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ABSTRACT In fluorescence microscopy, images often contain puncta in which the fluorescent molecules are spatially clus-
tered. This article describes a method that uses single-molecule intensity distributions to deconvolve the number of fluorophores
present in fluorescent puncta as a way to ‘‘count’’ protein number. This method requires a determination of the correct statistical
relationship between the single-molecule and single-puncta intensity distributions. Once the correct relationship has been
determined, basis histograms can be generated from the single-molecule intensity distribution to fit the puncta distribution.
Simulated data were used to demonstrate procedures to determine this relationship, and to test the methodology. This method
has the advantages of single-molecule measurements, providing both the mean and variation in molecules per puncta. This
methodology has been tested with the avidin-biocytin binding system for which the best-fit distribution of biocytins in the sample
puncta was in good agreement with a bulk determination of the avidin-biocytin binding ratio.

INTRODUCTION

The need for quantitative tools in biology is growing as the

information drawn from biological measurements becomes

more precise. Fluorescence microscopy images of cells often

contain puncta (1–5), in which the fluorescent molecules of

interest are spatially concentrated. The ability to count both

the absolute number and the variation in the number of mole-

cules present in these puncta, or regions of interest (ROIs),

will advance quantitative biological measurements (6–14).

Knowing the concentration of proteins within a ROI pro-

vides the opportunity to study a biological system at a level

of detail that is inaccessible to traditional biochemical tech-

niques. Such precise quantitative information is particularly

important in systems biology and in the computational mod-

eling of cellular function.

To count fluorescent molecules present at one or a few

copies, one approach is to use sequential single-molecule

photobleaching (15). In principle, each bleaching event should

result in a step decrease in the observed fluorescence inten-

sity. The number of bleach steps observed would therefore

correspond to the number of molecules present in a particular

ROI. In practice, however, it is difficult to apply this method

to count molecules that are present at more than a few copies.

Because each fluorescent molecule is slightly different with

variable photostability and number of emitted photons, the

size of the observed bleach step is not homogeneous and

often it can be difficult to determine whether a particularly

large bleach step corresponds to more than one bleached

molecule. Such ambiguities become more problematic with

an increasing number of molecules present. This method

requires good signal/noise to be obtained for each and every

puncta, and the required careful optimization of the laser

powers employed constrains the technique for use with fluo-

rophores that are highly emissive and photostable. Another

complication arises if the fluorescent molecule to be counted

has been labeled with multiple fluorophores, as is often the

case with fluorescently labeled antibodies. For example, if

the antibodies were each labeled with six fluorophores, then

counting five labeled antibodies in a ROI by sequential pho-

tobleaching requires recognizing ;30 steps in the intensity

trace for the ROI. Finally, it can be tedious to perform this

measurement over a large number (hundreds to thousands) of

ROIs, which can be required to arrive at a statistically sig-

nificant biological conclusion for systems where there is a

significant variability in the number of fluorophores per ROI.

On the other extreme in copy number, it is possible to

count molecules that are highly abundant (hundreds to thou-

sands) within a ROI using traditional calibration methods.

Here, the observed fluorescence intensity from a ROI is

calibrated against the intensity measured from fluorescent

beads of known properties. In combination with green fluo-

rescent protein (GFP) fusion techniques, this method has

been used recently to estimate the amount of high-copy

number proteins in cells (13,14,16–18). These methods for

measuring protein number use the average fluorescence in-

tensity obtained during calibration. As a result, the presence

of intensity distributions about the mean value complicates

calibration, which can lead to large uncertainties in the actual

number of the measured fluorescent proteins. This problem is

especially acute when dealing with proteins that are of low to

intermediate abundance (approximately a few to tens of copy

numbers). It also precludes the use of probes that have a

broad initial fluorescence intensity distribution, such as dye-

tagged antibodies. For example, recent measurements of lo-

cal protein concentration are based on fusion with fluorescent
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proteins, which guarantees at most one fluorophore per

protein (19,20). In contrast, fluorescently tagged antibodies

are labeled via primary amines and the number of fluoro-

phores per antibody can vary significantly (21). Therefore,

fluorescently tagged antibodies can give rise to even broader

fluorescence intensity distributions than single GFPs, which

can lead to an even greater error in the estimation of the

actual number of proteins present and thus precludes their

use in protein counting. We emphasize the usefulness of

using fluorescent antibodies for counting because the use of

GFPs can perturb the native number of proteins present in a

particular ROI (22).

The goal of this work is to develop and characterize a

method to extract the distribution of the number of labeled

fluorescent molecules per puncta, which can provide impor-

tant information about a biological system, such as how

tightly the expression of a particular protein is regulated. The

method uses the emission intensity distribution from puncta

containing single labeled molecules as a calibrating distri-

bution to fit the intensity distribution of the sample puncta.

To apply proper fitting, it is necessary to understand the

nature of the relationship between the intensity distribution

of puncta containing single labeled molecules (i.e., the cali-

brating distribution) and puncta containing multiple labeled

molecules (i.e., the sample distribution). This article dis-

cusses ways of determining this relationship and uses sim-

ulated intensity distributions to demonstrate and characterize

the method. We found this method to work well for counting

molecules present in a single copy to tens of copies.

MATERIALS AND EXPERIMENTAL METHODS

Single fluorophores and antibody complexes

Alexa Fluor 488 carboxylic acid, succinimidyl ester was obtained from

Invitrogen (Carlsbad, CA). Samples for the single-antibody images were

obtained by reacting anti-synaptic vesicle protein 2 (anti-SV2) (23) (0.5 ml

at 1 mg/ml) with fluorescently labeled Alexa Fluor 488 labeled goat anti-

mouse (GAM) (Invitrogen) (1 ml at 2 mg/ml).

Antibody complexes and vesicles

Synaptic vesicles were prepared from rat brains using the procedure of Hell

et al. (24) as modified by S. A. Mutch, J. C. Gadd, B. S. Fujimoto, R. M.

Lorenz, C. L. Kuyper, J. S. Kuo, P. Kensel-Hammes, S. M. Bajjalieh, and D. T.

Chiu (unpublished results). Briefly, 10 frozen rat brains (Pellfreeze, Rogers,

AR) were pulverized into a fine powder by blending in liquid nitrogen. The

powder was resuspended in homogenization buffer (0.3 M sucrose, 50 mM

HEPES, pH 7.4, 2 mM EGTA, 8.5 ml/brain) and homogenized using a

Teflon-glass homogenizer. The homogenate was centrifuged in a 45 Ti rotor

(Beckman Coulter, Fullerton, CA) at 30 K rpm (100,000 3 g) for 1 h at 4�C.

The resulting supernatant was loaded in 26 ml centrifuge bottles with a 10 ml

1.5 M/0.6 M sucrose step gradient, then spun in a 60 Ti rotor (Beckman

Coulter) at 50 K rpm (260,000 3 g) for 2 h at 4�C. The synaptic vesicles were

collected from the interface of the 0.6 M/1.5 M sucrose step gradient. The total

protein concentration of the enriched vesicle fraction was ;3 mg/ml as

determined by Bradford’s method (25) (Bio-Rad protein assay kit; Hercules,

CA) with bovine serum albumin as a standard. The isolated synaptic vesicles

were frozen and could be stored at �80�C for up to 6 months.

Vesicles were dialyzed overnight at 4�C in 150 mM phosphate buffered

saline (PBS), 0.1 M phosphate, 0.15 M NaCl, pH ¼ 7.2 using a membrane

with a 10 kDa molecular mass cutoff. The primary antibody, (anti-SV2), was

added to the dialyzed vesicles (at a ratio of 1:100 by volume) and incubated

overnight at 4�C. To this mixture, the secondary fluorescently labeled anti-

body (GAM-488) was then added (1:100 v/v) and reacted overnight at 4�C.

To remove excess dye-tagged secondary antibodies, mouse IgG conjugated

agarose beads (Sigma; St Louis, MO) were added and allowed to react for 30

min at room temperature. The agarose beads were then removed by centri-

fugation at 8,000 3 g, and the supernatant was collected.

Labeling of avidin with Alexa Fluor 488 biocytin

Avidin (Invitrogen) was reacted with Alexa Fluor 488 biocytin (Invitrogen)

in a 1:8 (avidin/biotin) ratio for 16 h at 4�C. Excess biocytin was removed

with a 5 cm 3 0.5 mm s100HR sephacryl size exclusion column (Bio-Rad).

To label avidin with a single biocytin, we mixed a 5:1 solution of avidin to

labeled-biocytin, and the solution was reacted overnight at 4�C. We used the

intensity data from avidin having one bound biocytin as our single-molecule

calibrating intensity distribution (i.e., for the c ¼ 1 basis histogram), which

will take into account any fluorescence quenching that may have occurred

when the labeled biocytin is bound to avidin. The degree of labeling (bulk

average) was determined by measuring the absorbance for the avidin/Alexa

Fluor 488 tagged biocytin complexes and the Alexa Fluor 488 tagged bio-

cytin. The concentration of the biocytin in the complexes is obtained from

the absorbance measurements using the extinction coefficient at 494 nm for

the Alexa Fluor 488-tagged biocytin (71,000 cm�1M�1; Invitrogen), be-

cause avidin absorption is minimal at 494 nm. To measure the concentration

of avidin, we used extinction coefficient for avidin at 282 nm, which is

96,000 cm�1M�1 (26). To account for the presence of absorption at 282 nm

from Alexa-tagged biocytin, we measured the ratio of the absorbances, A282/

A494, for the Alexa-tagged biocytin and found it to equal 0.15. We used this

ratio to correct the measured A282 of the avidin/biocytin complexes, which

allowed us to obtain the concentration of avidin. These two absorbance

measurements provided an independent measurement of the average number

of biocytins bound per avidin.

Fabrication of microchannel

Microfluidic channels were fabricated in poly (dimethylsiloxane) (PDMS)

with rapid prototyping (27). Briefly, a high-resolution mask was generated

from a computer-aided drawing file imprinted with the channel design. The

mask was used in contact photolithography with SU-8 photoresist (Micro-

Chem, Newton, MA) to create a master that consisted of the positive features

of the 200 micron-wide and 75 micron-high straight channel on a silicon

wafer. From the master, PDMS channels were molded and then sealed irre-

versibly to a borosilicate glass coverslip by oxidizing the PDMS surface in

oxygen plasma. Before sealing, the glass coverslip was cleaned thoroughly

by boiling for 1.5 h in a 1:1:1 mixture of water, ammonium hydroxide, and

30% hydrogen peroxide, followed by thorough rinsing with ultrapure water.

To form the reservoirs at both ends of the microchannel, a punch made from

aluminum tubing (;5 mm diameter) was used to make holes in the PDMS.

Gravity driven flow was induced by placing 100 mL of PBS into the inlet

reservoir. A dilute solution of the molecules or vesicles was placed in a

PDMS well, upon which gravity driven-flow introduced the molecules into

the microchannels where they nonspecifically adsorbed onto the floor (cover-

slip) of the channel. To remove any nonadsorbed vesicles, PBS (or water for

antibodies) was subsequently flowed through the channel. The channel remains

filled with buffer or water while the images are being acquired, therefore

fluorophores are capable of rapid motions and the image will be an average

over the allowed positions and orientations of the tethered fluorophores. The

preparation of the microchannels used for the biocytin/avidin complexes

included an additional step. Before bonding the PDMS channel to the glass,

we exposed the cleaned glass to ultraviolet (UV) light for 2 h to induce

photobleaching of any fluorescent contaminants present on the glass surface.
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Single molecule fluorescence imaging

Single molecules and vesicles were imaged using a home-built total internal

reflection fluorescence (TIRF) microscope system and a high sensitivity

charge-coupled device (CCD) camera (28). Briefly, 488-nm light from a

solid-state diode-pumped laser (Coherent Sapphire, Santa Clara, CA) was

focused at the back-focal plane and directed off-axis into a Nikon 1003

TIRF objective (NA 1.45). The light was incident at an angle just slightly

greater than the critical angle, thus resulting in total internal reflection (28,29).

Fluorescence from the plane of excitation was collected with the objective

and passed through a dichroic mirror (z488rdc, Chroma, Rockingham, VT)

and filtered by a band-pass filter (HQ550/100M, Chroma) before being

imaged by the CCD camera (Cascade 512B CCD camera, Roper Scientific,

Duluth, GA). Rather than using epifluorescence, we used TIRF because it

offers higher sensitivity and an increased signal/background ratio, which, in

turn, permitted us to use lower laser powers to minimize photobleaching.

The laser power, measured after the objective, was 88 mW and the inte-

gration time was 300 ms per image. To obtain the fluorescence emission

intensity of each puncta, we took the maximum measured intensity from the

ROI containing the single molecule, antibody, vesicle, or labeled avidin. The

maximum intensity from each molecule was measured by first circling a ROI

around the molecule, after which the imaging software (MetaMorph,

Molecular Devices, Sunnyvale, CA) automatically selected the brightest

pixel from each ROI and subtracted the average background intensity from

each image.

BACKGROUND

In an ideal system where all of the fluorophores exhibit a

single well-defined fluorescent intensity, the number of fluo-

rophores within a single ROI can be determined simply by

dividing the fluorescent intensity of the ROI by the fluo-

rescent intensity of a single fluorophore. The distribution of

the number of fluorophores per ROI for this ideal system can

be represented by a normalized histogram created by simply

counting the number of ROIs with one fluorophore, two

fluorophores, etc. This method requires that it be possible to

determine the number of fluorophores contained by each

ROI. In practice, however, single fluorophores typically ex-

hibit a broad distribution of intensities. Assignment of a

definite number of fluorophores to a given ROI is no longer

possible since, due to the broad intensity distribution, it is

possible for ROIs with c fluorophores to each exhibit a larger

fluorescent intensity than one or more ROIs with c 1 1

fluorophores. In this situation, it is still possible, in principle,

to extract the distribution of the number of fluorophores per

ROI if we understand the relationship between the fluores-

cent intensity distribution of single-fluorophore puncta, and

the fluorescent intensity distribution of sample puncta with c
fluorophores.

Intuitively, one might expect that the intensity, Iðx; yÞ, of

the ROI located at (x,y) in an image could be described as

simply the sum of the intensities of the enclosed fluorophores

Iðx; yÞ ¼ +
c

n¼1

In; (1)

where c is the number of fluorophores in the ROI. That is,

Iðx; yÞ is expected to be the sum of independent, identically

distributed random variables. In this case, the Iðx; yÞ will

have no dependence on its position in the image and the

coordinates are simply a method of identifying the different

puncta in the image. For example, if a collection of ROIs all

contain exactly 10 fluorophores, one would expect that the

observed ROI intensity distribution could be generated from

the set of single-fluorophore intensities by simply randomly

choosing the intensities of 10 fluorophores, adding these 10

intensity values together to obtain a single 10-fluorophore

intensity, repeating until sufficiently large number of inten-

sity values is obtained, and then plotting out the resulting

distribution. The underlying assumption in this case is that

the fluorophores behave independently of each other. From

the central limit theorem, we would expect that for a suffi-

ciently large number of fluorophores in the ROI, the distribu-

tion of intensities for the ROIs would be well approximated

by a normal distribution. The process of obtaining ROI in-

tensity distributions when the fluorophore intensities are all

independent (Eq. 1) shall be denoted the random addition or

RA process.

Experimentally, however, we never observe a normal

distribution of intensities in our TIRF images. Instead, we

observed lognormal intensity distributions for both single

fluorescent molecules and single-particle images spanning a

range of values of c. The expected (according to Eq. 1)

change in the fluorescence intensity distribution from lognor-

mal to normal with increasing value of c was not observed.

We also found reported lognormal fluorescent intensity dis-

tributions in the literature (30–32). Fig. 1 shows several

measured fluorescence intensity distributions, which were

obtained by imaging the adsorbed molecules or vesicles on a

glass coverslip using TIRF microscopy. Fig. 1 A shows a

sample image of single Alexa Fluor 488-tagged antibody

molecules with sample ROI circled around each molecule.

Fig. 1, B–D, plots the background-subtracted fluorescence

intensity distribution in histogram form. Each bin covers a

range of intensities, and the value associated with each bin is

the probability of observing a puncta whose intensity lies

within that bin. The measured probability distribution func-

tions shown are from single Alexa Fluor 488 carboxylic acid

succinimidyl ester molecules (Fig. 1 B), single Alexa Fluor

488-tagged antibody molecules (Fig. 1 C), and single syn-

aptic vesicles labeled with primary (anti-SV2) and Alexa

Fluor 488-tagged secondary goat anti-mouse antibodies (Fig.

1 D). We can observe the on-off blinking of ROIs in images

of single Alexa Fluor 488 molecules, which indicates that the

data in Fig. 1 B are for single-dye molecules. Despite the fact

that the antibodies have an average of six dye molecules and

the vesicles have an average of three antibodies (and there-

fore an average of 18 fluorophores) attached to them, the

intensity distributions for the antibodies and vesicles (Fig. 1,

C and D) are still poorly fitted by a normal distribution. A

lognormal distribution such as is observed for the single

fluorophores is also observed even when larger numbers of

fluorophores are present in a ROI. Indeed, we found the

measured intensity distributions of 100 nm fluorescent beads
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(which contain hundreds of fluorophores per bead) to also

follow a lognormal distribution.

To address this discrepancy, we propose an alternate rela-

tionship between the single fluorophore intensity distribution

and the intensity distribution of a ROI with c fluorophores. In

this alternate relationship, the intensity distribution for ROIs

with c fluorophores is obtained by scaling (or multiplying)

the intensity distribution function for the single fluorophore

by c. Unlike the RA process described above, in this case,

Iðx; yÞ is affected by its position in the image

Iðx; yÞ ¼
YJ

j¼1

Fjðx; yÞ
 !

ðc IÞ; (2)

where the product runs over the set of J independent, random

variables (Fjðx; yÞ), I is the intensity of a single fluorophore

(assumed to be the same for all fluorophores), and c is the

number of fluorophores in the ROI. The Fjðx; yÞ are assumed

to be due to the measurement process, with each value of j
referring to a different measurement artifact (such as defo-

cusing, or a variation in detector efficiency). The point is that

although the Fjðx; yÞwill depend on where the ROI is located

in the image, they are independent of c. From the central

limit theorem, we would expect that if the Fjðx; yÞ are simi-

larly distributed over the image, then for sufficiently large J
the distribution of the product in Eq. 2 would be well ap-

proximated by a lognormal distribution. Since the remaining

terms on the right-hand side of Eq. 2 are constants, we would

expect that for this case that the distribution of intensities

would be well approximated by a lognormal distribution, and

this is what we observe experimentally. In this alternative

case, the Fjðx; yÞ, which are independent of the number of

fluorophores in a puncta, would produce a broad distribution,

and any distribution associated with the individual fluoro-

phores is too narrow to be observed. The process of scaling

or multiplying single fluorophore intensities to obtain the

intensity distribution of a ROI (Eq. 2) shall be denoted the

multiplied distribution or MD process.

There is an intrinsic distribution associated with the num-

ber of fluorophores associated with each antibody complex

in Fig. 1 C, which would be expected to manifest itself as a

FIGURE 1 Fluorescence intensity distributions of single molecules and

particles. (A) Image of GAM labeled with multiple Alexa Fluor 488; the right

panel shows each molecules being circled automatically by the imaging

software to define a region of interest. The plots are intensity distributions of

(B) single Alexa Fluor 488 carboxylic acid succinimidyl ester molecules, (C)

single goat anti-mouse IgG molecules labeled with multiple Alexa Fluor 488,

and (D) single synaptic vesicles tagged with anti-SV2 primary antibody and

Alexa Fluor 488-labeled GAM secondary antibody. For B–D, the dashed line

is the best fit lognormal distribution to the data, and the dash-dot line is the best

fit normal distribution to the data. The distribution of the intensity data is

better fit by a lognormal distribution in all cases, despite the increase in the

number of fluorophores per ROI between B and D. The images of the single

fluorophores were faint when collected at the same excitation power as used

for C and D, and thus images of the single fluorophores were collected using a

higher laser power, so that the shape of the intensity distribution in B could be

more easily compared with those in C and D.
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normal distribution. However, the poor fit between the data

and the normal distribution in Fig. 1 C and the significantly

better fit of the data to a lognormal distribution suggests that

this intrinsic distribution is much narrower than the overrid-

ing multiplicative distribution. Therefore, the distribution in

the number of fluorophores per antibody complex cannot be

observed and does not need to be accounted for.

With these two proposed relationships between the single

fluorophore and sample-puncta intensity distribution func-

tions, we can envision two scenarios that can account for the

presence of the lognormal distributions observed in Fig. 1 for

the antibodies and vesicles. The first is that any variation in

emission intensity between different fluorophores within the

same ROI is small compared to the variations among differ-

ent ROIs and thus has little effect on the observed intensity

distribution. The relationship between the single fluorophore

and ROI intensities is given by Eq. 2, and is a MD process.

Even for the case where the ROIs are monodisperse in c, the

ROIs will exhibit an approximately lognormal intensity dis-

tribution. If the ROIs were polydisperse, then the distribution

of c (distribution of number of fluorophores per puncta) can

be obtained from the fitting procedure described below. In

most situations, we believe this scenario correctly explains

the occurrence of lognormal intensity distributions.

The second scenario to explain the presence of lognormal

intensity distributions, which is likely rare, is that the number

of fluorophores in each ROI is polydisperse and happens by

chance to be distributed in a lognormal fashion such that the

intensities that result from the application of Eq. 1 result in a

lognormal intensity distribution. If the distribution of ROIs

were monodisperse, then the observed intensity distribution

would approach a normal distribution for larger values of c.

Therefore, in this scenario the appearance of a lognormal

distribution requires that the ROIs be polydisperse, because

the origin of the observed lognormal intensity distribution is

caused by the lognormal distribution in the number of fluo-

rophores in the ROIs. Although the distribution of c in this

scenario can likewise be obtained from the fitting procedures

described below, the results of the fit (the distribution of c)

depend critically upon the assumed relationship between the

single fluorophore and ROI intensity distributions (RA ver-

sus MD).

The second scenario is likely rare, since it requires not

only a polydisperse distribution of fluorescent molecules per

ROI, but also that the distribution happens to take on the

shape of a lognormal distribution. Therefore, the presence of

a lognormal distribution for the ROIs is a strong indication

that the single-molecule and single-ROI intensities are re-

lated via a MD process. Likewise, a normal distribution is a

strong indication that the calibrating and ROI distributions

are connected via a RA process.

These different distributions have different shapes and re-

lative widths: The MD distribution for monodisperse ROIs

with c fluorophores always has the same shape and relative

width (width of the distribution divided by its mean) as the

intensity distribution of the single fluorophores regardless of

the value of c (this is shown in the section, ‘‘Simulation

results’’). In contrast, the shape of the RA distribution for

monodisperse ROIs with c fluorophores always converges to

a Gaussian, and the relative width of the distribution be-

comes smaller as the value of c increases. This creates the

possibility that fitting procedures might determine whether a

ROI intensity distribution resulted from a MD process or an

RA process. In addition, it should be possible to distinguish

between MD and RA processes from measurements on an

experimental system for which the distribution of fluoro-

phores in the ROIs is known. The biocytin-avidin binding

system is one possible system, which we will describe in

later sections.

For the purposes of context, we should note that another

system where distribution functions are fit to model func-

tions of a discrete nature is the quantal analysis of synaptic

transmission (33). An example of this is the study of the

inhibitory postsynaptic currents of neurons in rat hippocam-

pal slices (34). Histograms of the magnitude of the currents

were fitted to a sum of Gaussians with different mean values

to demonstrate that the magnitude of the currents was quantal

in nature. However, it should be pointed out that in our

system, unlike that of Edwards et al. (34), the apparent fine

structure observed in our histograms is noise. As will be seen

for our results on the avidin/biocytin binding system, good

fits were obtained despite the presence of such noise and it

was possible to distinguish between a MD process and a RA

process, and obtain good agreement with a bulk deter-

mination of the binding ratio.

THEORY AND SIMULATION METHODS

In the following discussion, we refer to the distribution used

for calibration as the single-molecule distribution or single-

fluorophore distribution. Note that calibration distributions

are composed of the fluorescent units we wish to ‘‘count’’ in

the ROIs. For example, single antibodies labeled with mul-

tiple fluorophores generate calibration curves for antibody-

labeled samples, whereas single synaptic vesicles (e.g.,

labeled with FM dyes) would be used to generate a

calibration curve to count the number of vesicles per synapse

in cultured neurons or tissue slices.

Fluorescence intensity distributions

The distribution of fluorescence emission intensities of a set

of ROIs shall be denoted rðxÞ, where rðxÞdx is the

probability that a ROI in the set will exhibit an intensity

between x and x 1 dx. For the case where each of the ROIs

can contain different numbers of fluorophores, rðxÞ can be

written as a weighted sum of intensity distributions:

rðxÞ ¼ 1

N
+
M

c¼1

AcrcðxÞ; (3)
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where rcðxÞdx is the probability that a ROI with c fluoro-

phores will exhibit an intensity emission between x and x 1 dx;

the coefficient Ac is the actual number of ROIs in the set with

c fluorophores; N is the total number of ROIs in the set, and

M is the largest number of fluorophores contained by any

ROI in the set. The actual intensity data will be a set of values

that can be converted into a histogram with elements yi, the

number of ROIs whose emission intensity falls into the ith
bin. r1ðxÞ is obtained from a measurement of isolated single

fluorophores, and the rcðxÞ are calculated from r1ðxÞ as

described below. The rcðxÞ can be expressed as discrete

probability distributions or normalized histograms with

elements fcðiÞ. The histograms are composed of bins, each

of which spans a range of intensities chosen so that

collectively the bins span the observed range of intensities.

Each fcðiÞ is the probability that a ROI with c fluorophores

will exhibit an intensity that falls into ith bin of the

histogram. The histogram will be referred to as a basis

histogram for c fluorophores and denoted by ffcðiÞg. These

basis histograms will be used later for fitting the measured

intensity distributions (see ‘‘Data fitting’’ section).

With these changes we can write

yi ¼ +
M

c¼1

Ac fcðiÞ (4)

N ¼ +
L

i¼1

yi; (5)

where L is the number of bins in the histograms. Because the

basis histograms are normalized,

1 ¼ +
L

i¼1

fcðiÞ (6)

and therefore

N ¼ +
M

c¼1

Ac: (7)

The intensity distribution for single fluorophores, r1ðxÞ,
can be obtained by fitting the set of measured single-

fluorophore intensities to an appropriate functional form.

This operation prevents any noise in the measured set of

single fluorophore intensities from being propagated into the

basis histograms where they could increase the uncertainty in

the results of data fitting. On the other hand, if the single-

fluorophore intensity distribution cannot be described by a

suitable functional form, then the set of single fluorophore

intensities can be used directly to form the basis histograms.

The rcðxÞ (or f fcðiÞg) will be obtained from measurements

of the single fluorophore intensity distribution r1ðxÞ (or

ff1ðiÞg) by procedures described below.

Normal distribution of fluorescence intensities

Properties of normal distribution

The normal distribution, which is defined for �N, x
,1N, is

rðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps

2
p exp

�ðx � mÞ2

2s
2

� �
; (8)

where m is the mean and s is the standard deviation for the

distribution. By the central limit theorem, a random variable,

which is itself the sum of J independent random variables

drawn from identical distribution functions, will be normally

distributed for sufficiently large J. What constitutes a suf-

ficiently large J depends on the shape of the parent distri-

bution function.

Possible sources of a distribution in intensity for which

the fluorophores within a single ROI would be regarded as

independent of each other include polarization effects and

the random orientation of the fluorophore. The fluorescence

intensity of a dipole excited by an evanescent wave in TIRF

microscopy, for example, depends sensitively on the orien-

tation of the dipole moment (35,36). This mechanism of

combining emission intensities from fluorophores in a single

ROI is the RA process.

RA basis histograms

The RA basis histogram for ROIs with exactly c fluoro-

phores is a convolution of c copies of r1ðxÞ. If an accurate

analytical form exists for r1ðxÞ, then r2ðxÞ can be obtained

from the convolution integral (6)

rc11ðxÞ ¼
Z N

0

rcðx � x9Þr1ðx9Þdx9 (9)

by setting c ¼ 1. Successive applications of Eq. 9 with

increasing values of c will produce a set of rcðxÞ. Normal-

ized histograms can be calculated from the rcðxÞ and used as

basis histograms. If an accurate analytical form for r1ðxÞ
does not exist, a random number generator can be used to

generate a set of intensity values corresponding to rcðxÞ. For

each value of c, c intensity values are randomly selected from

the c ¼ 1 basis, which can either be a data set of single-

fluorophore emission intensities or a functional representa-

tion of the single-molecule intensity distribution (r1ðxÞ). The

selected intensities are then summed to create a single

emission intensity for the c basis. This process is repeated

until a sufficiently large number of intensity values have

been generated (typically 10,000) after which a normalized

histogram is made from the values. The resulting basis

histograms shall be denoted f A
c ðiÞ

� �
.

Lognormal distribution of fluorescence intensities

Properties of lognormal distribution

The lognormal distribution, which is defined for 0, x
,1N, is

r
�ðxÞ ¼ 1

x
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps

�2
p exp

�ðlnðxÞ � m
�Þ2

2s
�2

� �
; (10)
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where m* is the scale parameter and s* is the shape

parameter of the distribution. The average value of x for the

lognormal distribution is

Æxæ ¼ x0e
s
�2
=2
; (11)

where lnðx0Þ ¼ m�. A random variable, which is itself the

product of J independent random variables drawn from

identical parent distribution functions, will exhibit a lognor-

mal distribution for sufficiently large J (37).

One example of a process that would manifest itself as a

random multiplicative factor in the fluorescence intensity

measurements is the modest defocusing that can occur when

collecting a fluorescence image. The defocusing results in a

variation in the collection efficiency for the ROIs, so that the

intensity of each ROI would be multiplied by a factor (one of

the Fjðx; yÞ in Eq. 2), which depends on its position in the

image, but not on the number of fluorophores present. That

is, defocusing introduces another distribution into the

measurement. Another example is the slight difference in

the distance of the fluorophores from the glass/water interface

owing to irregularities of the glass surface, which can affect

significantly the collected fluorescence intensity in TIRF

microscopy (35,36). Other processes that would be mani-

fested as multiplicative factors include variations in the pixel

quantum efficiency in the CCD camera, dirt and aberrations

in the optics, and any spatial variation in the intensity of the

illuminating evanescent wave (29). All of these things will

combine multiplicatively to produce different excitation/

collection efficiencies for different locations in the image.

The multiplicative factor in Eq. 2, which incorporates all of

these effects, is

FMDðx; yÞ ¼
YJ

j¼1

Fjðx; yÞ
 !

; (12)

where the index j refers to a particular effect and J is the

number of such effects. In this case, the observed intensity

distribution for monodisperse ROIs with c fluorophores

would be obtained from the distribution of FMDðx; yÞI by

scaling it by c, where I is the average emission intensity of a

single fluorophore, and the scaling process is described

below. It is not required that any of one these effects be large,

but they might combine to produce a lognormal distribution

or a reasonable approximation of one, and the results in Fig.

1 suggest that this is in fact occurring. This mechanism of

combining emission intensities from fluorophores in a single

ROI is the MD process.

MD basis histograms

The basis histograms for the MD process can be obtained

from the single fluorophore distribution function, r1ðxÞ, by

scaling it by c. For the formation of basis histograms by the

MD process, we use the relationship

rcðxÞdx ¼ r1ðx=cÞdðx=cÞ; (13)

where rcðxÞdx is the probability that a ROI with c fluoro-

phores will exhibit an emission intensity between x and x 1

dx. rcðxÞ is converted into the normalized histogram,

f M
c ðiÞ

� �
, which is the basis histogram for c fluorophores in

the ROI for the MD case.

If a data set of emission intensities for the single

fluorophores, rather than a function, is being used for

r1ðxÞ, then f M
c ðiÞ

� �
is obtained by multiplying each intensity

in the set of single-fluorophore emission intensities by c and

then forming a normalize histogram from the resulting set of

intensity values. In this procedure, the MD basis histogram

for c ¼ 1 is simply the normalized histogram of the single

fluorophore emission intensities.

Data fitting

The histogram of intensity distribution is modeled by

y9i ¼ +
M

c¼1

jacj fcðiÞ

N9 ¼ +
M

c¼1

jacj; (14)

where the coefficients ac are the adjustable parameters that

represent an estimate of the number of ROIs containing c
fluorophores, y9i is the model’s estimate of yi, and N9 is the

estimate of N, the number of ROIs in the set. The absolute

value of the coefficients is used to simplify the fitting

procedure, because this is simpler than restraining the fit to

consider only physically reasonable (i.e., positive) values of

the coefficients.

A fitting algorithm is used to minimize x2, which for our

purposes is defined as

x
2 ¼ +

L

i¼1

ðyi � y9iÞ2

s
2

i

1 aðN � N9Þ2

¼ +
L

i¼1

ðyi � y9iÞ2

yi

1 aðN � N9Þ2

x
2

n
¼ x

2

ðL�MÞ; (15)

where s2
i is the variance associated with the measurement

of yi. (L � M), the difference between the number of bins

and the number of variable parameters, is called the num-

ber of degrees of freedom for the fit, and x2
n is the reduced

chi-squared for the fit (38). a is a small positive parameter

that penalizes the fit if N9 deviates from the actual number of

puncta in the data set. Typical values of a that were tried

during our fits ranged from 10�6 to 10�1. For most of our

fits, values of a , 10�3 appeared to have little effect on N9.

For most fits, using a¼ 10�3 was sufficient to ensure that N9

was within 1% of N. For a few fits, a larger value of a was

necessary to ensure that N9 was within 1% of N, and for those

the results reported below are for fits with a ¼ 10�2.
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We approximated the error in the intensity distributions by

setting s2
i ¼ yi. The range of bins included in the fit was

chosen to be large enough to include all bins that have any

intensity values from either the intensity distribution being

fitted or from any of the basis histograms being used. The

fitting program varies the coefficients, ac in Eq. 14, to

minimize x2. The best fit values of the ac are then the

model’s estimates of the Ac, the actual number of ROIs in the

data set with c fluorophores.

Reduced chi-squared

Ordinarily, it is expected that x2
n should be ;1 for a

satisfactory fit. Two complications exist, however, that can

affect the magnitude of x2
n. First, the basis histograms used in

the fit are an approximation to the actual intensity distribu-

tion for each value of c. That is, the x2
n obtained from the fit

reflects errors in the measured distribution functions of both

the ROIs and the single fluorophores (which are used to

generate the basis histograms). This fact could result in an

elevated value of x2
n, even if the correct functional form is

used for y9i and when only statistical noise is present. The

second complication arises from the fact that in practice the

actual number of basis histograms necessary is not known in

advance. Consequently, the range of basis histograms used

in Eq. 14 must be large enough to ensure it will encompass

the range of species present in the sample. This consideration

would generally result in the use of more basis histograms

than there are species in the system. To reflect this fact, all

the simulated distributions were fit using at least eight basis

histograms, even though the simulated distributions were

generated from only 1–4 basis histograms. The fitting

program used the additional flexibility provided by the extra

basis histograms to fit the noise in the simulated distribution,

potentially reducing x2
n below 1.

These two complications do not cancel, and for some of

the fits presented below, x2
n is significantly ,1 for some of

the fits. This is a result of the flexibility provided by the extra

basis histograms. More statistically reasonable values of x2
n

are obtained when only the minimum number of basis

histograms required are used in the fits.

Simulated annealing

Owing to the large number of basis histograms that might be

used and the possible existence of local minima in x2, it is

important that the search algorithm is capable of finding a

global minimum. Initially the fits were performed using ei-

ther the FMINSEARCH function of MATLAB (The Math-

Works, Natick, MA) or the AMOEBA subroutine from

Press et al. (39), both of which employed the Nelder-Mead

downhill simplex algorithm. The subroutine MRQMIN (39),

which uses the Levenberg-Marquardt algorithm, was also

used. These algorithms will search only downhill in x2

where sets of coefficients that increase x2 are discarded.

To test if the algorithm has found a global minimum, we

repeated the fitting procedure with six different initial

guesses for the variable parameters in these fits. If all of

the fits converge on the same set of best-fit coefficients, then

it suggests the best-fit results do in fact represent a global

minimum in x2. If the different initial guesses for the coef-

ficients lead to different ‘‘best-fit’’ results, then these are local

minima, and further tests are necessary to determine if one of

them is the global minimum, or if there is another undetected

local minimum that is the real global minimum. For most

cases, the search results for the six different initial guesses con-

verged, but there were instances when the search algorithms

found a local minimum in x2, but not the global minimum.

To address this issue, we used the simulated annealing

minimization program AMEBSA (39), which appears to be

more robust than the other two methods described above.

Simulated annealing algorithms require that the user supply

an initial temperature parameter, T, and a cooling schedule.

Using a procedure similar to the Metropolis algorithm for

Monte Carlo simulations, the search algorithm will always

retain a move that results in a decrease in the value of x2, and

also will retain a move that results in an increase in the value

of x2 with probability

exp
�Dx

2

T

� �
; (16)

where Dx2 . 0 is the increase in x2 associated with a

particular search move. As a result, for nonzero values of T,

the search algorithm will search both up and downhill in x2,

which will enable the search algorithm to explore multiple

minima in x2 if they exist. If there are multiple local minima,

the search algorithm will spend more steps near the local

minimum that has the smallest x2. Then as T is reduced, the

search algorithm will progressively be confined near the

local minimum with the smallest x2. Running AMEBSA

with T ¼ 0 is equivalent to using the Nelder-Mead algorithm

(39).

For a given set of initial guesses of the coefficients, x2 was

calculated and T was set to x2=4. The temperature was then

reduced by a factor of 0.90 until T was ,0.005 times (L�M)

the number of degrees of freedom in the fit. This choice was

motivated by the fact that for a good fit, x2
n ¼ 1. From

Eq. 15,

x
2 ¼ x

2

y
ðL�MÞ; (17)

so the terminating value of T was chosen to be ;0.5% of

what x2 would be if a satisfactory fit were to be obtained.

The simulated annealing program, AMEBSA, like the

Nelder-Mead simplex method to which it is related, main-

tains a list of (M 1 1) sets of the variable parameters (no two

of which are identical). This list is referred to as a simplex,

with each set of parameters corresponding to a vertex of the

simplex. For finite temperatures, there is no guarantee that

the best set of parameters (smallest x2) encountered during
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the search will always be a vertex in the simplex. Therefore,

following a suggestion of Press et al. (39), we checked the

simplex each time the temperature parameter has been

reduced by a factor of three. If the best set of parameters

encountered during the fit is not a vertex in the simplex, the

vertex in the simplex with the largest x2 was replaced by the

best set of parameters encountered during the fit.

The result of this fit was assumed to lie near, but not

necessarily at the global minimum in x2, and one additional

run with T ¼ 0 was used to locate the global minimum. This

procedure gave satisfactory results, and other possible initial

and final temperatures or cooling schedules received only

limited tests.

SIMULATION RESULTS

Using single-molecule intensities to form MD
and RA basis histograms

We will illustrate the results of combining single-molecule

intensities by the MD and RA processes on the observed ROI

intensity distributions by first considering the case where all

the ROIs have an identical number of fluorophores, and that

the distribution of single-molecule intensities is lognormal.

For a MD process, the lognormal distribution in Eq. 10

can be transformed using Eq. 13 to obtain the lognormal

distribution for c fluorophores,

r
�
cðxÞ ¼

1

x
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps

�2
p exp

�ðlnðx=cÞ � m
�Þ2

2s
�2

� �

¼ 1

x
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps

�2
p exp

�ðln x � ln cx0Þ2

2s
�2

� �
; (18)

where we have used m� ¼ lnðx0Þ to show that the effect of

MD on a lognormal distribution is to multiply the average

value of x by c, so that Eq. 11 becomes

Æxæ ¼ cx0e
s
�2
=2
: (19)

Thus this operation changed the scale (m�c ¼ lnðcx0Þ), but

not the shape (s*) of the distribution.

The relative width of a lognormal distribution is unchanged

by MD, which is illustrated in Fig. 2 A, where we have

plotted the r�cðxÞ generated from a lognormal distribution for

values of c increasing from 1 to 5. For the data in Fig. 2, a set

of single fluorophore emission intensities is simulated by

randomly selecting 10,000 values from a lognormal distri-

bution with s� ¼ 0:5 and m� ¼ 7. The normalized distribu-

tion of these values is r�1ðxÞ and the normalized histogram

formed from these values is f M
1 ðiÞ

� �
. The remaining basis

histograms are generated from simulated single fluorophore

emission intensities as described in the text after Eq. 13. Fig.

2 B shows an alternate method of plotting the data. This

lognormal scaled probability plot (40) clearly illustrates that

the shape (which is described by the slope of the data) of

distribution is not changed with increasing value of c. The

invariance of the relative width on c is true for all distri-

butions that result from a MD process, not just those that

result in lognormal distributions. From Eq. 13, the moments

of the distribution for c ¼ 1 and arbitrary c are

Æxnæc¼1 ¼
Z N

0

x
n
rðxÞdx (20)

Æxnæc ¼
Z N

0

x
n
rðx=cÞdðx=cÞ ¼ c

n

Z N

0

y
n
rðyÞdy ¼ c

nÆxnæc¼1;

(21)

where the substitution y ¼ x/c is used in Eq. 21. Because the

standard deviation equals
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æx2æc � Æxæ2

c

p
, it follows that both

the standard deviation and the mean of the distribution will

be proportional to c, and that the relative width of the

distribution is the same for all c whenever the distribution is

the result of a MD process.

Fig. 3 shows the effect of combining fluorescence inten-

sities by a RA process. For the data in Fig. 3, a set of single

fluorophore emission intensities is simulated by randomly

selecting 10,000 values from a lognormal distribution with

s� ¼ 0:5 and m� ¼ 7. The normalized distribution of these

values is r1ðxÞ and the normalized histogram formed from

these values is f A
1 ðiÞ

� �
. The remaining basis histograms are

FIGURE 2 (A) MD basis histograms, f M
c ðiÞ

� �
, for c ¼ 1–5. (B)

Lognormal cumulative probability plots of f M
c ðiÞ

� �
for c ¼ 1–5. The slope

of the lognormal cumulative probability plot is proportional to the shape,

s�. For a MD process, the slopes are independent of c, which indicates

that the relative width of the MD basis histograms is the same regardless of

the number of fluorophores in the puncta.
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generated from simulated single fluorophore emission inten-

sities as described in the text after Eq. 9. Fig. 3 A plots the

resulting probability functions and Fig. 3 B plots the corre-

sponding lognormal probability plots.

In this RA case, the width of the distribution grows more

slowly than its mean, so the width of the distribution be-

comes smaller relative to its mean. This is expected, because

as c increases, the distribution progressively becomes better

approximated by a normal distribution. Fig. 3 B illustrates

the change in the shape of the distribution with increasing c,
as evinced by the change in the slope of the cumulative

probability plot.

To show the difference in shape between the MD- and

RA-generated basis histograms, Fig. 4 A plots the probability

densities for c ¼ 2 and 3. A measure of the shape can be

obtained by calculating the relative width of each distribu-

tion. To calculate the shape and scale parameters, a lognor-

mal distribution with s� ¼ 0:5 and m� ¼ 7 was sampled

100,000 times. Those values were then used as the c ¼ 1

basis histogram and the MD and RA processes were used to

obtain basis histograms for values of c ranging from 2 to 8.

The resulting s- and m-parameters were calculated and the

ratio is plotted in Fig. 4 B. Here the steady change in shape of

the RA basis histograms away from the MD basis histograms

is evident, and indicates the RA basis histograms are con-

verging toward a normal distribution. In contrast, the MD

basis histograms retain the original shape parameter. This

result is expected, because the central limit theorem predicts

the RA basis histograms will convert into a normal distri-

bution for sufficiently large c. It is this change in shape that

creates the possibility of being able to distinguish between a

MD process and a RA process, even when there are multiple

and variable number of species present in each ROI.

It is useful to note that a more quantitative measure of

shape can be obtained by calculating the skewness (g1) and

kurtosis (g2) of the basis histograms as a function of c. These

can be expressed in terms of mn, the nth moment of the

distribution about the mean as

g1 ¼
m3

m
3=2

2

g2 ¼
m4

m
2

2

� 3: (22)

For a normal distribution, both g1 and g2 are zero. Cal-

culations (not shown) of g1 and g2for the basis histograms in

Figs. 2 and 3 behave as expected; for the MD basis histo-

grams, g1 and g2 are independent of c, and for the RA basis

histograms both g1 and g2 decrease as c increases.

FIGURE 3 (A) RA basis histograms, f A
c ðiÞ

� �
, for c ¼1�5. (B) Lognor-

mal cumulative probability plots of f A
c ðiÞ

� �
for c¼1–5. The slope of the

lognormal cumulative probability plot is proportional to the shape, s�. For a

RA process, the slope decrease as c increases, which indicates that the

relative width of the RA basis histograms decreases with increasing c.

FIGURE 4 Comparison of RA and MD basis histograms. (A) Probability

plots of the basis histograms generated by the MD (solid curves) and RA

(dashed curves) process for c¼ 2 and 3. (B) Ratio of s=m of the MD and RA

basis histograms for c ¼ 1–8. The decrease in the ratio for RA basis

histograms indicates a decrease in the relative width of the distribution.
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Simulation of intensity distributions

To study the differences in shape of the intensity distribu-

tions for MD and RA processes, eight sets of the coefficients,

Ac, were first selected. We selected a broad range of starting

values simulating both monodisperse and polydisperse sam-

ples. For each set, an intensity distribution was then calcu-

lated using both the MD and RA process as described below.

Generating distributions

A lognormal distribution with s� ¼ 0:4 and m� ¼ 6 was

used as r1ðxÞ. We selected randomly 50,000 values from the

distribution and used them to generate simulated distributions

with each containing 3,000 intensity values. Table 1 lists the

sets of coefficients and the ratio of s=m for each simulated

intensity distribution. For each nonzero Ac in a MD simula-

tion, Ac values were selected at random from the set of 50,000

and multiplied by c. This operation was repeated for all

nonzero Ac in the set of coefficients. We added Poisson-

distributed noise to each member of the set of intensity values

and we sorted the results into bins to form a histogram of the

simulated intensity distribution for the MD process.

For each nonzero Ac in a RA simulation, c values would be

selected at random from the set of 50,000 and added to create

an intensity value. This process was repeated Ac times for each

nonzero Ac in the set of coefficients. Again we added Poisson-

distributed noise to the elements of the set of intensity values

and sorted the results into bins to form a histogram of the

simulated intensity distribution for the RA process.

Three types of distributions

The ratio s=m in Table 1 serves as a measure of the relative

width of each distribution, which can be compared to

ðs=mÞ1 ¼ 0:42 for the single fluorophore distribution, r1ðxÞ.
Our results indicate there are three classes of distributions, so

we categorized the simulation into three cases. Case I in-

cludes all of the simulated distributions whose relative width,

ðs=mÞdistribution, is smaller than the relative width of r1ðxÞ.
All of the examples in Case I occur for distributions gener-

ated using the RA process. As we will show later, these

distributions cannot be fitted satisfactory using MD basis

histograms, and so a reduction in relative width constitutes

an indicator that a RA process is occurring.

For the other two cases, ðs=mÞdistribution$ðs=mÞ1. For

Case II, the fits to the two different sets of basis histograms

result in significantly different values of x2
n, in which case

MD and RA processes can be distinguished and confirmed

using the x2
n values. Case III is the scenario where the x2

n

from both MD and RA fits are of comparable magnitude. To

distinguish MD and RA processes for Case III requires either

additional information about the biological system (e.g.,

there is an upper bound in the number of molecules within a

ROI) or experimental calibration of the microscope and the

measurement process (which will be discussed later in the

article).

Fitting of distributions

To fit the distributions, two sets of basis histograms (MD and

RA) were generated by randomly selecting a set of 2,000

values from the lognormal distribution (s� ¼ 0:4, m� ¼ 6),

which were then used to generate the MD and RA basis

histograms as described above. The set of 2,000 values used

TABLE 1 Sets of coefficients for simulated

intensity distributions

s/m*

Coefficient Set Simulation value MD RA

1 A1 1500 0.56 0.48

A2 1500

2 A2 1500 0.48 0.33

A3 1500

3 A3 1500 0.45 0.26

A4 1500

4 A4 1500 0.43 0.21

A5 1500

5 A2 3000 0.43 0.30

6 A4 3000 0.43 0.23

7 A1 200 0.52 0.41

A2 1200

A3 1200

A4 400

8 A3 200 0.46 0.26

A4 1200

A5 1200

A6 400

List of the sets of coefficients used for generating the simulated intensity

distributions for MD and RA processes; coefficients that are not listed

equaled zero in that set. We denote the distributions by the process (MD or

RA) used to generate them and the number of the coefficient set as listed in

the table. 3RA, for example, denotes the distribution generated from the RA

basis histograms using the third set of coefficients listed in the table (i.e.,

with A1 ¼ 0, A2 ¼ 0, A3 ¼ 1500, and A4 ¼ 1500).

*Ratio of the standard deviation to the mean of the resultant distributions,

which should be compared to the ratio (0.42) calculated for the simulated

single-fluorophore distribution.

TABLE 2 Example of starting configurations for fit

Initial configuration used for fit

Coefficient 1 2 3 4 5 6

a1 375 0 0 0 1800 0

a2 375 0 0 1000 750 0

a3 375 750 1500 0 450 0

a4 375 1500 0 1000 0 0

a5 375 750 1500 0 0 0

a6 375 0 0 1000 0 450

a7 375 0 0 0 0 750

a8 375 0 0 0 0 1800

Set of starting configurations for fitting the intensity data simulated using

coefficient set 6 in Table 1.
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to generate the basis histograms is distinct from the 50,000

values used to generate the intensity distribution. The basis

histograms (either f A
c ðiÞ

� �
or f M

c ðiÞ
� �

) are used in Eq. 14 to

model the observed intensity distribution for the ROIs. An

example of the different initial guesses of the ac is given in

Table 2, which lists the six different guesses used to fit 6 RA

and 6 MD. For those fits in which the correct basis histo-

grams are used, the results of the fit are in good to excellent

agreement with the values used to generate the simulated inten-

sity distributions. So for cases where the statistical noise is

more significant than any other experimental distortions in the

data, this method would be expected to provide a reasonable

estimate of the distribution of labeled molecules per puncta.

As mentioned earlier, the inclusion of additional basis

histograms in a fit beyond those used to generate the simu-

lated distribution can result in x2
n that are much smaller than

what might seem statistically reasonable. Several examples

of this can be seen in Tables 3 – 5. For these cases, the fits

were repeated to include only those basis histograms used to

generate the distribution. The resulting value of x2
n all in-

creased into a more statistically reasonably range (0.6–1.7).

The larger values of x2
n reflect the other problem discussed

earlier, namely the fact that the basis histograms are only an

approximation to the parent distribution function and so x2
n

reflects errors present in both sets.

Case I

Table 3 lists the best-fit values of the coefficients ac, N9, and

x2
n for those simulations belonging to Case I (2RA, 3RA,

4RA, 5RA, 6RA, and 8RA; see Table 1), which clearly

indicates it is not possible to obtain a reasonable fit using MD

basis histograms when the distribution is RA and has a relative

width that is smaller than that of the single-molecule calibrat-

ing distribution. Fig. 5 illustrates an example, where the simu-

lated distribution for 3RA is plotted along with the best-fit

results obtained using both the MD and RA basis histograms.

Case II

Unlike Case I, knowing that the relative width of the ROI

distribution is larger than that of the single-molecule distri-

bution, does not provide an indication as to whether the

fluorophore intensities were combined by a MD or RA pro-

cess. Although measuring a lognormal intensity distribution

for both single molecules and single clusters suggests strongly

a MD process, it is not conclusive. For the examples in Case

II, we will see that we can distinguish between the RA and

MD process using the resultant goodness of fit.

Table 4 lists the results of fits for Case II, which shows

cases for which x2
n is consistently smaller when the distri-

bution is fit with the correct basis histograms. This result

indicates that for some cases if the shapes of the basis histo-

grams are sufficiently different, then it is possible to dis-

tinguish between the MD and RA processes by comparing

the x2
n of the resultant fits using the MD and RA basis

histograms. Fig. 6 illustrates a Case II example, where the

simulated distribution for 5MD is plotted along with the best-

fit results using both the MD and RA basis histograms. The

difference in x2
n listed in Table 4 is reflected in Fig. 6, where

the best-fit result using the RA basis histograms cannot

adequately describe the tails of the distribution generated

from the MD basis histograms.

TABLE 3 Simulated intensity distributions and best fit results

for Case I

Simulated distribution fit with

Simulation Simulation value* MD histograms RA histograms

2RA a2 1500 1417 1438

a3 1500 1553 1511

N9 � 2970 3000

DN9 � 0 51

x2
n � 15.3y 0.12

3RA a3 1500 613 1428

a4 1500 2255 1518

N9 � 2868 2995

DN9 � 0 49

x2
n � 66.2y 0.64

4RA a4 1500 0.02 1375

a5 1500 2803 1580

N9 � 2803 2997

DN9 � 0 42

x2
n � 98.3y 0.48

5RA a2 3000 2944 2951

N9 � 2994 2997

DN9 � 0 46

x2
n � 27.6y 0.41

6RA a4 3000 1362 2852

N9 � 2567 3000

DN9 � 1205 48

x2
n � 215y 0.41

8RA a3 200 0.002 238

a4 1200 876 1062

a5 1200 2036 1243

a6 400 0.13 448

N9 � 2912 2994

DN9 � 0 3

x2
n � 36.4y 0.59

Simulated intensity distributions and best-fit results for examples in Case I,

where ðs=mÞdistribution,ðs=mÞ1. Each set of coefficients was used to

generate intensity distributions using both the MD and RA process, and

both resulting distributions were then fitted using both MD and RA basis

histograms. The list of coefficients includes only those that had nonzero

values in the simulated intensity distribution, and their sum is 3000 for all

simulations. N9 is the sum of all best-fit coefficients. DN9 is the sum of the

unlisted coefficients, that is, DN9 is the sum of those best-fit coefficients that

would have been zero for a perfect fit. In some instances, the sum of the

coefficients listed exceeds N9 due to rounding. Eight basis histograms were

used for all fits listed in this table; a ¼ 0.001 unless otherwise stated.

*Values of Ac used to generate the simulated distribution.
yWith a ¼ 0.001, this fit converged with to an N9 that differed from N ¼
3000 by .1%; increasing a to 0.01 improved the agreement, but the

resulting N9 were still not within 1% of N. Because increasing a further

would increase the already very large value of x2
n , we did not test the fits for

larger values of a and the results shown are for a fit with a ¼ 0.01.
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Case III

Table 5 lists the results for fits in Case III. All of these are

examples of simulated distributions generated by the MD

process, but for which modest and similar values of x2
n could

be obtained in fits with either the RA or MD basis histo-

grams. Two situations can result in this type of ambiguity.

The first is illustrated by simulated distribution 1MD. Be-

cause f M
1 ðiÞ[ f A

1 ðiÞ, it is not surprising that any distribution

with a significant number of ROIs with c ¼ 1 (as is the case

with 1MD) could be fit with either set of basis histograms

and result in a modest and similar values of x2
n. The second

situation is illustrated by 4MD. Although a modest value of

x2
n can be obtained using RA basis histograms, it requires

nonzero coefficients for 9 of the 10 RA basis histograms

used in the fit, instead of the 2MD histograms used to gen-

erate it. Fig. 7 A plots the coefficients used to generate 4MD,

and the best-fit results using RA and MD basis histograms.

The small differences between the Ac used to generate the

simulated distribution and the ac obtained from the fit with

MD basis histograms are an illustration of the statistical

errors inherent in the fitting process, and which should be

kept in consideration once it is resolved whether MD or RA

basis histograms are appropriate.

The results for the fit using MD histograms to 8MD illus-

trate an important aspect of the fitting process. If the values

of a3, a4, a5, and a6 were viewed as four separate experi-

mental entities, then the fits with MD histograms do not

appear to be particularly good, even though the correct basis

histograms were used. However, the best fit average single-

fluorophore/ROI ratio is 4.6, which equals that for the values

input into the simulation. Furthermore, simulated distribu-

tion has a peak near 4.5, whereas the best fit result has its

peak slightly above 4. This shift of ,0.5 is modest when

compared with the full width of the distribution, which

equals 2. This example does raise the cautionary note that

care should be taken not to overinterpret structure obtained

from such fits, and the comparison of the results for 8MD

FIGURE 5 Best-fit results for simulated distribution 3RA (see Tables

1 and 3; a Case I example) fitted with (A) MD basis histograms and (B) RA

basis histograms. The vertical bars are the simulated data yi, the dashed line

is a plot of the best-fit result, yi9, the solid lines are plots of ac fcðxÞ (see Table

3), and the dotted line is a plot of the residuals of the fit (yi9ðxÞ � yiðxÞ).

TABLE 4 Simulated intensity distributions and best fit results

for Case II

Simulated distribution fit with

Simulation Simulation value* MD histograms RA histograms

1RA a1 1500 1376 1440

a2 1500 1618 1552

N9 � 2994 2998

DN9 � 0 6

x2
n � 2.66y 0.29

7RA a1 200 86 191

a2 1200 1038 1169

a3 1200 1866 1219

a4 400 0.002 418

N9 � 2990 2997

DN9 � 0 0

x2
n � 5.01y 0.25

2MD a2 1500 1390 1738

a3 1500 1592 701

N9 � 2991 2986

DN9 � 9 547

x2
n � 0.65 1.88

5MD a2 3000 2993 2575

N9 � 2995 2994

DN9 � 2 419

x2
n � 0.34 5.62y

Simulated intensity distributions and best-fit results for examples in Case II,

where ðs=mÞdistribution$ðs=mÞ1 but where there is a significant difference in

x2
n between the MD and RA fits. Each set of coefficients was used to

generate intensity distributions using both the MD and RA process, and

both resultant distributions were then fit using both the MD and RA basis

histograms. The list of coefficients includes only those that had nonzero

values in the simulated intensity distribution, and their sum is 3000 for all

simulations. N9 is the sum of all best coefficients. DN9 is the sum of the

unlisted coefficients, that is, DN9 is the sum of those best-fit coefficients that

would have been zero for a perfect fit. In some instances, the sum of the

coefficients listed exceeds N9 due to rounding. Eight basis histograms were

used for all fits listed in this table, and a ¼ 0.001 unless otherwise stated.

*Values of Ac used to generate the simulated data.
yWith a ¼ 0.001, this fit converged to an N9 that differed from N ¼ 3000

by .1%. Increasing a to 0.01 improved the agreement, but the resulting N9

was still not within 1% of N. Because increasing a further would increase

the already very large value of x2
n , we did not test the fits for larger values

of a and the results shown are for a fit with a ¼ 0.01.
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with 7MD indicates that this limitation would be more of a

concern as the average number of single-fluorophores/ROI

increased.

Resolving the ambiguity for Case III results requires either

some a priori knowledge about the system or a method to

calibrate the instrument and the experimental condition to

verify independently whether MD or RA is the underlying

process.

A priori knowledge

It is important to note that the fit with RA basis histograms

would require contributions from a much wider range of c
values than for the fit with MD basis histograms. In addition,

the shape of the fitted distribution varies greatly when MD

versus RA basis histograms is used. Therefore, if one knows

there is a maximum number of fluorophores per ROI or if the

shape (e.g., unimodal) of the ROI distribution is known, then

oftentimes this additional information may be sufficient to

rule out the result obtained from using the incorrect basis

histograms. The measurement of avidin-biotin binding

discussed later is a good example, in which the fit using

RA can be discarded because the result requires the presence

of ROIs with more biocytins than the maximum number of

binding sites present.

We have explored the shape of the resultant fits, in which

distributions were simulated using a unimodal distribution of

MD basis histograms with an average of 20 fluorophores per

ROI. The fit with RA basis histograms yielded a multimodal

distribution of RA histograms (data not shown). Here if it

were known that the distribution of fluorophores should be

unimodal, then the multimodal distribution from a fit using

RA basis histograms could be rejected.

EXPERIMENTAL MEASUREMENTS OF
BIOTIN-AVIDIN BINDING

If no a priori knowledge exists, then one needs to separately

determine whether the instrument and experimental condi-

tions would give rise to the RA or MD process. There are two

approaches:

1. Use a known system to calibrate the experiment. Below

we describe a calibrating system using biotin-avidin

FIGURE 6 Best-fit results for simulated distribution 5MD (see Tables

1 and 4; a Case II example) fitted with (A) MD basis histograms and (B) RA

basis histograms. The vertical bars are the simulated data yi, the dashed line

is a plot of the best fit result, yi9, the solid lines are plots of ac fcðxÞ (see Table

4); and the dotted line is a plot of the residuals of the fit (yi9ðxÞ � yiðxÞ).

FIGURE 7 Distribution of coefficients from MD and RA fits of (A) 4MD

and (B) 8MD (see Tables 1 and 5; a Case III example). The open bars are Ac,

the actual number of ROIs in the set with c fluorophores. The vertical bars

are ac, the best-fit number of ROIs in the set with c fluorophores for the fit

using MD basis histograms. The solid bars are ac, the best fit number of

ROIs in the set with c fluorophores for the fit using RA basis histograms.
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binding, in which we can saturate the binding to ensure

there are mostly four dye-labeled biotins per avidin. By

taking single-biotin and single avidin/biotin measure-

ments, then fitting the resultant distributions with MD

and RA basis histograms, we can determine the correct

basis histograms to use in subsequent experiments with

unknown systems.

2. Measure the ROI distribution for multiple unrelated

systems. Here we rely on the fact that the presence of a

lognormal distribution for the ROIs is a strong indication

of the MD process and the presence of a normal distri-

bution is a strong indication of the RA process. If the

ROI distributions for multiple unrelated systems are all

lognormal, then one may say with high confidence that

the MD basis histograms should be used. For example,

one may measure the intensity distributions of fluorescent

GFP clusters for different types of cells with different

GFP-tagged proteins. If they all exhibit lognormal distri-

bution, then MD is most likely the correct basis histo-

grams.

To demonstrate our method and to devise a calibration

system, we have measured the number of fluorescently la-

beled biotin molecules bound to a single avidin protein.

Avidin binds biotin with a stoichiometry of 1:4, and the

affinity is one of the strongest known interactions between a

protein and a ligand (26). To ensure a 1:4 binding ratio, we

incubated avidin with excess Alexa Fluor 488-tagged bio-

cytin overnight after which unbound biocytin was subse-

quently removed using size-exclusion chromatography.

We used avidin having one bound biocytin as our single-

molecule calibrating intensity distribution (i.e., as the c ¼ 1

basis histogram), which will take into account any dye-

protein fluorescence quenching that may occur when the

labeled-biocytin is bound to avidin. The data sets consisted

of 800 intensity values from the single labeled-biocytin

images, and 1191 intensity values from the avidin/biocytin

complex images. Visible and UV absorbance measurements

of bulk solutions of our sample provide an independent

determination of the biocytin/avidin ratio. From UV/visible

absorbance measurements of our biocytin/avidin complexes

in bulk solution, and literature values of the extinction

coefficients, we obtain a binding ratio of 3.7. The ratio of the

average intensity of the labeled-biocytin/avidin complexes

divided by the average intensity of the single biocytin puncta

in our TIRF measurement was only 2.01. The discrepancy

between the two binding ratios was attributed to dye-dye

quenching in the fluorescence measurement, where the

quenching ratio implied by these measurements (assuming

no aggregation) is 2.01/3.7 ¼ 0.54.

We obtained the quenching ratio independently from bulk

measurements of fluorescence intensities from two series of

solutions, which were avidin/Alexa Fluor 488-labeled bio-

cytin and control solutions containing 488-labeled biocytin

only (no avidin) At a given concentration of biocytin, the

quenching ratio is derived from the decrease in the observed

fluorescence from the control solution (biocytin only) to the

solution that contained avidin/biocytin complex. We carried

out this titration in which we started the two series of solu-

tions with identical concentrations of biocytin, then added

TABLE 5 Simulated intensity distributions and best fit results

for Case III

Simulated distribution fit with

Simulation Simulation value* MD histograms RA histograms

1MD a1 1500 1478 1721

a2 1500 1515 1059

N9 � 2995 2994

DN9 � 2 214

x2
n � 0.34 0.74

3MD a3 1500 1291 1209

a4 1500 1595 598

N9 2992 2992

DN9 6 1185

x2
n 0.55 0.89

4MD a4 1500 1385 738

a5 1500 1482 736

N9 � 126 2993

DN9 � 2993 1519

x2
n � 0.47 0.73y

6MD a4 3000 2402 535

N9 � 2988 2973

DN9 � 586 2438

x2
n � 0.95 0.44

7MD a1 200 202 329

a2 1200 1165 1354

a3 1200 1278 795

a4 400 287 299

N9 � 2992 2990

DN9 � 60 213

x2
n � 0.52 1.22

8MD a3 200 144 824

a4 1200 1516 650

a5 1200 753 773

a6 400 579 66

N9 � 3000 3000

DN9 � 8 687

x2
n � 0.39 0.57z

Simulated intensity distributions and best-fit results for examples in Case

III, where ðs=mÞdistribution$ðs=mÞ1 but there is no significant difference in

x2
n between the MD and RA fits. Each set of coefficients was used to

generate intensity distributions using both the MD and RA process, and

both resultant distributions were then fit using both the MD and RA basis

histograms. The list of coefficients includes only those that had nonzero

values in the simulated intensity distribution, and their sum is 3000 for all

simulations. N9 is the sum of all best coefficients. DN9 is the sum of the

unlisted coefficients, that is, DN9 is the sum of those best-fit coefficients that

would have been zero for a perfect fit. In some instances, the sum of the

coefficients listed exceeds N9 due to rounding. Eight basis histograms were

used for all fits listed in this table, and a ¼ 0.001 unless otherwise stated.

*Values of Ac used to generate the simulated intensity distribution.
yTen RA basis histograms were used in this fit.
zFourteen RA basis histograms were used in this fit.
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avidin that ranged in molar ratios of biocytins per avidin

from 0.5 to 4.0. At the molar ratio of 3.7, which correspond

to an average of 3.7 biocytins per avidin, we obtained a

quenching ratio of 0.53, which is in good agreement with

the value we obtained from the puncta in our TIRF mea-

surements. The good agreement between the two measured

quenching ratios argues against the presence of significant

numbers of aggregates in the TIRF images. If the labeled-

biocytin/avidin puncta included a noticeable number of

agregates, then the resulting average intensity would lead

to a quenching ratio closer to 1 than that obtained from the

titration experiment. To correct for dye-dye quenching, the

intensities of the single biocytin puncta were multiplied by

0.54, after which the data was used to create the MD and RA

basis histograms as described earlier.

Fig. 8, A and B, shows the results of our analysis when the

avidin/biocytin data were fit with MD and RA basis histo-

grams, respectively. It is important to note that the apparent

structure in the data and the best fit using MD basis histo-

grams is noise. The basis histograms (whose contributions to

the fit are the solid lines in the plots) are much broader than

any of the apparent structure in the avidin/biocytin data. The

process of forming the RA basis histograms (cf. text after Eq.

9) involves summing c randomly selected single fluorophore

intensities, and then repeating this 10,000 times to get 10,000

intensity values for each RA basis histogram. This has the

effect of smoothing out the noise in the single fluorophore

intensity histogram, as can be seen in Fig. 8 B. No such

smoothing is possible for the MD basis histograms, where

the 800 single fluorophore intensities are simply multiplied

by c to obtain the 800 values used for the cth MD basis his-

togram (cf. text after Eq. 13).

We measured a lognormal intensity distribution for the

avidin molecules, which implies a MD process. Fig. 8 A
shows the result of the fitting using MD basis histograms,

which resulted in 95% four and 5% three biocytin molecules

per avidin, with a reduced chi-squared value of 1.18 and a

nonphysical parameter of 0%. The nonphysical parameter is

the percentage of avidin molecules that have more than four

bound biocytin. Fig. 8 B shows the result of the fit using RA

basis histograms, which resulted in 6.3% 2, 73% 3, 8.3% 5,

8.3% 6, and 4% 10 biocytin per avidin, with a reduced

chi-squared value of 1.49 and a nonphysical parameter of

20.6%. From this we conclude that the avidin-biocytin sys-

tem is best fit by MD basis histograms, since the results of

fits using MD basis histograms are in good agreement with

our independent measurement of the binding ratio, whereas

the results of fits using RA basis histograms yield signifi-

cantly poorer results. Because we believe that MD processes

are the result of the measurement process, this implies that

other TIRF measurements on our instrument should also be

fit using MD basis histograms. Therefore, avidin-biocytin

binding may serve as one suitable calibration system for

TIRF microscopy to determine whether MD or RA basis

histograms should be used for fitting.

CONCLUSION

The primary requirement for applicability of this method is

that whichever process (RA or MD) is responsible for the

observed intensity distributions operates similarly in mea-

surements of single-molecule intensity (calibrating distribu-

tion) and sample puncta intensity. The results of fits of the

simulated distributions demonstrate that if it is known whether

the distributions are the result of a MD or RA process, then

FIGURE 8 Single-molecule measurements of the binding of Alexa Fluor

488-tagged biocytin to avidin. (A) Results of fitting avidin/labeled-biocytin

emission data using MD basis histograms. (B) Results of fitting avidin/

labeled-biocytin emission data using RA basis histograms. (C) Histogram

showing the percentage of avidin with c biocytins obtained from the fits

using MD (solid vertical bars) and RA (open vertical bars) basis histograms.

For A and B, the vertical bars are the simulated data yi, the dashed line is a

plot of the best-fit result yi9, the solid lines are plots of ac fcðxÞ, and the dotted

line is a plot of the residuals of the fit (yi9ðxÞ � yiðxÞ).
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data can be deconvolved to obtain a good estimate of the

underlying distribution of the number of labeled-molecules

per puncta. In many cases, the shape (i.e., whether the dis-

tribution is normal or lognormal) of the single-ROI (sample

puncta) distribution serves as a good indicator as to whether

the two distributions are related additively or multiplica-

tively. In addition to using the shape of the ROI distribution

to determine the relationship between the two distributions,

we can also use goodness of fit (reduced chi-squared) as a

statistical criteria to determine the correct relationship. Here,

a general procedure for deconvolving intensity distributions

is the following:

1. Calculate the s=m ratio for the intensity distribution of

both experimentally measured ROIs and the calibrating

fluorophores. If the ratio is greater for the intensity distri-

bution of the single fluorophores than the puncta (Case I),

then RA basis histograms should be used.

2. Otherwise, create both the RA and MD basis histograms

from the single-fluorophore distribution to fit the mea-

sured cluster distribution. If the x2 obtained from the two

fits are very different (Case II), then the one with the

smaller x2 represents the correct basis histograms.

3. If the values of x2 for both fits are comparable (Case III),

then one needs to distinguish the RA and MD process

with external information as described above, which in-

cludes any a priori knowledge about the system or the

use of a known system to calibrate the instrument and

experimental conditions.

It is worth emphasizing that our TIRF imaging experi-

ments with single molecules and single particles almost

invariably give rise to lognormal distributions. Obtaining

lognormal distributions for both calibration fluorophores and

experimentally measured ROIs is a strong indication that

MD basis histograms should be used for data fitting. Al-

though we focused our analysis on experimental images

observed with TIRF microscopy, the statistical framework

we have presented here should apply equally well to other

modes of microscopy, such as confocal and epi-fluorescence

imaging. This method requires that it be possible to subtract

any background (such as might arise from autofluorescence)

from the total fluorescence from each ROI and obtain

accurate estimates of the emission intensity due only to the

fluorophores of interest. So long as that is possible, then it

should be straightforward to perform a calibration as was

done here for our TIRF measurements to determine whether

MD or RA basis histograms should be used. In addition,

although we focused on the counting of single fluorescent

molecules, this method can be applied to the counting of

other fluorescent units, such as signaling complexes, synap-

tic vesicles, or other intracellular organelles. Given the prev-

alence of puncta in fluorescence images of cells, we believe

our method for extracting copy numbers from puncta offers

a level of quantitative information in microscopy that was

previously unattainable.
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