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Abstract
HIV-1 Associated Dementia (HAD) is a significant consequence of HIV infection. Although multiple
inflammatory factors contribute to this chronic, progressive dementia, excitotoxic damage appears
to be an underlying mechanism in the neurodegenerative process. Excitotoxicity is a cumulative
effect of multiple processes occurring in the CNS during HAD. The overstimulation of glutamate
receptors, an increased vulnerability of neurons, and disrupted astrocyte support each potentiate
excitotoxic damage to neurons. Recent evidence suggests that poorly controlled generation of
glutamate by phosphate-activated glutaminase may contribute to the neurotoxic state typical of HAD
as well as other neurodegenerative disorders. Glutaminase converts glutamine, a widely available
substrate throughout the CNS to glutamate. Inflammatory conditions may precipitate unregulated
activity of glutaminase, a potentially important mechanism in HAD pathogenesis.
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Introduction, 2
Human immunodeficiency virus has had a profound impact on global health. With worldwide
infections near 40 million and approximately 20 million attributable deaths, HIV continues to
be a growing problem (1). HIV notoriously targets the immune system, progressively degrading
the host defense system until opportunistic infection or systemic failure results in a fatal
outcome. In addition to the attack on immune function, HIV is also linked to a syndrome of
cognitive and motor dysfunction termed HIV-associated dementia (HAD) (2). This frank
dementia is a result of neuronal cell dysfunction and death in the CNS, yet HIV rarely infects
neurons. While much research has investigated this viral induced dementia, a clear mechanism
for neuronal damage has yet to be established.
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HAD is the clinical consequence of a persistent inflammatory process in the CNS causing
neurotoxicity. HIV-1 infection of the brain occurs in the early stages of infection (3), with
evidence supporting CNS invasion during the primary viremia that accompanies
seroconversion (4). Peripherally infected monocytes cross the blood brain barrier, seeding the
brain with virus (5–7). HAD is a diagnosis of exclusion and typically only manifests during
the later stages of disease. The dementia includes a spectrum of neurological impairments
including forgetfulness, apathy, hallucinations, delirium, coma, and ultimately death (2,8). The
dementia once affected 20–30% of those with advanced HIV, but this number has decreased
since the advent of Anti-Retroviral Therapy (ART) in developed countries to around 10% (9,
10). However, ART cannot completely protect from or reverse HAD (9). A more subtle
collection of cognitive impairments associated with progressive HIV infection termed minor
cognitive/motor disorder (MCMD) exists in 30% of infected individuals (11,12). Both the
number of newly infected individuals and life expectancies of those with HIV continues to
rise, and thus the prevalence of HAD has increased as well, making this dementia the most
common type for those under the age of 40 (13). Accordingly, HAD is an increasingly
significant effect of HIV infection.

The pathologic correlate to HAD, HIV encephalitis (HIVE), is characterized by activated
macrophage and microglia, damage of neuronal dendrites and axons, and apoptotic neurons.
Productive viral infection is found primarily in mononuclear phagocytes (MP; perivascular
and parenchymal macrophages and microglia) (5). In HIVE, infected and activated MP are
characterized by the formation of multinucleated giant cells, microglial nodules, and
macrophage infiltration into the CNS (14). Because viral products are produced and released
in the CNS, neuronal death can be induced through two paths, either directly by viral proteins
such as gp120, or indirectly through the inflammatory process of HAD. Macrophage derived
neurotoxic products are amplified within the brain as a consequence of productive viral
infection and persistent immune activation (15). The congregating immune cells fail to
eliminate the immunologic insult but continue to produce additional toxins, inflammatory
factors, and virus establishing a chronic state of inflammation leading to neurodegeneration.

The release of various factors by MP including cytokines, viral proteins, excitotoxic amino
acids and metabolic factors play contributory roles in the development of HAD. Excitotoxic
amino acids such as glutamate have been suggested to contribute to neurotoxicity and the
neurodegenerative process (16–20). The predominant excitatory neurotransmitter expressed
within the mammalian CNS, glutamate mediates numerous physiological functions through
activation of multiple receptors (21–23). However, high concentrations of extracellular
glutamate are known to induce neuronal damage (24–27). HIV-1-infected patients have been
reported to have significantly higher plasma concentrations of glutamate as compared to
uninfected controls (28,29). HIV-1 infected macrophages appear to be an important source of
extracellular glutamate (20), this glutamate production has recently been linked to the activity
of phosphate-activated mitochondrial glutaminase (30). Glutaminase catalyzes the conversion
of glutamine to glutamate, is the primary enzyme for the production of glutamate in the CNS
(31–34) and is also the predominant glutamine-utilizing enzyme of the brain (35,36). Improper
regulation of this enzyme through changes in enzyme activity, expression level, or localization
may lead to excitotoxic damage of neuron populations (Fig. 1). This review will discuss HAD
and the priming of neuron populations for excitotoxic damage. In addition, the current
understanding of glutaminase activity and its potential contributions to neurodegeneration will
be presented.

Macrophage Driven Pathogenesis, 3
Macrophage and microglia are the resident CNS cell population productively infected by
HIV-1 (37) and the primary route of viral entry through the blood brain barrier, as such, MP
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are crucial to HAD pathogenesis. However, the number and localization of infected cells does
not explain the extensive and diffuse pathology found in HAD. Apoptotic neurons do not
strictly co-localize with infected cells, supporting an indirect or soluble factor mechanism of
toxicity (38). Transient exposure of otherwise healthy cells to viral particles can be sufficient
to trigger cascades resulting in production of inflammatory factors that ultimately lead to
neuronal damage (39). Various viral proteins such as gp120, Tat, Nef, Vpr, and gp41 induce
neuronal injury as has been well-established in various culture systems and animal models, but
to what extent and in what conditions the viral proteins induce toxicity in vivo is still unclear
(40). Viral particles, however, are not the only mediators of CNS dysfunction and neuron
toxicity. HIV-induced encephalitis is associated with immune activation of glial cells that
results in alterations of normal cell biology, notably secretory functions (41–45). Improper
regulation of these factors can lead to impaired cellular functioning, modified neurotransmitter
action, amplified inflammation and neuronal damage. Various potential neurotoxins are
generated and released during the inflammatory process including reactive oxygen species,
tumor necrosis factor-α (TNF-α), arachidonic acid, platelet-activating factor (PAF), nitric
oxide, quinolinic acid, and glutamate (20,30,46–52).

A great deal of research has been conducted on HAD pathogenesis, and a multitude of factors
have been identified with the potential to cause neuronal harm (53). Disease pathogenesis
undoubtedly involves many of these different factors and processes; however, there may be
fundamental or initiating cascades that drive the degenerative process of HAD as well as other
CNS disorders. Characterizing the mechanism of neuronal demise is challenging in a slow
progressive disorder with profound variations between individuals whom experience unique
courses of infection. While multiple factors play important roles in MP mediated neuronal
injury, accumulated evidence in various neurodegenerative disorders seems to indicate
glutamate excitotoxicity as a prominent mechanism of neuronal damage. Excitotoxicity is the
end product in a complex system that involves a confluence of factors leading to a state of
heightened vulnerability of neurons to excitation in conditions with elevated excitatory toxins.
Through the priming of neuron populations, the disruption of astrocyte support, and the excess
generation of glutamate and other excitatory amino acids, excitotoxicity is a critical process in
HAD.

A number of toxic factors released from mononuclear phagocytes in HAD affect neurons
through excitotoxicity. Supernatants of HIV infected monocytes are known to cause NMDA
receptor dependent cell death (20,54–57). Excitotoxic amino acids (EAA) notably glutamate,
as well as related substances including quinolate, cysteine and Ntox, a neurotoxic amine, target
glutamate receptors potentially leading to Ca2+ dysregulation and cell death. (18,20,58). The
inflammatory process of HAD potentiates glutamate excitotoxicity through multiple factors
including PAF, TNF- α, IL-1β, and various HIV proteins (59–66). Glutamate excitotoxicity
may be the common pathway to cognitive dysfunction (67). In conjunction with the release of
a variety of EAAs, extracellular glutamate levels are known to be increased in a variety of CNS
inflammatory disorders. There are multiple potential sources of this excess glutamate including
release from dying cells, alterations in homeostasis, and the generation of excess glutamate
through enzymatic activity.

Glutamate Function and Homeostasis, 4
Glutamate Homeostasis

Glutamate regulation is highly energy dependent and many brain functions revolve around the
production, release, and consequent removal of glutamate from the extracellular space.
Intracellular glutamate is abundant, and provides an important metabolic product and fuel that
is integral to the TCA cycle yielding energy or to be used in intracellular signaling, protein
synthesis, and ammonia fixation. Glutamate in plasma is relatively high, but the blood-brain
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barrier efficiently prevents entry into the CNS, requiring the brain to produce nearly all of the
present glutamate. Glutamate is produced by various cells in the brain and is released by
neurons as a transmitter, but extracellular concentrations are kept low. While diffusion allows
some glutamate to clear synapses, there is no enzymatic consumption of glutamate, and
consequently, most must be actively removed. This removal is generally the role of the
supporting astrocytes.

The primary mechanism to remove extracellular glutamate is uptake through excitatory amino
acid transporters (EAATs). Five subtypes have been cloned: EAAT1/GLAST (glutamate-
aspartate transporter, EAAT2/GLT-1 (glutamate transporter), EAAT3/EAAC1 (excitatory
amino acid carrier), EAAT4, and EAAT5, with EAAT1 and EAAT2 expressed predominantly
in astrocytes. These transporters utilize Na+ gradients to drive glutamate and aspartate into the
cell against their concentration gradients. The GLAST and GLT expression at specific parts
of the astrocyte membrane depends on the surrounding cells. Regions of the astrocyte
membrane facing neurons have high concentrations of GLAST and GLT, while regions facing
capillary epithelium have low concentrations (68). Another piece of evidence that glutamate
transporters are localized to specific regions is that EAAT5 has a protein-binding domain on
its C-terminal similar to the PSD-95 binding domain of NMDA receptors, which would localize
EAAT5 to synaptic areas (68,69).

Returning glutamate to neurons through the extracellular space poses the danger of interfering
with concentration dependent signaling, yet neurons cannot sustain the production of glutamate
without a supply of TCA intermediates from supporting astrocytes (70). The biological
response is the conversion of glutamate to glutamine in astrocytes, which is then made available
to neurons once released back to the extracellular space. This sets up an exchange called the
glutamate-glutamine cycle where there is glutamate release, uptake, conversion and then
subsequent release. This process, however, is not simply a one for one exchange, where each
glutamate removed from a synapse is converted over to glutamine. The efficiency of the
glutamate-glutamine cycle is dependent upon the compartmentalization of key enzymes to
neurons or astrocytes. Glutamate is a valuable metabolic fuel that can also be oxidatively
degraded by astrocytes. Synaptic glutamate is cleared by supporting astrocytes, where it is
either metabolized or converted to glutamine by the astrocyte specific glutamine synthetase,
an enzyme absent in neurons (71). This glutamine is then released back to the extracellular
space where glutamine is widely available, and does not possess the transmitter potential of
glutamate. Neuron populations efficiently take up glutamine, where it is then hydrolyzed by
phosphate-activated glutaminase (PAG) to glutamate. PAG is known to be present in both
neurons and astrocytes, thus neurons cannot generate glutamine, but both neurons and
astrocytes can form glutamate from glutamine (Fig. 2).

Glutamate Receptors
Glutamate is the major mediator of excitatory synaptic transmission in the mammalian CNS
and is critical to cognition, memory, learning, as well as playing vital roles in development,
migration, and differentiation. Glutamate acts on several receptor types, which are classified
into three ionotropic classes: N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionate (AMPA) receptors, and kainate; and three metabotropic classes
(72–74). Ionotropic receptors are ion channels that open upon the binding of glutamate, leading
to the influx of sodium and/or calcium and the efflux of potassium, while metabotropic receptor
activation leads to G-protein coupled release of Ca2+ from intracellular stores (73,75).

NMDA receptors are tetra-heteromeric structures permeable to sodium, potassium, zinc and
calcium (72). At normal physiological resting membrane potential, magnesium blocks the
channel pore (76); when removed, the ligand activated NMDA receptor allows an influx of
calcium, leading to postsynaptic depolarization and action potential in the postsynaptic neuron
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(77). NMDA receptor antagonists can block most excitotoxic effects of glutamate (78).
Calcium entering through over-activated NMDA receptors results in more cell death as
opposed to calcium entering through non-NMDA glutamate receptors or voltage-gated calcium
channels, suggesting NMDA receptor-mediated neurotoxicity occurs through distinct calcium
signaling pathways that may involve the NMDA receptor-specific interaction with PSD, a
family of postsynaptic scaffold proteins (75,79).

AMPA receptors are permeable to sodium, potassium, zinc and occasionally calcium. The
efficiency of calcium permeability through AMPA receptors is highly dependent upon the
combination of subunits making up the heteromeric receptor (80) (81). The pre-mRNA editing
of one subunit, GluR2, causes the replacement of a neutral glutamine with a positively charged
arginine residue in the channel-forming membrane loop segment (82). Presence of an edited
GluR2, as is the case in an overwhelming majority of cells expressing AMPA, renders the
heteromeric receptor mostly impermeable to calcium (80,81). Calcium-impermeable AMPA
receptors can still cause excitotoxicity by allowing sodium influx to slightly depolarize the cell
membrane, leading to the subsequent activation of NMDA receptors (83,84), as has been
demonstrated by multiple investigators (84–88).

Kainate receptors are heteromeric receptors permeable to sodium, potassium, and sometimes
calcium (89). Excitotoxicity resulting from kainate receptor stimulation may proceed by
apoptotic pathways rather than the necrotic pathway sometimes observed with NMDA receptor
mediated cell death (90). Excitotoxicity enhanced by kainate receptor activation may be due
to release of glutamate and sodium influx to depolarize the membrane and release the
magnesium blockade of NMDA, leading to the subsequent activation of NMDA receptors
(83,84,91).

Metabotropic glutamate receptors have been grouped into three categories (Group I–III) based
on pharmacological properties, signal transduction mechanisms, and sequence similarities.
Group I mGlu receptors play a role in regulating multiple calcium, potassium, and non-selective
cationic channels as well as NMDA, and AMPA receptors, which may influence the firing
patterns of neurons (92,93). Group I mGlu receptors potentiate NMDA receptor activation,
thus effecting transmission, synaptic plasticity, and the generation of long-term potentiation
(93,94). Group II and III mGlu receptors inhibit various calcium channels and may inhibit
presynaptic release of neurotransmitters (92,93,95). Group I mGluR activation may enhance
neurodegeneration through excitotoxic mechanisms, while Group II and III mGluR stimulation
may be neuroprotective (96).

Excitotoxicity
Glutamate regulation is critical because improper management of glutamate levels may impair
not only its signaling properties, but can lead to cell death via excitotoxicity (78,97). The
concept of excitotoxicity was first proposed by Olney in 1969 as a toxic effect of excessive or
prolonged activation of receptors by excitatory amino acids (EAA) (98). Excitatory amino
acids refer principally to glutamate (glutamic acid), but also include various metabolites that
act via glutamate receptors including endogenous molecules such as aspartic acid, quinolinic
acid, homocysteic acid, and exogenous molecules such as NMDA and kainate (reviewed in
(84)). Excessive or persistent activation of glutamate-gated ion channels, resulting in
inappropriate regulation of glutamatergic neurotransmission has been implicated in a wide
range of neuronal degenerative processes (99). The prolonged activation of glutamate receptors
or alteration in proper glutamate receptor function results in a pathological increase in free
intracellular Ca2+.

The EAA induced neurotoxic response is classically comprised of two stages: an initial influx
of extracellular Na+ and Cl− and a secondary influx of Ca2+ through the opening of NMDA
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receptor channels and or voltage gated Ca2+ channels. Excitotoxic cell death can occur directly
via two mechanisms, one rapid and necrotic while the second is delayed and through apoptosis.
The fast mechanism is instigated by the massive influx of Na+ ions following overstimulation
of glutamate receptors. This influx disrupts cell homeostasis via hypertonic-induced swelling,
ATP depletion and ultimately membrane failure and necrotic cell death. The delayed
mechanism is independent of cell swelling, and involves Ca2+ influx that triggers multiple
neurotoxic cascades including p38 and JNK MAP kinase activation, release of cytochrome c,
caspase activation, lipid peroxidation, and chromatin condensation (40,100–102). The massive
influx of Ca2+ triggers release of Ca2+ from intracellular stores, further flooding the
intracellular space with free Ca2+ (Fig. 3).

A critical by-product of over stimulation via glutamate is the generation of reactive oxygen
species, ROS (reviewed in (103)). One mechanism of radical generation is through the
activation of neuronal nitric oxide synthase (nNOS), and the consequent generation of nitric
oxide, NO. PSD-95 specifically interacts with NMDA receptors and nitric oxide synthase. The
close proximity of NMDA and nNOS mediated by PSD-95, may account for preferential
activation of nNOS and subsequent toxicity caused by calcium influx through NMDA receptors
as opposed to non-NMDA receptors (75,104). NO readily combines with superoxide anion
(O2-) and forms highly reactive peroxynitrite (ONOO-) all leading to oxidative stress and
further mitochondrial injury (105).

The presence of excess glutamate may cause CNS oxidative stress through glial cells such as
macrophage and/or microglia by another mechanism. A glutamate/cystine exchanger brings
one cystine into the cell in exchange for one internal glutamate (106). Extracellular glutamate
inhibits cystine uptake, and if the concentration of extracellular glutamate is high enough,
cystine may be released as glutamate enters through the exchanger. This loss of cystine may
facilitate oxidative stress due to the requirement of cysteine for the synthesis of glutathione, a
critical antioxidant (68).

Mitochondria are a critical site in the evolution of an excitotoxic event. Mitochondria generate
ATP, consume oxygen, produce free radicals, and mobilize intracellular Ca2+ (107).
Mitochondria have the ability to sequester large amounts of Ca2+, however, this carries a risk
for mitochondrial dysfunction (103). Through the disruption of mitochondrial potential, excess
Ca2+ can reduce ATP synthesis, rendering a cell more vulnerable to death. In addition,
mitochondrial dysfunction also leads to increased generation of ROS. Mitochondria appear to
be the primary mediators of cell death caused by abnormal levels of intracellular Ca2+ during
excitotoxicity (108,109).

The capacity to respond to stress determines the viability of individual cells. The influx of
Na+ and Ca2+ ions requires significant energy expenditure to re-establish normal gradients.
This energetic burden is even greater in cells with limited mitochondrial capacity due to
oxidative damage or Ca2+ overload. In addition, the capacity of surrounding glial support cells
to remove extracellular glutamate, as well as provide trophic factors also contributes to cellular
outcome. Cell death is typically not rampant, particularly in chronic disease states. The
interpretation of various external and internal factors by individual neurons ultimately
determines the outcome of each cell. In a toxic inflammatory environment, the most susceptible
regions and cells will be selectively targeted for impairment.

While the benchmark for neurotoxicity has classically been cell death, synaptic dysfunction
may be a better measure of neurodegeneration (excellent review by Bellizzi (110)). In a disease
of chronic inflammation, incremental stages of increasing stress do not immediately
overwhelm a cell’s capacity to respond, the stress required to overwhelm cellular repair and
homeostatic mechanisms compromise synaptic function long before the induction of cell death
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mechanisms. In HAD, damage to dendritic arbors and reduction in synaptic density are
important neuropathological signatures of HIVE (111,112). This type of damage to the neural
network is thought to be an early event in the pathway leading to neuronal dropout via apoptosis
(55,113). Although, a direct link between HIV-1 infection of brain macrophages and alterations
in the dendritic arbor and synaptic density has been suggested (55,113), the factors from HIV-1
infected macrophages and the signaling pathways through which HIV-1 mediates damage to
the neuronal network has yet to be elucidated. An important note is neuronal damage that spares
the cell body is often reversible, with removal of the neurotoxic stimulus allowing recovery of
functional synapses (114–117). Excitotoxicity seems to play an important role in this process
(113,118). The clinical manifestations of cognitive dysfunction in neuroinflammatory states
may be better ascribed to accumulating synaptic damage.

As is often the case in chronic CNS disorders, insult resulting in disruption of homeostasis has
the potential to establish an amplification cycle that is difficult to interrupt. Excitotoxic insult
activates glutamate receptors, increasing energy consumption and the production of oxidative
radicals. With time, mitochondria may begin to fail, or sufficient cellular damage can result in
the induction of death processes. Necrotic or apoptotic death of cells may lead to amplification
of inflammation and the targeting of additional cells for stress and perhaps elimination (119).
As cell damage increases, released chemotactic factors recruit additional effector cells such as
MP, resulting in further amplification of the neurotoxic inflammatory cycle (120). The CNS
may be ill-equipped to interrupt this type of excitotoxic positive feedback cycle, a potentially
important process to many neurodegenerative disorders.

HAD Potentiation of Excitotoxicity, 5
The Priming of Neurons

There is general agreement that HIV does not infect neurons (5,7), and while there is evidence
for direct effects of viral proteins upon neuron viability, the indirect form of neurotoxicity
seems to predominate (40,121,122). Supernatants from HIV-1 infected MP induce NMDA
receptor dependent neurotoxicity (20,55). This effect is mediated through upregulation of
neurotoxins that directly target NMDA receptors, and indirectly through inflammatory
mediators produced by MP that injure neurons by increasing vulnerability to Ca2+ dependent
glutamate excitotoxicity. This is not a HIV specific phenomenon, beta-amyloid stimulated
microglial cultures induce neuronal cell death, dependent upon TNF-α and co-activation of
NMDA receptors (123). This type of neurotoxicity is probably aggravated by inflammatory
cytokines such as IL-1β, TNF-α, arachidonate, free radicals and viral protein (37). For instance,
PAF was recently shown to sensitize neuron synapses to glutamate, causing excitotoxicity from
typical synaptic transmission (124); whereas IL-1β was shown to trigger phosphorylation of
NMDA receptors, increasing Ca2+ influx (125). In HAD, gp120 was shown to interact with
the glycine binding site on NMDA receptors, and Tat protein was shown to synergistically
enhance the NMDA specific neurotoxic response (126,127). Thus, even without change in
glutamate levels, neurons in inflammatory states are susceptible to excitotoxic effects.

Impairment of Astrocytes in HAD
In the brain, microglia/macrophage are the primary targets of HIV-1 infection (128), but in
vivo infection of astrocytes has been documented in multiple studies (129–136). Astrocytes
present an abundant CNS target, but the course of infection is generally a long-term latent
process. These infected astrocytes lack the productive infection characteristic of MP cells, and
express predominantly viral regulatory genes rather than structural genes (132,135). However,
any lack of infective robustness does not diminish the importance of astrocyte dysfunction in
the dementia process. Astrocytes are critical to maintaining homeostasis, preserving the
integrity of the blood brain barrier and regulating extracellular glutamate (68,137). Increasing
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evidence also supports a role for astrocytes in signal transmission through modulation of
synapses and neuronal function (138–141).

Uptake of the excitatory amino acid glutamate from the synaptic cleft is pivotal to glutamatergic
neurotransmission and avoiding excitotoxicity (142). The glutamate uptake mediated through
the EAAT transporters results in concentration gradients of glutamate 10,000 times greater
inside the cell as compared to extracellular space (143). In vivo, mice lacking EAAT2/GLT-1
develop epilepsy and increased susceptibility to glutamate (144). In experimental autoimmune
encephalitis (EAE), impaired glutamate clearance and degradation by astrocytes and
oligodendrocytes has been observed (145–147). Thus, there is a clear connection between
improper uptake capacity and CNS damage. Products of HIV infection, gp120 and TNF-α,
inhibit glutamate uptake by astrocytes (148,149). Compounding these effects, HIV-1 has been
shown to downregulate glutamate transporter EAAT2, causing disruptions in glutamate uptake
(149). Further, G-protein linked mGlu receptors may cause increased intracellular Ca2+,
leading to glutamate release from astrocytes (150). Astrocytic release of glutamate has been
shown to be stimulated by arachidonic acid, TNF-α, and CXCL12 (50,148,151). In addition,
numerous studies have indicated a potential for the reversal of glutamate uptake, causing further
glutamate dumping (152,153).

Excess Generation of Extracellular Glutamate in HAD
Increased extracellular glutamate is a common theme to various neurodegenerative disorders
(68). Increased Glu has been found in CSF of acute MS patients (154) and secondary
progressive MS (155). Excess glutamate has also been found in HAD patient populations
(156). Increases in extracellular glutamate are known to occur through a variety of mechanisms
including reversal of glutamate uptake carriers, impairment of membrane integrity, swelling-
induced opening of anion channels, compromise of the blood brain barrier and enzymatic
conversion of glutamine to glutamate (157). The relative contribution of these mechanisms is
still unclear, and other processes may cause substantial glutamate accumulation.

Glutaminase, 6
Compartmentalization of glutamate is critical, however glutamine is abundant in the
extracellular space, the highest concentration of any amino acid in brain extracellular fluid
(158). Glutamine is freely passed between cells, and does not pose the excitotoxic threat of
EAAs. Phosphate-activated glutaminase (PAG, EC 3.5.1.2) is a mitochondrial enzyme that
catalyzes the deamination of glutamine to glutamate, a hydrolysis resulting in stoichiometric
amounts of glutamate and ammonia. There are two loci in humans that yield structurally related
but distinct glutaminase enzymes. Liver type glutaminase (LGA) is primarily expressed in
periportal hepatocytes, although transcripts have been found in the brain (159). Kidney type
glutaminase (KGA) is abundant not only in the kidney, but also the brain, intestine, liver,
lymphocytes and various tumors (34). Although LGA is present in the brain, the ratio of LGA
to KGA is very small, with most brain glutaminase being of the kidney type (160). Any isoform
specific function has yet to be identified, although some work has identified unique molecular
interactions of liver versus kidney type glutaminase in the brain (161). Much of the interest in
glutaminase has stemmed from its association with various cancers, where glutaminase activity
is hypothesized to be critical in tumor growth and a potential target for treatment (162,163).
Various tumors have been linked to glutaminase overexpression (164–167). These findings
indicate the potential for isoform specific regulation of glutaminase in various circumstances.

KGA, found on chromosome two in humans (168) is located immediately next to the STAT1
gene (169). KGA has various isoforms generated through tissue specific alternative splicing.
The first 16 N-terminal amino acids of KGA encode a mitochondrial targeting sequence
(170); after trafficking, KGA is trimmed resulting in a 66kd protein. Elgadi et. al. first described
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two additional isoforms hGAM and hGAC; hGAM is only found in cardiac and skeletal muscle,
while GAC is known to be present in the brain (166). All KGA isoforms, share 5’ sequence
regions but vary significantly in both 3’ coding and non-coding regions. The GAM isoform
contains a significantly reduced coding region and is presumed nonfunctional. GAC mRNA
is produced by alternative splicing of a single exon within the KGA gene (171). The resulting
protein shares much of the functional glutaminase regions, but contains a unique 3’ tail. The
KGA gene also contains multiple poly-adenylation sites, potentially adding further variability
(171). The various forms of KGA make expression analysis somewhat difficult, requiring 3’
specific primers to identify specific isoforms, but begs the question of what purpose the various
forms serve (Table 1). For instance, acidosis was shown to lead to mRNA stabilization of KGA
(171). This complex gene arrangement facilitates various forms of regulation that may or may
not prove to be important to disease.

Glutaminase is the primary enzyme consuming glutamine and generates much of the glutamate
used in signal transduction. Glutaminase is generally localized to the inner membrane of the
mitochondria (172–174); although additional studies have recognized a nuclear population of
glutaminase (159,167). Increase in amount, activity or release of glutaminase could facilitate
uncontrolled generation of glutamate in the CNS extracellular space. Enzymatic conversion of
glutamine to glutamate presents two potential problems: improper compartmentalization of
glutamate interfering with signal transduction and glutamate induced excitotoxicity. Neuronal
cultures depleted of astrocytes were shown to have glutamine-potentiated neurotoxicity, an
effect inhibited by NMDA receptor antagonists (175). The neurotoxic effects of glutamate
generation were first identified as a glutamine dependent generation of glutamate in neuron
cultures (176). The unregulated enzymatic generation of glutamate in inflammatory states may
establish a positive feedback system of excitotoxic damage leading to further enzyme release
and conversion of glutamine to glutamate causing additional excitoxicity and cellular damage.

In stroke, significant regions of tissue can experience catastrophic damage and cell death. In
this type of model, Newcomb and colleagues proposed widespread neuron death as a means
of freeing glutaminase, resulting in unregulated glutamate generation, fed by an abundant
substrate of glutamine (27). Using an in vivo ischemic model, significant glutamine dependent
glutamate generation was observed 24 hours post-lesion (177). The significance of glutaminase
is supported by the observation of enhanced extracellular activity of glutaminase upon removal
of intracellular feedback inhibition (178). However, this type of widespread neuronal cell death
is generally not shared by other neurodegenerative disorders such as HAD, Alzheimer’s, and
Multiple Sclerosis (MS).

Chronic neurodegenerative disorders typically lack rampant cell death, and are better
characterized by prolonged inflammation, or heightened immune activation, where neuron
death, while present, is not a dominant feature. However, these disorders do typically have
noticeable lymphocyte and monocyte infiltration and accumulation. In these circumstances,
there is increasing evidence for an important contribution of glutamate generation by enzymatic
conversion of glutamine. Using human brain, immunohistochemistry identified enhanced
glutaminase expression in MS lesions as compared to control specimens. This increased
glutaminase correlated with axonal damage (179). Additional experiments identified increased
glutaminase in both tropical spastic paraparesis and subacute sclerosing panencephalitis.
Although lacking the focal increases of glutaminase found in the MS lesions, this diffuse
increase in enzyme also seems to indicate an enzymatic role in excitotoxic damage. Another
study in rats measured the conversion of labeled glutamine to glutamate following an
excitotoxic insult of the hippocampus. Results indicated significant conversion of glutamine
to glutamate in experimental versus control animals, and consequently support the concept of
glutaminase induced neuronal damage (180).
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In HAD, significant numbers of MP migrate into the CNS where they are productively infected
as well as activated. Glutamate is secreted in large quantities by macrophage (20,30,181). The
MP cell population expresses glutaminase at significant levels (30). Viral infection leads to
formation of multinucleated giant cells, as well as necrotic cell death. This type of cellular
stress has the potential to disrupt membrane stability leading to release of mitochondrial
glutaminase. Our group recently demonstrated a glutamine dependent upregulation of
glutamate production by HIV-1 infected macrophage cultures. This glutamate increase relates
to cell viability, and was nearly eliminated in the presence of antiviral treatment (30). Thus,
HIV-1 may lead to increased enzyme activity or release of enzyme into a glutamine rich
substrate with little product feedback, allowing excess glutamate generation from macrophage
populations. Thus in HAD, a system of immune cell recruitment, activation and infection
causing MP stress and death may then lead to poor regulation of glutaminase, producing an
excitotoxic environment. How this process is regulated and the glutaminase subtypes involved
remains unclear; however, the elucidation of such pathways may help us better understand MP
mediated neuronal injury in neurodegeneration (Fig. 4).

Outside of a disease setting, the regulation of glutaminase and the enzyme conducting the
reverse reaction has been investigated as a potential dynamic equilibrium between neurons and
astrocytes. Hippocampal measurements of glutaminase activity demonstrated a decrease upon
excitotoxic stimulation with AMPA (182). Glutamine synthetase has been shown to be
upregulated in response to inflammatory and excitotoxic stimuli in glia; however, the adaptive
response is attenuated by inflammatory cytokines (183). This complex interplay adds a new
variable to the well-established phenomenon of excitotoxicity in neurodegenerative disorders.

Future Directions, 7
The critical role of excitotoxicity is supported by the effects of glutamate receptor antagonists
in various neurodegenerative processes. In EAE, glutamate receptor antagonists reduced
clinical symptoms and axonal damage (184,185). Memantine, an open channel NMDA
receptor blocker, has been shown to be effective in gp120 transgenic mice, HIVE SCID mice,
and appears to have some clinical benefit in Alzheimer’s (186–189). This type of partial
glutamate receptor blockade may have therapeutic benefit in a variety of neurodegenerative
disorders. However, blocking the harmful effects of glutamate is not a simple endeavor.
Excessive blockade of excitatory amino acid receptors causes side effects including neural
degeneration and psychogenic properties (190–192). While limiting excitotoxicity is clearly a
desired outcome, interruption of the physiologic roles of glutamate in the brain or elsewhere
is an unacceptable side effect.

Glutaminase is not a newly discovered enzyme, it was first described 30 years ago (193), yet
its biological significance in disease may not yet be fully appreciated. While there is still much
to be determined concerning the mechanisms of glutaminase activity in CNS disorders,
glutaminase presents a potential site for therapeutic intervention in a wide range of disorders
(194,195). If glutaminase release from activated or damaged cells proves to be typical of
neuroinflammation, targeting extracellular glutaminase would avoid the complications of
blocking glutamate receptors and may also avoid interfering with proper signal transduction
within the CNS. Through the understanding of how glutamate is generated, cycled between
cells, and removed, we may gain a better understanding of how dysfunction at various points
in the disease process leads to neuronal damage.
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Figure 1.
HAD Potentiation of Excitotoxicity. HAD causes an increase in extracellular glutamate and
enhances the susceptibility of neurons to damage by excitotoxins. Infected mononuclear
phagocytes (MP) produce soluble factors including inflammatory cytokines and viral proteins,
inducing functional changes in the astrocyte population and causing damage to neurons via
excitotoxic insult. Astrocytes can also express inflammatory cytokines and trophic support of
neurons may be altered. In addition, changes in glutamate uptake leads to altered glutamate
homeostasis. Extracellular glutamine, a widely available amino acid, may be converted to
glutamate by glutaminase, leading to further glutamate increase and neuronal damage.
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Figure 2.
Glutamine-Glutamate Interconversion. Glutamine is deaminated to glutamate in an energy free
process mediated by the enzyme phosphate-activated glutaminase. The reverse reaction is an
energy dependent process carried out by the enzyme glutamine synthetase.
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Figure 3.
Pathways to Excitotoxicity. Over-stimulation of glutamate receptors initiates multiple cascades
with the potential to induce cellular damage and death. NMDAR activation by agonists, notably
glutamate, leads to the influx of Ca2+ and Na+ ions, an effect potentiated by AMPA receptors.
MGluR activation, particularly mGluR1, leads to additional Ca2+ release. The excess Ca2+
triggers multiple pathways including nNOS, JNK, and Phospholipase, as well as leading to
mitochondrial stress and dysfunction.
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Figure 4.
Model for Glutaminase Activity in HAD. Infected and/or activated mononuclear phagocytes
(MP) release functional glutaminase to the glutamine rich extracellular space. Glutaminase
then converts glutamine to glutamate in an energy free process. This increase in glutamate
leads to over-stimulation of glutamate receptors, notably NMDA-R, causing excitotoxic
neuron death.
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Table 1
Human Glutaminase Subtypes

Type Genetic Structure Cellular Location Tissue Expresson References
hLGA Chromosome 12 Mitochondrial, Nuclear Liver, Pancreas, Brain (34), (196), (159)
hKGA Chromosome 2, multiple poly-

adenylation sites
Mitochondrial Kidney, Brain, Intestine,

Lymphocytes, Fetal Liver
(166), (171) (172)

hGAC KGA isoform: Unique 3’ tail
derived from exon 15

Mitochondrial Cardiac muscle, Pancreas, Placenta,
Kidney, Lung, Brain

(166), (171)

Clin Neurosci Res. Author manuscript; available in PMC 2007 December 1.


