulinopenia but not fasting 
hyperglycemia (Figure 8), pressure pain thresholds were 
decreased in proportion to the degree of  insulinopenia, 
and low dose insulin-replacement therapy corrected this 
defect without changes in the systemic blood glucose 
level (Figure 9). Taken together these data suggest that 
at least some signs of  neuropathy (slowing of  NCV, 
pressure-evoked pain in rats) may indeed be triggered 
by insulinopenia with no relevance to the blood glucose 
level. Another notable aspect of  these experiments is that 
correction of  nerve conduction[89,136,147] and pain pressure 
thresholds (Figure 9) with insulin treatment could be 
achieved without changes in systemic blood glucose levels, 
leading to an important implication that the thresholds of  
“metabolic” and “neuropathic” effects of  insulinopenia 
may differ.

To date, deta i led infor mat ion on the re la t ion 
between insulin and nerve conduction is not available. 
However, comparison of  better studied “dose-response” 
relationships between insulin, blood glucose and pain 
pressure thresholds (Figure 10A) allows speculation that in 
the rat, control of  glucose metabolism may tolerate at least 

five times lower insulin levels than does nerve function. 
Given that this difference was confirmed in both animals 
and humans, the outcome of  these studies is of  a great 
importance. This finding may explain the development 
of  neuropathy in pre-diabetes and also suggests that 
neuropathy may start at stages preceding pre-diabetes, and 
some therapeutic interventions to correct insulin levels or 
insulin resistance (see next section) are warranted in pre-
diabetic patients.

Differences in threshold concentrations of  a ligand 
are usually determined by the differences in receptor 
properties. However, insulin affinities of  IR-B and IR-A 
isoforms of  the insulin receptor expressed in cells of  
organs responsible for glucose metabolism and in nerve 
tissue are too close to account for apparent differences in 
the concentrations of  hormone required for maintaining 
normal blood glucose concentrations and normal pain 
pressure thresholds[145]. On the other hand, strong 
correlative relationships between insulin and pain pressure 
thresholds (Figure 9A) suggest a nearly direct link between 
insulin regulation and pressure pain mechanisms. The 
hypothesis of  spare receptors[7,8,10] is the easiest way to 
explain this discrepancy. Thus as shown in Figure 10A, 
both metabolic and neuropathic effects of  insulin may 
be described adequately within the concept of  insulin 
binding with the same affinity (K0.5 = 1 ng/mL) in nerve 
and in glucose controlling organs, if  65% of  the receptor 
occupancy is needed to control nerve function, and only 
10% of  occupancy is required for glucose metabolism. Hill 
equations were used in this simulation; however, since the 
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purpose was merely to illustrate the potential possibility 
of  the given scenario, parameters of  the equations were 
adjusted by a trial and error approach and no attempt was 
made to optimize the parameters. Some alternatives to this 
scenario will be discussed in section 6.1 of  this review.

Insulin resistance
Prevalence of  type 2 to type 1 diabetes is about 9 to 1 and 
most of  the cases of  human pre-diabetes are type 2 pre-
diabetes or metabolic syndrome cases[24,125]. Over the long-
term, insulin production is impaired in type 2 diabetes 
further increasing the incidence of  DPN in this population 
by mechanisms described above. In a ten-year study of  
the natural history of  type 2 diabetic patients, it was found 
that decreased serum insulin and increased blood glucose 
concentrations are independent predictors of  DPN[148]. 
However, in early type 2 diabetes and pre-diabetes there 
is a compensatory hyperinsulinemia. Because of  this 
hyperinsulinemia type 2 pre-diabetes usually spans a much 
longer period of  time than does type 1 pre-diabetes. Thus, 
after 5 years only 20% to 35% of  patients with impaired 
fasting glucose or impaired glucose tolerance develop 
overt hyperglycemia (see[70]). Despite this compensatory 
hyperinsulinemia, however, many type 2 pre-diabetic 
patients do develop DPN[125,126]. This latter observation 

suggests that in terms of  neuropathic outcome, insulin 
resistance and insulinopenia may be equivalent states. It 
also suggests that increased production of  insulin may 
fail to compensate for decreased sensitivity of  PNS to 
regulation by insulin.

Not much experimental data exists to verify the validity 
of  either of  these suggestions. In studies in normal human 
volunteers, warmth detection threshold correlated with 
insulin but not fasting or 2-h GTT glucose, leading the 
authors to suggest that insulin resistance may determine 
some sensory functions of  PNS[149]. This is also supported 
by observations of  decreased NCV[141] and pressure pain 
thresholds[86] and the authors’ unpublished observations 
in the Zucker fatty rat model of  type 2 pre-diabetes. 
However, whether it is possible that hyperinsulinemia 
is effective in regulating glucose metabolism but fails to 
compensate for nerve insulin resistance is at this time 
absolutely not known. Furthermore, it is unknown if  this 
mechanism plays a role in DPN associated with type 2 
diabetes. In theory such a possibility does exist, and Figure 
10B illustrates the scenario that we believe provides a 
useful working hypothesis for future experiments. Using 
“dose-response” relations as a starting point, shown in 
Figure 10A, the insulin resistant state that leads to type 
2 diabetes may be modeled as a decrease in affinity of  
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IR from 1 to 20 ng/mL, which leads to proportional 
rightward shifts of  insulin-glucose metabolism and insulin-
nerve function relationships. If  the requirements of  10% 
and 65% occupancy of  IR remain unchanged, maintenance 
of  normal glucose metabolism under these new conditions 
will need about 6 ng/mL of  circulating insulin and nearly 
30 ng/mL insulin concentration will be the minimum 
needed to maintain normal PNS function. The calculated 
6 ng/mL insulin concentration is in the range of  insulin 
concentrations measured in Zucker fatty rats (5.1 to 11.7 
ng/mL; model of  compensated insulin resistance[150-152]). 
These latter numbers are, however, significantly lower than 
predicted by the model insulin concentration needed to 
maintain nerve function. Therefore, it may be speculated 
that the “set-point” or natural goal of  compensatory 
hyperinsulinemia is merely to correct glucose metabolism, 
which is vitally important for the organism, with no 
concern about the less significant problem of  nerve 
function. 

Cellular mechanisms
Thus, while the connection remains speculative, the data 
above suggest that impairment of  insulin signaling in 
PNS (because of  decreased insulin production, insulin 

resistance or both) may be an important factor in the 
pathogenesis of  DPN. Further studies are needed to 
confirm this hypothesis and further studies are also needed 
to understand the cellular mechanisms of  insulin action in 
PNS.

Glucose is a major fuel for neurons of  peripheral and 
central nervous systems. However, unlike that in major 
target tissues of  insulin regulation, uptake of  glucose 
in nervous tissue is an insulin-independent process. 
Therefore, the simple explanation of  the neural effects of  
insulin to regulate the energy supply does not appear to be 
applicable. There should be some other role of  IR in the 
nervous system. In the CNS, these receptors are involved 
in the insulin control of  feeding behavior, reproductive 
and cognitive functions and neuromodulation[27,153]. Insulin 
also clearly has neurotrophic functions. It stimulates 
neurite outgrowth, is involved in peripheral nerve 
regeneration and is required for survival of  sympathetic 
neurons (see[27]). These effects are likely very important for 
regeneration, which is suppressed in long-term DPN. For 
short term diabetes, the possibility of  insulin regulation of  
axon-glia relationships, vascular permeability, and function 
of  nociceptive primary afferent neurons[143,144] may be of  
importance. The possibility of  a selective acute effect of  
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insulin on endoneurial blood flow (decrease) was also 
demonstrated by experiments in normal rats[154].

Note also that the negat ive cel lular effects of  
hyperglycemia and insufficiency of  insulin signaling seem 
to converge at some point. Pain pressure thresholds are 
decreased in rat models of  local hyperglycemia with a 
time course and to a degree that is very similar to those 
in STZ-normoglycemic rats [101]. Since many studies 
support oxidative/nitrosative stress as a central event of  
hyperglycemic impairment, it is reasonable to suggest 
that oxidative/nitrosative stress can interfere with insulin 
regulation in some or all of  the hyperglycemia-induced 
steps of  the pathogenic cascade depicted in Figure 6. 
Insulin directly regulates inner mitochondrial membrane 
potentials and may affect oxidative phosphorylation[136]. 
Insu l in a l so suppresses express ion of  NADPH 
oxidase[155] and controls expression of  Nf-κB and 
associated inflammatory reactions[155,156]. In fact, the anti-
inflammatory effects of  insulin have been known since the 
discovery of  the benefits of  insulin therapy in systemic 
inflammatory responses to trauma or bacterial infection[157]. 
Insulin signaling also was shown to be linked to the 
regulation of  Na, K-ATPase[158,159] and endothelial NO 
production[158,160]. These data suggest that insulinopenia 
does have the potential to produce the same or very similar 
neuropathic effects as were attributed previously solely to 
hyperglycemia.

OTHER FACTORS OF SIGNIFICANCE
While the above outlined insulin-signaling hypothesis of  
DPN appears compelling, it will certainly be corrected 
and modified in many of  its segments to conform to the 
results of  future studies. It can also be stated here, without 
reservation, that no complete picture of  the pathogenesis 
of  DPN will be created unless the roles of  insulin-like 
growth factors and C-peptide are considered in addition to 
hyperglycemia and insulin signaling in PNS[142].

Insulin-like growth factors (IGFs)
IGFs are produced in the kidney, spinal cord, skeletal 
muscle and peripheral glia. IGFs possess multiple 
neurotrophic functions, including control of  neuronal 
survival, neurite outgrowth and regeneration, and 
expression of  genes encoding axonal cytoskeletal proteins 
(tubulins and neurofilaments)[142,161-166]. Interestingly, IGF-1 
appears to be involved in the regulation of  resistance 
to oxidative stress [167]. IGFs primarily act via specific 
receptors, but since IGFs are present in the circulation in 
a 100-fold excess compared to insulin, they may also bind 
to and activate IR, mimicking some but not all affects of  
insulin[168,145,165]. It might be important in this regard that, 
in peripheral nerve, IGF-I receptors are co-localized with 
IR in sensory neurons[169,170] and Schwann cells[171] and a 
large fraction of  them are likely hybrids composed of  
protein subunits of  both IR-A and IGF-I receptors[143,169]. 
These hybrid IR/IGF receptors have substantially higher 
affinity to IGF-I than to insulin[172,173]. However, even 
when present in physiological concentrations, insulin may 
still bind to and activate some portion of  hybrid as well 

as homomeric IGF-I receptors[161,174]. In addition, IGF-I 
may act by suppressing growth hormone and improving 
insulin sensitivity and insulin production in type 1 and 
type 2 diabetic subjects[174-178]. Insulin on the other hand, 
may modify kidney production of  IGFs, and via regulation 
of  IGF binding proteins, it may control the activity of  
circulating IGFs[161,175,176]. Whether, any of  these multiple 
mechanisms participate in the apparent dissociation of  
the metabolic and neuropathic effects of  insulinopenia 
remains to be determined.

Abnormal expression and levels of  circulating IGFs 
and/or changes in expression of  receptors for IGF were 
measured in diabetic human subjects [174], in STZ-rats 
(see[179-181]), and in the type 2 diabetes Zucker diabetic 
fatty (ZDF) rat model[86]. Furthermore, in obese Zucker 
rats, both insulin- and IGF-I resistances were shown to 
develop and mediate impaired glucose tolerance in this 
model of  pre-diabetes[182]. Thus potentially, via impairment 
of  protein synthesis, insufficiency of  IGFs may add to the 
pathogenesis of  regenerative capacity, neurodegeneration 
and irreversible stages of  DPN[142]. This suggestion is 
supported by observations of  recovery of  NCV and 
reversion of  atrophy of  myelinated sensory axons in the 
sural nerve of  STZ rats treated with intrathecal IGF-I[89]. 
In addition, the defect in IGFs or IGF-receptor expression 
could also add to the pathogenesis of  early symptoms 
of  DPN either directly or through modulation of  insulin 
production or nerve sensitivity to insulin. Indeed, down-
regulation of  IGF-I receptors, which is observed in nerves 
of  STZ-diabetic rats, occurs comparatively early, within 1 
week after the onset of  hyperglycemia[181]. Furthermore, 
continuous subcutaneous infusion of  IGF-Ⅱ was shown 
to recover pain pressure thresholds to a normal level 
after 6 wk of  diabetes in the ZDF rat model[86]. The latter 
observation is interesting because, in STZ-diabetic rats, 
a similar magnitude and early decrease in pain pressure 
thresholds seems to result from insulinopenia (see previous 
section). Affinity of  IGF-Ⅱ binding to brain type insulin 
receptors or to IGF-I-R is two-three times lower than that 
of  respective natural ligands[145]. Therefore, the effect of  
IGF-Ⅱ on mechanical hyperalgesia may still be explained 
within the framework of  our insulin signaling hypothesis 
of  early neuropathy. However, the possibility of  a more 
complex regulation of  pain pressure thresholds cannot 
be excluded. It is important also that in all the examples 
above the effects of  treatments with IGFs occurred with 
no measurable changes in the glycemic status of  studied 
animals; once again suggesting that the pathogenesis of  
DPN is multifactorial.

C-peptide
C-peptide is a segment of  the proinsulin molecule sliced 
off  to form insulin. Acting through both its own receptors 
and modulating activity of  insulin receptors, C-peptide 
produces multiple insulin and IGF-like effects[27,183,184]. 
C-peptide also enhances autophosphorylation of  IR 
and effects of  insulin, and treatment with C-peptide 
reverses decreased expression of  IGF-I, NGF and 
neurotrophin-3 receptors in type 1 spontaneously diabetic 
rats[27,183,185]. Considering these effects and the fact that 
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C-peptide is secreted in equimolar concentrations with 
insulin, it can be concluded that C-peptide insufficiency 
may have an important role in the pathogenesis of  type 
1 diabetes[75,183,184]. In agreement with this implication, 
in patients with recently diagnosed type 1 diabetes, 
C-peptide treatment was shown to correct sensory NCV 
and vibration perception[186]. C-peptide treatment also 
corrects skin microcirculation in diabetic patients[187] and 
endoneurial blood flow and NCV slowing[75], thermal 
hyperalgesia, atrophy and degeneration of  C-fibers[185] in 
BB/Wor type 1 diabetes rat model. 

As expected, no differences in plasma C-peptide levels 
were found in pre-diabetic patients and patients with 
type 2 diabetes of  short duration (less than 5 years from 
diagnosis), even though the number and severity of  the 
signs and symptoms of  DPN differed substantially between 
these groups[128]. What is less clear in the same study is a 
lack of  detectable deficiency of  C-peptide in advanced 
type 2 diabetes patients (more than 5 years) who could 
have been expected to start developing insulinopenia. In 
general, however, multiple questions remain to be resolved 
in relation to C-peptide and its role and mechanisms 
of  action in DPN. Similar to conditions of  chronic or 
postprandial hyperglycemia or impaired insulin- or IGF-
signaling, C-peptide deficiency appears to affect activity 
of  Na,K-ATPase, NO production and neurotrophism, 
but the C-peptide mediated regulation does not appear to 
depend on oxidative stress, which is apparently important 
in the pathogenesis of  these conditions[75,188]. It is also 
not clear whether any of  the symptoms may be directly 
attributed to C-peptide insufficiency in DPN. Endoneurial 
blood flow, NCV and heat nociception appear to be the 
foremost candidates[186,187], but antioxidant treatments and 
insulin replacement correct these abnormalities in STZ 
rats at least as efficiently as does C-peptide replacement in 
the BB/Wor rat model of  type 1 diabetes. 

CONCLUSION
DPN is a frequent and troublesome complication of  dia-
betes mellitus. Diabetes manifests in a case-specific vari-
ety of  signs and symptoms, and associates with complex 
biochemical, functional and structural abnormalities of  
the peripheral nervous system. While the obvious hyper-
glycemia present in diabetes can explain the development 
of  these abnormalities, data suggest that other factors may 
also contribute. We have discussed the evidence for insu-

linopenia in type 1 diabetes or insulin resistance in type 2 
diabetes as causal factors in the development of  DPN. We 
have suggested that these two cases actually represent a 
single cause of  impaired insulin signaling. Considering the 
role of  insulin signaling in DPN more completely explains 
the changes in nerve function in pre-diabetic or early dia-
betic patients and animal models. This does not preclude 
hyperglycemia also as a factor in DPN, but allows a more 
complete picture of  the disease process (Figure 11). In ad-
dition to insulin signaling, some evidence also exists for a 
role of  IGF and C-peptide in mediating DPN. The patho-
genesis of  DPN is obviously multifactorial, and despite 
long-standing efforts, remains poorly understood. This 
work has also suggested that insulin signaling has effects 
that occur with different levels of  receptor occupancy. 
Thus insulin action on nerve function requires a higher 
level of  receptor occupancy than does insulin action on 
glycemic control. This could be explained by different 
levels of  receptor coupling to second messenger signaling 
pathways in nerve versus liver or muscle. Future studies 
should elucidate these mechanisms so that a clearer picture 
of  DPN can be obtained, especially in pre-diabetes where 
early detection could improve therapeutic outcomes.
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