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The ,-Mannanase from "Caldocellum saccharolyticum" Is
Part of a Multidomain Enzyme
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The complete sequence of a 13-mannanase gene from an anaerobic extreme thermophile was determined, and
it shows that the expressed protein consists of two catalytic domains and two binding domains separated by
spacer regions rich in proline and threonine residues. The amino-terminal catalytic domain has 13-mannanase
activity, and the carboxy-terminal domain acts as an endoglucanase. Neither domain shows homology with any
other cellulase or hemicellulase sequence at the nucleic acid or protein level.

Hemicellulases are abundant polysaccharides in nature
and are thought to have linkages to lignin in wood (8). The
major constituents of hemicellulose are the hetero-1,4-p-D-
xylans and hetero-1,4-P-D-mannans. The heteroxylans are
found mainly in grasses, cereals, and hardwoods, whereas
the mannans are more abundant in softwoods (gymno-
sperms, 0-acetylgalactomannans) but are also found in
hardwoods (glucomannans). ,-Mannan consists of a back-
bone of mannose residues, but it may contain glucose
residues. oL-D-galactose and acetyl residues are attached to
the backbone in galactoglucomannans (5). Enzymatic hy-
drolysis of 3-mannan is accomplished by 1-D-mannanase
(1,4-P-D-mannan mannohydrolase, EC 3.2.1.78) and a-man-
nosidase (P-D-mannoside mannohydrolase, EC 3.2.1.25).
,-Mannanases have been isolated from a number of bacte-
rial, fungal, and plant sources (2-4, 9, 12).
A P-mannanase gene from an alkalophilic Bacillus sp. has

been sequenced, cloned, and expressed in Escherichia coli
(1), and we reported the cloning, sequencing, and expression
of a 1-mannanase gene from the obligately anaerobic, ex-
tremely thermophilic bacterium "Caldocellum saccharolyti-
cum" (10). The mannanase gene was found to be located
between the genes for two cellulases on the genome of this
organism. Extensive sequence analysis showed that these
cellulases are multidomain enzymes (14, 18). Re-examina-
tion of DNA sequences in the vicinity of the P-mannanase
suggested homology with repetitive domains of the cellu-
lases. In this report, we describe sequence analysis of the
,-mannanase and identification of repetitive domains and
show that contrary to our earlier report, the mannanase is a
catalytic domain of a multidomain protein that also ex-
presses endoglucanase activity.

MATERIALS AND METHODS
Plasmids. The construction of plasmids pNZ1019 and

pNZ1609 has been described (10). A detailed restriction map
of pNZ1609 was generated, and a number of deletion deriv-
atives were constructed by using restriction enzyme sites in
the pBluescript vector (16). The 608-bp EcoRV fragment was
inserted in each orientation into vector mplO and sequenced.
All plasmids were transformed into strain PB1427 (F- thr-1
leuB6 lacYl supE44).

Sequence analysis. Sequence analysis was carried out on
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double- or single-stranded DNA, as appropriate, by using a
cycle sequencing protocol provided by Applied Biosystems
Ltd. for use with the ABI 373 automated sequencer. All
DNA was sequenced on both strands (see Fig. 1).
PCRs. Four primers were designed to allow amplification

of domains 1 and 4 by using the polymerase chain reaction
(PCR). The primers were designed to incorporate restriction
enzyme sites at the 5' and 3' ends of the amplified fragment
to allow directional cloning of the PCR product in expression
vector pJLA602 (15; see Fig. 2B). Primers Man8 and Manll
allowed amplification of the 1-mannanase domain, primers
ManlO and Man9 allowed amplification of domain 4, and
Man8 and Man9 allowed amplification of the entire fragment.
The individual domains were amplified in the PCR (2.5 mM
MgCl2), cut with restriction enzymes, isolated from a 1%
agarose gel using Geneclean (Bio 101), and ligated into
pJLA602 cut with BamHI and SphI.

Assays for mannanase and cellulase activities. Transfor-
mants that carried the correct plasmids were patched onto
LB agar plates containing 50 ,ug of ampicillin per ml, grown
overnight at 30°C, and induced at 42°C for 3 to 6 h. Replica
plates were overlaid with the appropriate substrate in soft
agar and incubated at 70°C for 6 h. Enzymatic activity was
determined qualitatively by using the Congo red procedure
of Teather and Wood (17) as described previously (14).

RESULTS AND DISCUSSION

Sequence of the manA gene. Examination of the sequence
of the manA gene (Fig. 1) shows that there is a single open
reading frame from positions 841 to 4834 (total, 3,996 bp)
which could code for a putative ManA protein of 1,332
amino acids. This statement contrasts with the 1,041-bp
(347-amino-acid) open reading frame that we reported pre-
viously which has P-mannanase activity (10). This protein is
composed of four domains separated by long runs of threo-
nine-proline repeats (PT boxes). This structure is seen in the
ceLA-encoded and celB cellulases from "C. saccharolyti-
cum."
The putative structure of the mannanase gene is shown

diagrammatically in Fig. 2, which shows that domains 1 and
4 are catalytic domains and domains 2 and 3 are putative
common substrate-binding domains.
Enzyme activity of strains carrying cloned PCR-amplified

fragments. Individual transformant colonies of E. coli
PB1427 carrying plasmids pNZ2005 to pNZ2010 inclusive
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AAGTGGGTAAGCTGGATAAAGGAGTGTAGTGAAGTTGAATAGTGATrGATACATTTGCGATACCATCGACGCT TGATTGGAGTGGGCAGGCCAGACACATGGA

CAGTGCAGGGACGAAGAAGTATGGGGTATTTGATGAGGAGCGAAGAGATTTAGCGAlGGAATTGCTGGACAGGATGTGGAAGTTATACAGGGATGAGAA
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pNZ2009 + + + + + + 16.2

pNZ2005 _ W W w < 0.7

pNZ2006 _ + + + 26.9

pNZ2008 w + + + nt

pNZ2007 _ W + + + nt

pNZ201 0 . . . . . . .nt

FIG. 2. Subcloning of ,3-mannanase binding and catalytic do-
mains by PCR. (A) Restriction enzyme sites and structure of the
full-length P-mannanase domains. Regions: Dl, domain 1 of ,-man-
nanase; D4, domain 4 (carboxymethylcellulase); D2 and D3, puta-
tive common substrate-binding domains. DNA restriction site ab-
breviations: B, BamHI; Ev, EcoRV; H, HindIII; N, NcoI. (B)
Locations of forward and reverse PCR primers in the amplification
of catalytic and putative binding domains of 3-mannanase and
endoglucanase. Nucleotide sequences of PCR primers: Man8, 5'-
AGAAATGCATGCGTGTACTATGTACAG-3'; Man9, 5'-TTTTlC
CAGATCTrAAGC'TTCACAT'm7G-3'; ManlO, 5'-CAGGAAGCAT
GCAAATITAGCCCGTATA-3'; Manll, 5'-TGCATTAGATCT'TTA
CCATTGTCCCCA-3'; Manl3, 5'-TTGGTTGGATCCATATATAT
ACGGGCT-3'; Manl4, 5'-TAATGGCATGCGTACATCTT7CTACA
CC-3'. (C) Diagrammatic representation of cloned portions ofmanA
and their enzymatic activity as measured with plate tests and by
release of reducing sugar. Units are expressed as micromoles of
reducing sugar released from locust bean gum per min. +, strong
clearing in Congo red assay (14); w, weak activity, -, no activity;
nt, not tested. Substrate abbreviations: GBG, guar bean gum; LBG,
locust bean gum; KG, konjac glucomannan; CMC, carboxymethyl
cellulose; OSX, oat spelt xylan; Lich, lichenan.

were patched to L agar-ampicillin plates, grown overnight at
37°C, and replicated to fresh plates which were overlaid with
soluble hemicellulose or cellulose substrates.

Figure 2C shows that domain 1 hydrolyzed only mannan,
whereas domain 4 hydrolyzed carboxymethyl cellulose, oat
spelt xylan, and lichenan and had weak activity on konjac
gum. The complete gene had much greater activity than the
individual domains, as judged by the extent of the zone of
clearing on mannans, suggesting that the binding domains
facilitate hydrolysis. We attribute this increased activity to
the presence of the binding domain in pNZ2006, as all
recombinant plasmids had identical sequence structures
between the promoter and the initiation codon, which in-
cluded the same distance of the expressed proteins from the
ribosomal binding site to the ATG. Polyacrylamide gel
analysis showed that approximately equal amounts of the
proteins were synthesized in E. coli. Thus, we conclude that
the reduced specific activity of pNZ2005 compared with that
of pNZ2006 reflects a reduction of the catalytic activity of
the enzyme lacking the binding domain, although we did not

FIG. 1. Sequence of the SmaI-HindIII fragment from the Caldo-
cellum genome containing the 1-mannanase gene. GenBank acces-
sion number, L01257. The proline-threonine-rich areas are boxed.

VOL. 58, 1992

S T P K Y T K A E I Y G F D S N S P E Y K K M G N -- D N I E S N V
4710 4730 4750 4770 4790

ATTTACACTTGAGGT TCCCAAATTTAACGGSTGTATCACATAGTATTACGTTAGATTT CAATGTAAGCATAAAAATTATACAAAATGAGGTTATAAAATT C
F T L E V P K F N G V S H S I T L D F N V S I K I I Q N E V I K F

4810 4830 4850 4870 4890
ATAAGGAATTT GGTTTTTATGAGGGCTCTGGTGTAATGCCAAAGTGGCAAT TGATAATGTAACTTGGACGTAAGAATTGTGTCAAATATGTTGATAGTAT
I R N L V F M R A L V '

4910 4930 4950 4970
TTTTGCAACAGAGGTTGAAATATTTTCAAAATGAGCATTGTTAATTTAAATAGACTGAGAGCACAAA GTGGAAGC TT



3866 GIBBS ET AL. APPL. ENVIRON. MICROBIOL.

S N H H N N BE Sm
I I

N N A BE HH H HN
1V 11

Homology: C. fimi cenB,
Avocado
cellulase

Actity: Endoglucanase

None None None C. ffmi cox, C. therm.
C.sacch. xynA celB

C.sacch.
ce/A

domain 1

Unknown 3-mannanase Endoglucanase Xylanase Endo- Endo-
xylanase cellobiohydrolase glucanase glucanase ?

Key to Restriction Enzymes * Putative Binding domain (CBD)
A AatII1 N Ncol
B Bam Hl Sm Sma - PT box
E EcoRI S Sphl

IH HindllI

0 1 2kb

FIG. 3. Diagrammatic representation of multidomain enzymes on a A recombinant from a genomic library of "C. saccharolyticum." All
of the DNA indicated was sequenced on both strands.

test the unlikely possibility that these results reflect differ-
ences in mRNA stability.

Quantitative assays of the enzymatic activity of partially
purified extracts of the PCR-generated recombinants, as
measured by release of reducing sugar with locust bean gum
as the substrate (10), showed that the I-mannanase had only
weak activity without the binding domains which, by them-
selves or in trans, had no activity or effect on the P-man-
nanase activity of the catalytic domain (Fig. 2C). The
specific enzymatic activity of bacteria carrying pNZ2005 was
less than previously reported, but this can be accounted for
by the different vectors used to construct pNZ2005 and
pNZ1611, which carries the truncated manA gene without
binding domains (10).

Homologies between binding domains and PT boxes. The
genes celA, ceiB, and manA are closely linked on the
genome and were isolated on a single A clone (NZXP2; Fig.
3). These genes code for multidomain-multifunction en-

zymes (10, 14, 18). Each shares a common sequence which
codes for a domain which is involved in binding of the
enzyme to insoluble substrates. Both manA and celA have
two copies of this domain, while celB has only one. In

CelB D2
ManA D2
ManA D3
CelA D2
CelA D3
BsCelD QDN QENGSAGDGGVN { ATi _iAK
BsGluc2 KDK QENG iRAGDGSMN Q I K; 4TT D

CelB D2
ManA D2
ManA D3
CelA D2
CelA D3
BsCelD -NK 1FD C_ _ aU; _ _ T-

BsGluc2 -NKX DinrEttKPKQ_INgT-

CelB D2
ManA D2 T

ManA D3 S
CelA D2
CelA D3
BsCelD GEYFE-FKTTKTTEII
BsGluc2 34L[L SGyEFKN -KTTKI K I14*

FIG. 4. Alignment of the five common binding domains of CelB,
ManA, and CeIA with two domains from B. subtilis cellulases.
Conserved residues are in white letters. The relative positions of the
domains CeIA D2, ManA D2, ManA D3, CeIA D2, and CeIA D3 can
be seen in Fig. 3. BSCelD, B. subtilis CelD (13); BsGluc2, B. subtilis
j3Gluc2 (11); *, termination codon.

addition to the binding domains, these enzymes have two
catalytic domains; celB has an endoglucanase domain and a

domain which, by inference from homologous proteins, is a
cellobiohydrolase (exoglucanase). The proteins encoded by
manA and celA have, respectively, mannanase and endoglu-
canase N-terminal domains and two further C-terminal do-
mains, of which one is an endoglucanase and the other has
no recognized enzymatic activity. The domains on each
enzyme are separated from each other by PT boxes (long
runs of proline-threonine repeats) which are known to act as
flexible hinges between functionally distinct portions of
proteins.
The five binding domains share a very high level of

homology, differing by no more than 3% at either the
nucleotide or amino acid level (Fig. 4), and they have
moderate homology with two cellulases from Bacillus sub-
tilis (11, 13) (Fig. 4).
Din et al. (6) have shown that the binding domain of

Cellulomonasfimi CenA is involved in nonhydrolytic disrup-
tion of cellulose fibers, allowing penetration of the catalytic
domain and hydrolysis of the cellulose substrate. We have
shown that the activity of ManA is substantially enhanced by
the presence of the binding domain in cis. The binding
domains for these enzymes may be significant in the degra-
dation of solid substrates, but their effect may not be obvious
when soluble substrates are used in the laboratory. The
overall structure of catalytic domain-PT box-binding domain
is common among fungal and bacterial cellulases (7), but the
presence of more than one binding domain and catalytic
domain is unique to "C. saccharolyticum."
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