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The combination of high accuracy, sensitivity and speed of single and multiple-stage mass spectrometric analyses enables the
collection of comprehensive sets of data containing detailed information about complex biological samples. To achieve these
properties, we combined two high-performance matrix-assisted laser desorption ionization mass analyzers in one modular
mass spectrometric tool, and applied this tool for dissecting the composition and post-translational modifications of protein
complexes. As an example of this approach, we here present studies of the Saccharomyces cerevisiae anaphase-promoting
complexes (APC) and elucidation of phosphorylation sites on its components. In general, the modular concept we describe
could be useful for assembling mass spectrometers operating with both matrix-assisted laser desorption ionization (MALDI)
and electrospray ionization (ESI) ion sources into powerful mass spectrometric tools for the comprehensive analysis of complex
biological samples.
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INTRODUCTION
In recent years, mass spectrometric (MS) analysis of biological

samples has increasingly entailed direct analysis of complex

protein mixtures, often with the objective of detailed character-

ization of the various components. This trend toward ever greater

sample complexity has been enabled and in turn driven by the

rapid development of powerful mass spectrometric tools. A general

characteristic of recent mass spectrometers is that most are

composed of a sequence of multiple mass analyzers with different

strengths and properties, resulting in tandem instruments that

possess capabilities unattainable by the individual components

(Fig. 1A). For example, triple quadrupole (QQQ) [1,2],

Quadrupole/Time-of-flight (QTOF or QqTOF) [3], Quadru-

pole/Ion trap (QTRAP) [4], Time-of-flight/Time-of-flight (TOF-

TOF) [5] hybrid tandem mass spectrometers have all proven to be

powerful tools for analytical research.

Tandem instruments can combine high mass accuracy with

high-speed measurement, greatly facilitating the analysis of

complex mixtures. For example, the addition of Time-of-flight

(TOF), Fourier Transform Ion Cyclotron Resonance (FT-ICR)

and Orbitrap mass analyzers to an ion trap (IT) has greatly

increased the accuracy of measurements during the multiple stages

of mass spectrometric (MSn) analysis [6–9]. Physical assembly of

the two types of mass spectrometers couples their performances,

providing a fast link between precursor ion selection steps and

subsequent MSn experiments on the selected ions [10,11]. This

option is advantageous when speed and accuracy are crucial for

the success of analysis, as it is, for example, when the mass

spectrometer is coupled on-line to an HPLC system [12,13].

Physical coupling of multiple mass spectrometers in tandem has

some disadvantages. Optimal operation conditions for different

mass spectrometers and modes of operation of a tandem in-

strument may differ significantly, producing the need to

compromise in the performance of one mass spectrometer at the

expense of another [14–16]. Decoupling the parts of a hybrid

instrument is one solution to this problem. Indeed, a modular mass

spectrometric tool can be assembled from several mass spectro-

meters without physically coupling them in one instrument.

Several mass spectrometers can be used as separate modules, fine-

tuned for each particular type of analysis, and applied in turn to

extract comprehensive information about the sample in a data-

dependent manner. The collected data can be analyzed quickly by

a computer, which generates a set of instructions based on the

results of analysis of the data obtained in the previous instrument

and passes them to the next one. Theoretical speed of the analysis

in such a modular tool is only limited by the speed of the sample

analysis in the different instruments and the speed of transfer of the

remaining part of the sample from one mass spectrometer to

another.

A schematic diagram of a modular instrument based on this

concept is illustrated in Figure 1B. Multiple MALDI instruments

can easily be combined into one system through the use of

interchangeable MALDI target plates. Similarly, multiple ESI-

based mass spectrometers can be coupled by using a split-flow

technique to introduce a delay between sample arrival times at the

ion sources of different instruments. In this case, the time-delay

should be greater than the duty cycle of the upstream instrument

so that data-dependent instructions can be generated and trans-

mitted to the downstream instrument.
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This concept has been used to combine a high resolution, high

mass accuracy MALDI-QqTOF [17] instrument with a high-

speed, high-sensitivity MALDI-IT [18] mass spectrometer. This

combination has proven to be extremely useful for gaining insight

into many challenging biological problems [19–22]. Initial studies

of the utility of this instrument combination utilized in-house

modified instruments. However, the recent commercial introduc-

tion of similar mass spectrometers has opened the possibility to

reproduce this approach in any laboratory.

This paper describes a modular mass spectrometric tool based on

two MALDI mass spectrometers, the proTOF [23] (PerkinElmer)

and the vMALDI-LTQ[24] (Thermo Electron). We demonstrate

the utility of this tool for studying the composition of protein

complexes and for identifying the phosphorylation sites on the

subunits of the S. cerevisiae anaphase promoting complex (APC) [25].

RESULTS

Combined performance of the mass spectrometers
As a first step in the development of our combined mass

spectrometer system, we designed a magnetic MALDI target that

can be exchanged between prOTOF and vMALDI-IT instru-

ments. The target permits sequential analysis of unique samples

using these two instruments (see Methods section).

We analyzed a mixture of six known peptides at the single

femtomole scale to evaluate the performance of our combined

mass spectrometer system. The first step in this analysis was the

rapid collection of a high resolution, high mass accuracy MS

spectrum using the prOTOF instrument. A ProTOF mass

spectrometer is a one-task instrument for rapid measurement of

single-stage MS spectra [23]. Figure 2A shows an MS spectrum

of our peptide mixture obtained in a thirty second acquisition. At

least six peaks were observed with signal-to-noise ratios above

1.5:1. The observed resolution is greater than 10,000, enabling

clear determination of peptide isotopic distributions. Importantly,

the mass accuracy was within a few parts per million, even for

statistically weak signals. Only a minuscule amount of sample was

consumed during this first step in the analysis.

The first-stage MS spectrum was used to generate a list of

targets for direct MSn analysis using the second instrument,

vMALDI-LTQ. An LTQ mass spectrometer is an extremely fast

and efficient device for acquisition of MSn data [26,27]. Peaks

meeting user-defined criteria are automatically extracted to a text

file; this file is used to generate an instrument control script to

automate acquisition of the fragmentation spectra in the second

instrument. The LTQ instrument iterates through this peak list; in

each cycle, the desired precursor ions are selected for subsequent

fragmentation and product ion analysis. Figure 2B shows MS/

MS spectra acquired for the six peptides detected in the 1 fmol

sample. Each tandem spectrum was acquired over two to three

seconds, for a total collection time of about fifteen seconds. The

product spectra exhibit a variable degree of fragmentation, with

fragmentation pathways typical of singly charged peptides [28,18].

The m/z values of two peptides and their fragmentation spectra

suggest that they contained oxidized methionine and tryptophan

residues (MS/MS of 1363.724 m/z and 2980.595 m/z). Both

spectra show prominent fragments representing neutral loss of

64 Da from the precursor ions, arising from loss of CH3SOH from

methionine sulfoxide. Higher order MSn spectra of those fragments

which lost a neutral group frequently contain information about the

identity and exact position of the modification sites [29,30].

The successful analysis of complex peptide mixtures is made far

more likely if one is able to acquire both high accuracy precursor

ion masses and comprehensive fragmentation data [10,11,31]. We

achieve these properties through the combined use of two physi-

cally decoupled instruments, each optimized for a specific role. In

combination, these spectrometers provide data containing 5–

10 parts-per-million (ppm) accuracy in precursor mass measure-

ment and informative fragmentation spectra while readily

functioning in the single femtomole range and requiring only 2–

3 seconds per MS/MS spectrum.

Figure 1. Schematic diagrams of (A) a tandem mass spectrometer, and (B) a modular mass spectrometer.
doi:10.1371/journal.pone.0000358.g001
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Analysis of proteins in the S. cerevisiae APC complex
To demonstrate the usefulness of our method to the character-

ization of complex biological samples, we analyzed the protein

composition and post-translational modifications of the Saccar-

omyces cerevisiae anaphase-promoting complex [25]. Figure 3 shows

the flow of steps in our experiments for characterization of APC

immunopurified from S. cerevisiae. The first few steps are typical for

the immunopurification of stably-associated protein complexes

from unsynchronized cell cultures using proteins genomically

tagged with an epitope at the C-terminus [32,33]. The character-

istic feature of our approach is that we use a 3xFLAG-hexahis-

tidine (3xFLAG-6xH) tandem affinity tag [34]. The choice of the

3xFLAG-6xH epitope is based on several practical considerations.

A high quality monoclonal anti-FLAG antibody is commercially

available (M2, Sigma-Aldrich). This reagent enables us to achieve

high specificity and yield in the initial purification step, and

provides the ability to quickly and efficiently elute the complexes

under non-denaturing conditions by competition with a 3xFLAG

peptide. The single imunopurification step utilizing a 3xFLAG tag

is usually sufficient to obtain highly enriched protein complexes.

However, an additional tandem purification step can be very

useful to remove an excess of the elution peptide and concentrate

the complexes on the metal chelating resin. We perform the

second step very quickly, within 10–15 minutes, to minimize

possible losses of proteins from the complexes [22]. After the final

wash of the chelating resin, the purified proteins can be efficiently

eluted or left on the beads as needed.

Proteins co-purifying with the APC subunit Cdc16-3xFLAG-

6xH were enriched according to the scheme in Figure 3, starting

with one liter of yeast culture grown to a density of (2–

4)6107 cells/ml. After the final wash (Step 8 of Fig. 3), a trypsin

solution was added directly to the Co-Talon magnetic beads, and

the slurry was gently mixed and incubated at 37 C for 5 min. After

5 minutes, the beads were separated from the supernatant with

a magnet; the solution was then collected and incubated at 37 C

for 5 hours to digest all proteins that came off the beads. In

a separate line of experiments, we found that a brief (,5 min)

incubation of the beads with trypsin elutes most of the proteins

associated in noncovalent complexes, while possibly minimizing

liberation of contaminant proteins associated tightly but, pre-

sumably, nonspecifically with the beads (see supplementary

Figure S1). We currently investigate whether limited proteolysis

can be used for the selective elution of the protein complexes from

the beads.

The tryptic peptides were directly analyzed in the prOTOF

mass spectrometer without further purification or fractionation

steps. At least 319 ion peaks with a signal-to-noise ratio above

1.2:1 were detected in the MS spectrum. These peaks were

selected for MS/MS analysis, and their m/z values were used to

generate a vMALDI-IT acquisition script. The average acquisition

time was approximately three seconds per MS/MS spectrum,

resulting in a total measurement time of twenty minutes. The

combined data were converted to DTA format [35] and supplied

to the XProteo search engine (www.Xproteo.com). Searching of

the S. cerevisiae data base (NCBI non-redundant data base version

Figure 2. Combined performances of a prOTOF and a vMALDI-LTQ mass spectrometers as one modular tool. (A) prOTOF-MALDI-MS spectrum of a 1
femtomole mixture of six peptides, obtained in 30 seconds of spectrum acquisition time. The measurements of the m/z values of the peptides were
performed using an external instrument calibration. The monoisotopic resolution for the detected ion peaks as well as the calculated (c) and the
experimental (e) m/z values are shown. The peptides are bradykinin (fragment 2–9: PPGFSPFR, m/z = 904.468, theoretical value), Substance P
(RPKPQQFFGLM-NH2, m/z = 1347.736), neurotensin (pELYENKPRRPYIL, m/z = 1672.918), amyloid b-protein (fragment 12–28: VHHQKLVFFAEDVGSNK,
m/z = 1955.014), ACTH (SYSMEHFRWGKPVGKKRRPVKVYP, m/z = 2932.588), and B chain of oxidized insulin (FVNQHLC(O3)GSHLVEALYLVC(O3)GERGF-
FYTPKA, m/z = 3494.651). (B) vMALDI-LTQ MS/MS spectra of all 6 detected peptides. All spectra were measured in 2–3 seconds after the automatic
collection of the MS/MS spectra. The interpretation of the observed fragmentation spectra and the identity of the observed peptides are indicated in
each panel.
doi:10.1371/journal.pone.0000358.g002
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07/06/06) resulted in identification of all 13 proteins known to

stably comprise the APC complex [25] (Fig. 3). Twelve identifica-

tions surpassed the probability threshold for 99% confidence at a false

alarm rate of 0.5% (For complete information about the XProteo

search scores please refer to the ‘‘FAQ’’ section at the www.xproteo.

com). Out of 319 detected ion peaks, 168 were identified with the

APC components. For Apc11, the 13th component of the APC, only

two peptides were identified, resulting in 12% coverage of this small

(19 kDa) protein. Examination of the two MS/MS spectra assigned

as peptides from Apc11 indicated an accurate match between the

experimental and theoretical m/z values of parent ions to within

a few parts-per-million. In addition, both peptides displayed

dominant fragmentation events consistent with the predicted

positions of aspartic and glutamic acid residues [28,18]. Thus, both

MS and MS/MS spectra confirmed the identification of the Apc11

protein. The XProteo report containing the parameters of the search

and the complete results can be found in the supplementary Report
S1 online.

A control experiment was performed in parallel using an equal

amount of yeast cells not expressing any tagged protein. This

resulted in the identification of several contaminant proteins (see

supplementary Figure S2 and supplementary Report S2 online).

Although our tandem purification procedure greatly reduces the

presence of background proteins, we can still identify, on average,

2–6 contaminating proteins in the control samples. Most of these

proteins are highly abundant proteins in the cell (e.g. Fks1, Tef1,

Pho84, Adh1, Tdh1, Uba4), which presumably bind either the

beads or the protein complexes nonspecifically. Uba4 contains

a sequence (IYKDDE; amino acids 333–338) that resembles

a FLAG epitope (DYKXXD) [36]. When the purified APC

proteins are separated by SDS-PAGE and the entire gel lane is

processed by in-gel digestion procedure (see supplementary

Figure S3), we frequently identify a background of a small

number of the same proteins. We plan to use new emerging

techniques to distinguish and reduce the interference from non-

specifically interacting proteins [37].

We compared our MS identification methodology with a more

conventional protocol employing a QTRAP mass spectrometer

(Sciex) coupled by online electrospray ionization to a nano-HPLC

system running at 150 nl/min. 274 MS/MS spectra obtained over

the course of 2-hour gradient separation were analyzed with the

MASCOT search engine, resulting in identification of all 13 APC

subunits (see supplementary Report S3). We also identified

several peptides originating from probable sample impurities,

including two peptides derived from Glyceraldehyde-3-phosphate

dehydrogenase (Tdh1), one of the most abundant proteins in the

cell [38].

Analysis of APC phosphorylation
Phosphopeptides display a characteristic fragmentation pattern in

MS/MS analysis, commonly exhibiting a predominant ,98 Da

reduction in mass due to neutral loss of phosphoric acid [39,28].

We examined our APC MS/MS data set for the presence of

peptides displaying this pattern. As a first pass analysis, we plotted

the MS/MS ion intensity at m/z-98 for all obtained precursor m/

z values, using the ‘‘Ion Map’’ function of the Xcalibur Qual

Browser program (Thermo-Finnigan). However, this method tends

to produce false positives when particularly abundant precursors

happen to yield a minor fragment at m/z-98. Similarly, low

abundance precursor phosphopeptides may be missed due to low

Figure 3. The flow of steps in the experiments for characterization of the subunits of the S. cerevisiae APC with a modular mass spectrometric tool.
doi:10.1371/journal.pone.0000358.g003
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relative MS/MS signal intensities. We found that plotting the

signal-to-noise ratio of the peak at m/z-98 rather than the raw

signal intensity is a more reliable way of detecting a significant

neutral loss. To this end, we wrote our own small program that

plots the signal-to-noise ratios for all candidate neutral loss peaks

in an MS/MS data set as a function of the m/z of their precursor

ions.

Figure 4A shows a map of neutral losses of 98 Da for all MS/

MS spectra from the APC preparation shown in Figure 3. To

improve the detection of low-stoichiometry phosphorylation sites

we repeated the APC immunopurification several times, and

increased the amount of yeast cells from (2–4)61010 to ,1011.

Figure 4B shows the map of neutral losses of 98 Da obtained

from one of these larger samples. In this case, we performed MS/

MS on 419 detected precursors and analyzed the fragmentation

spectra to produce the map of losses of 98 Da. There is good

reproducibility of the relative intensities of the detected phospho-

peptides in both maps. To map the locations of phosphorylation

sites, we acquired MS3 spectra of all species exhibiting a loss of

98 Da with a signal-to-noise ratio above ,10. The results of this

analysis are summarized in Figure 4C.

Figure 5 shows an example of the analysis of a phosphopeptide

detected at m/z 2789.245. The MS/MS spectrum of the peptide

exhibits a clear loss of 98 Da. MS3 analysis of this neutral loss

species gave facile fragmentation along the peptide backbone. We

also recorded an MS/MS spectrum of the non-phosphorylated

form of the peptide at m/z 2709.360, which revealed a fragmen-

tation pattern similar to the fragmentation pattern of the

phosphopeptide (Fig 5B). Despite good quality of high signal-to-

noise fragmentation spectra, the computer search did not produce

any candidate protein from which these peptides originated. The

search was performed with an assumption that all peptides are

tryptic. However, manual interpretation of the spectra and the

search among non-tryptic peptides resulted in identification of

a ‘‘semi-tryptic’’ peptide (SPSEQHSQHNSTLAASPFVSNV-

SAAR, residues 44–69) positioned between Met 43 and Thr 70

in the Cdc16 protein. Because this peptide was apparently cleaved

with trypsin only once, at the C-terminus, we speculate that the

identified peptide represents the N-terminal portion of an alterna-

tive form of Cdc16 derived from an internal start codon, with

subsequent removal of the methionine. Further interpretation of

the MS3 spectrum indicates that, most probably, the first amino

acid of the peptide, Ser44, is phosphorylated. We also found two

Cdc16 peptides derived from a second putative alternate N-

terminus (MRNPMSPSEQHSQHNSTLAASPFVSNVSAAR, re-

sidues 39–69, and its shorter version NPMSPSEQHSQHNS-

TLAASPFVSNVSAAR, residues 41–69). Both peptides are also

phosphorylated, but seemingly on different residues, according to

our analysis of the MS3 spectra. In this form of the protein the

presumptive initiation Met39 was not processed. We have not yet

observed any tryptic peptides from the canonical N-terminal

portion of the protein, residues 1–36. The MSn spectra and their

interpretation can be found in the supplementary Figure S4
online.

Figure 4. (A) A map of neutral losses of 98 Da detected in all MS/MS spectra obtained from the sample shown in Fig. 3. The APC was purified from
,(2–4)61010 cells. (B) A map of neutral losses of 98 Da detected in all MS/MS spectra obtained from APC purified from a large culture of about 1011

cells. All peaks with signal-to-noise ratios above 10-to-1 were examined by MS/MS and MS/MS/MS to confirm the loss of 98 Da and to identify the
phosphopeptides and plausible position of a phosphate group. Peaks indicated with an asterisk were not identified. (C) Summary of the identified
phosphopeptides from proteins co-immunopurified with the Cdc16-3xFlag-6xH protein.
doi:10.1371/journal.pone.0000358.g004
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DISCUSSION
We combined two high-performance MALDI mass spectrometers,

each with its own analytical strengths, into one mass spectrometric

tool capable of providing fast, accurate, and sensitive analysis of

complex biological samples (Fig. 1B). The two instruments are

used to sequentially interrogate samples following their deposition

on an interchangeable MALDI target. The analysis starts with

acquisition of a single-stage MS spectrum at high mass accuracy

(5–10 ppm) using the orthogonal Time-of-Flight instrument. Mass

values extracted from this survey spectrum are used to generate an

instrument control script for subsequent acquisition of MSn data

using the LTQ ion trap, an instrument optimized for very high

sensitivity fragmentation analysis. This instrument is capable of

fast (,3 sec per spectrum) acquisition of MS/MS spectra in the

single femtomole regime, allowing generation of 1200 spectra per

hour. At the end of a typical pair of MS and MS/MS analysis

runs, the interrogated sample is only partially depleted. Thus, the

MS/MS data can be examined for the presence of characteristic

fragmentation patterns, such as the neutral loss of 98 from

a phosphorylated serine or threonine, and then the sample may be

further analyzed by MS3 to determine structural information

about the selected analytes. In this third pass, we can use longer

spectrum acquisition times, up to several minutes, to collect

statistically well defined MS3 spectra from low-abundance targets.

Interpretation of the MS/MS and MSn fragmentation spectra

frequently allows identification of the peptides and plausible

localization of the phosphate group.

We applied our strategy to the study of the S. cerevisiae APC. To

check the performance of the modular mass spectrometric tool, we

analyzed the unfractionated tryptic peptide mixture obtained after

digesting immunopurified proteins directly on the beads. All 13

core components of the APC complex were quickly, robustly and

reproducibly identified with this tool. A part of the same sample

was also analyzed in an HPLC-QTRAP mass spectrometer, which

confirmed the result.

Analysis of cell-cycle averaged phosphorylation of APC subunits

resulted in mapping of several phosphorylation sites (Fig. 4C). We

found that Cdc16, Cdc23 and Cdc27 are phosphorylated on

several predicted Cdk1 sites [40]. In addition, we found

phosphorylation sites on Apc1 and Cdc26. In the latter case, we

were able to determine the position of the phosphorylation sites

with accuracy to within several amino acid residues.

The regions of yeast APC subunits harboring found phosphor-

ylation sites are not conserved in their human counterparts [41].

For example, the N-terminal portion of Cdc16 is conserved only

within a small family of yeasts. Moreover, we have found that

Cdc16 has at least two different N-termini. We did not find

peptides from the canonical initiator methionine of Cdc16;

instead, we found that one sub-population of the protein starts

at Met39 and the other starts at Met43, which is later processed.

We also found that Ser44 is sometimes phosphorylated, resulting

in a sub-population of Cdc16 that is phosphorylated at the first

amino acid residue. It is an interesting question whether

phosphorylation of the Ser44 (and another N-terminal peptide,

TNTATSPYQSLANSPLIQK, residues 90–108) affects the pro-

cessing of the N-terminal portion of the protein. We plan to

investigate whether there is a functional significance of this

phenomenon.

Presently, we looked only at the cell cycle average phosphor-

ylation of the yeast APC, and thus could have missed other

phosphorylation sites whose abundance reaches maximum during

mitosis. A previous study of human APC phosphorylation revealed

a substantial difference in the number of detected phosphorylation

sites, six on the two subunits, Apc1 and Apc5, during the S-phase,

and 50 sites on the nine subunits, Apc1, Apc2, Cdc27, Apc4,

Figure 5. (A) An MS/MS spectrum of a phosphopeptide detected at m/z 2789.245. The loss of 98 Da, which is a specific signature of phosphorylation,
is indicated. (B) MS/MS/MS of the fragment that lost 98 Da. The identity of the phosphopeptide and the plausible location of the residue which lost
the phosphate group are shown in the panel.
doi:10.1371/journal.pone.0000358.g005
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Apc5, Cdc16, Apc7, Cdc23 and Cdc20, during mitosis [41]. We

plan to extend our current studies to the analysis of dynamic

changes in APC composition and modification over the course of

the cell cycle. The ability to rapidly prepare and analyze highly

purified native complexes from small culture volumes will greatly

facilitate the accomplishment of this objective.

In analysis of our APC data, we found that the search engine

XProteo provided comparable or better results when compared

with several other search engines. XProteo is especially well tuned

for interpretation of MS and MS/MS spectra of singly charged

ions generated in the MALDI process. The search engine is

accessible through the Internet (www.xproteo.com).

The comprehensiveness of the analysis of the protein complexes

by the protein digestion techniques depends on the ability to detect

and identify every peptide from the complex protein mixtures. To

achieve high coverage of the analysis, many of the current MS

techniques use a powerful combination of liquid chromatography

with tandem mass spectrometry to analyze the protein digests [10–

12]. Collection and interpretation of multiple MS and tandem

MS/MS spectra from a series of eluted peptides sometimes

produce candidate peptides that can bear post-translational

modifications. Such analysis, however, is frequently complicated

by the difficulties in detecting the low abundant species co-eluted

with more abundant ones. Our approach is not limited by the time

constrains, and allows us to measures MSn spectra of every

observable or hypothesized species in the sample [29], maximizing

the completeness of the performed analysis. Usually, we get more

than 50 % percent of the analyzed ion peaks assigned to the

identified proteins. The rest of the ion peaks represent the pool of

species which is increasingly difficult to identify [12]. These species

may originate from the original tryptic peptides as a result of

fragmentation during the sample ionization process, or as the

result of post-translational modifications. The later are exhaus-

tively elucidated with high sensitivity, accuracy and speed using

our modular mass spectrometric tool.

Our results confirm the principle of building a modular tool

from multiple mass spectrometers. The flexibility of the modular

approach allows us to use the strengths of each mass spectrometer

for collecting additive information about a sample in a data-

dependent manner. Although we used only MALDI mass

spectrometers to demonstrate the feasibility of a modular tool,

mass spectrometers operating with electrospray ion sources

coupled to an HPLC system can also be combined in a modular

tool [42]. This modular concept, based on the strengths of mass

spectrometers operating with both MALDI and ESI, provides an

alternative and complementary route for building powerful mass

spectrometric tools for the biological research.

MATERIALS AND METHODS

Mass spectrometers
Two mass spectrometers were combined in one tool according to

the scheme shown in Figure 1B. One mass spectrometer is an

orthogonal time-of flight prOTOF from Perkin Elmer. The second

mass spectrometer is a vMALDI-Ion Trap from Thermo Electron

Company. The combination was achieved by

1. Introducing an interchangeable MALDI target which can be

accepted by the different MALDI instruments.

2. Writing several computer programs that create method files

for measurements of MS/MS spectra in the vMALDI-IT

mass spectrometer based on the measurements of m/z values

of the precursors in the prOTOF mass spectrometer, in the

most efficient data dependent way.

MALDI magnetic target
Multiple MALDI targets are printed on a thin sheet of magnet-

backed paper (Avery, Ink Jet Magnetic Sheets, 0.3 mm thickness)

using a standard inkjet printer. The printed template was created

using PC Draft (version 5.0.5, Microspot, Ltd). The printed target

currently adopts a 384-well plate format, but this can be easily

changed. We also print marks recognized by both mass spectro-

meters to align and calibrate the initial plate position (see

supplementary Figure S5 online). The target sheet is then

laminated with a polyethylene film coated with a thin layer of

Indium Tin Oxide (Sigma-Aldrich, product # 639281). This film

is optically transparent and, at the same time, electrically

conductive. Finally, the targets are cut apart and trimmed to

measure 116 mm677 mm. After washing each target several

times using Kim-wipes soaked in acetonitrile and water, we

magnetically attach one target to either of the plate adapters

accepted by the different mass spectrometers (see the same figure).

A commercial version of these targets will be available soon from

Thermo Electron Company.

Computer software
The MS spectra obtained in the prOTOF mass spectrometer were

extracted from the data base of the instrument with the program

‘‘ProTOF extractor’’ (version 1.6 created by Markus Kalkum,

Beckman Research Institute, City of Hope). The spectra then were

analyzed with the ‘‘m/z’’ program (version 2002.10.01 by Ronald

Beavis, Beavis Informatics Ltd., Canada), which helps to find and

label the m/z values of the ion peaks in the MS spectrum. The m/

z values of the precursor ions detected in each MS spectrum of

a particular sample are stored in a text file. We use a computer

program ‘‘AutoMSMS’’, written in house using AutoIt Basic-like

scripting language (www.autoitscript.com), to create MS/MS data

acquisition methods for the vMALDI-ion trap from these text files,

according to user-defined instrument parameters.

Sample preparation
Yeast strains and growth conditions All S. cerevisiae strains

used in this work are from the yeast-TAP-fusion library, with

MAT a, BY4741 background [43].

Protein Tagging We developed a general strategy for re-

tagging TAP tagged proteins [43] by replacing the TAP tag [44]

with a 3xFLAG-hexahistidine (3xFLAG-6xH) tandem affinity tag

(or any other tag, in general) using PCR-mediated homologous

recombination. The procedure is described in the supplementary

Methods S1 section on line.

Immunopurification of the complexes APC complexes

were co-purified with Cdc16-3xFLAG-6xH protein, from one liter

of BY4741 yeast cells grown to mid log-phase (,2*107 cells/ml).

We estimate that we purify approximately several mg of the intact

APC complexes from a 1 liter of the yeast cell culture (see

supplementary Figure S3). The major steps of the purification

protocol are depicted in Fig. 2. Briefly, the first step was

performed by adding ,5 mg of M-270 Epoxy Dynabeads

(Invitrogen), with immobilized anti-Flag antibody (M2, Sigma),

to 5–7 ml of a crude cell extract. The Dynabeads were coated with

the antibody essentially as described in the manufacture’s protocol,

at ,10 mg of antibody/5 mg of beads. After 30 min incubation,

the beads were collected with a magnet and washed 3 times with

1 ml of IP buffer, 20 mM Hepes, 2 mM MgCl2, 250 mM NaCl,

0.1% tween, and protease inhibitor cocktail (Sigma-Aldrich). The

enriched proteins were eluted with 300 ml of IP buffer containing

a 3xFLAG peptide (Sigma-Aldrich), at a concentration of 200 mg/

ml, for 30 min at 4uC whith constant rotation. The eluate was
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collected and diluted in 1 ml of IP buffer. The second purification

step was performed with 20 ml of TALON Dynabeads (Invitro-

gen). The enriched proteins can be efficiently eluted with an SDS

running buffer containing 250 mM imidazole and separated by

SDS-PAGE. Alternatively, the purified protein complexes are left

on the beads for on-bead digestion.
Digestion of the protein complexes on the beads After

the final wash of Talon beads with two times 1 ml of IP buffer and

two times 1 ml of 50 mM ammonium bicarbonate buffer, the

proteins were digested directly on the beads with 10 ml of trypsin

solution (1 pmol/ml) in 10–50 mM ammonium bicarbonate

buffer. After a brief initial digestion, the beads were separated

from a supernatant with a magnet, and the solution was collected

and left at 37 C for 5–6 hours to complete digestion.

Sample preparation
1–3 ml of a mixture of either synthetic peptides or tryptic peptides

were deposited on the interchangeable MALDI target and allowed

to dry. 2 ml of a saturated solution of 4HCCA matrix was then

added to the spot and again allowed to dry. The sample spots were

then washed two times with 10% MeOH in 0.1% TFA by

applying a 5–7 ml droplet on the top of the sample for 15–

30 seconds and then quickly aspirating it.

Nano-scale LC/MS/MS analysis of the APC complex
Approximately 100 ng of the digested APC preparation (,1/10

portion of the total sample) were analyzed by nano-scale LC/MS/

MS using a QTRAP mass spectrometer (Applied Biosystems,

Foster City, USA) coupled to an LC Packings Ultimate/Famos/

Switchos liquid chromatography system (Dionex). The sample was

span down in an Eppendorf centrifuge at 13 krpm for 10 min to

minimize the chance of introducing small magnetic micropaticles,

which were not completely removed by the magnet and still were

present in the solution. Peptides were transiently captured on

a 0.3 mm by 5 mm C18 trap column before resolution over

a 75 micron6150 mm C18 column. A two hour gradient of five to

thirty-five percent acetonitrile was used with a constant concen-

tration of 0.1% formic acid and a flow rate of 150 nl/min.

Tandem mass spectra were acquired automatically in IDA mode

using EMC survey scans. The resulting data were analysed with

MASCOT (Matrix Science) on a local server.

Additional Methods
Descriptions of the yeast strains and procedures for re-tagging of

the TAP-tag with 3xFLAG-6xH tag are available in the

supplementary Methods S1.

SUPPORTING INFORMATION

Methods S1 Descriptions of the yeast strains and procedures for

re-tagging of the TAP-tag with 3xFLAG-6xH tag

Found at: doi:10.1371/journal.pone.0000358.s001 (0.04 MB

DOC)

Figure S1 Proteins identified after a time course incubation of

trypsin solution with the cobalt-chelating beads containing the

APC complexes.

Found at: doi:10.1371/journal.pone.0000358.s002 (0.04 MB

DOC)

Figure S2 Schematic diagram of the control experiment.

Found at: doi:10.1371/journal.pone.0000358.s003 (0.09 MB

DOC)

Figure S3 Summary of the proteins identified after SDS-PAGE

separation of the affinity purified APC complexes.

Found at: doi:10.1371/journal.pone.0000358.s004 (2.79 MB

DOC)

Figure S4 MS/MS and MS/MS/MS (MS3) of the phosphopep-

tides detected in the APC proteins. Interpretation of the fragments

in the MS/MS/MS spectra was performed with the assumption

that the loss of the phosphate group (HPO3, MW. ,80 Da) and

water (,18 Da) occurred from the same residue. Based on this

assumption, we calculated the theoretical fragments of the peptides

and compared these calculated fragments to the observed ones.

Spectra are given in the increasing order of the m/z values of the

detected phosphopeptides. See summary table in Figure 4C of the

article.

Found at: doi:10.1371/journal.pone.0000358.s005 (0.55 MB

DOC)

Figure S5 Construction of the magnetic MALDI target.

Found at: doi:10.1371/journal.pone.0000358.s006 (1.02 MB

DOC)

Report S1 A report of the XProteo search engine (www.xproteo.

com) containing information about components of the APC

complexes identified with a modular mass spectrometric tool.

Found at: doi:10.1371/journal.pone.0000358.s007 (1.44 MB

DOC)

Report S2 A report of the XProteo search engine (www.xproteo.

com) containing information about the proteins identified in the

control immmunopurification experiment.

Found at: doi:10.1371/journal.pone.0000358.s008 (0.47 MB

DOC)

Report S3 A report of the Mascot search engine (www.

matrixscience.com) containing information about components of

the APC complexes identified with a QTRAP mass spectrometer

(Sciex) coupled by online electrospray ionization to a nano-HPLC.

Found at: doi:10.1371/journal.pone.0000358.s009 (5.32 MB

DOC)
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