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An important industrial problem that provides fascinating puzzles
in pattern formation is the tendency for granular mixtures to
de-mix or segregate. Small differences in either size or density lead
to flow-induced segregation. Similar to fluids, noncohesive gran-
ular materials can display chaotic advection; when this happens
chaos and segregation compete with each other, giving rise to a
wealth of experimental outcomes. Segregated structures, ob-
tained experimentally, display organization in the presence of
disorder and are captured by a continuum flow model incorporat-
ing collisional diffusion and density-driven segregation. Under
certain conditions, structures never settle into a steady shape. This
may be the simplest experimental example of a system displaying
competition between chaos and order.

he understanding of the fundamentals of granular mixing is

incomplete, particularly when compared with that of fluid
mixing (1). Mixing of granular materials is important in industry
and natural processes; industrial examples appear in the phar-
maceutical, food, chemical, ceramic, metallurgical, and con-
struction industries (2-4); examples in nature may include the
formation of sedimentary structures and debris flows (5). What
makes mixing of granular materials complex is that, under flow,
granular materials often segregate. The understanding of pro-
totypical systems yields, however, considerable insight.

Recently it was shown that chaotic advection can be generated
in granular flows of noncohesive particles. This concept was
investigated experimentally and computationally in pseudo two-
dimensional rotating containers of different shapes (6).

Consider the system depicted in Fig. 1. Under suitable con-
ditions, easy to achieve in the laboratory, the flow of noncohesive
granular materials moves in a continuous flow, the so-called
rolling regime. The flow is confined to the top free surface in the
form of a thin shear-like flat layer whereas the rest of the
material moves in solid-like rotation with the mixer walls.
Material is fed into the flowing layer with thickness 8 (x) forx<0
and leaves the layer for x>0. The simplest case is a circle rotating
at a constant speed w. In this case L, 8, and the streamlines are
time invariant. A two-dimensional flow can be derived from a
streamfunction ¢, such that v, = ays/dy, v, = —ay/ox. If the flow
is steady, ¢ = (x,y) and the streamlines coincide with the
pathlines. The structure of such a flow is Hamiltonian with one
degree of freedom, and therefore it cannot be chaotic (1). However,
if the container is noncircular, the velocity is time periodic, iy =
Y(oy,t) = P(xy,t+T), and the flowing layer grows and shrinks in
time. The system has one-and-a-half degrees of freedom, and
chaotic advection is possible (1, 7, 8). Experimental studies
using colored tracer particles in mono-disperse granular ma-
terials show that increased mixing rates occur in noncircular
containers (6).

On the other hand there may be unmixed regions. Because the
system is time-periodic, a nonlinear mapping, F(.), may be used
to represent particle motion. A periodic point of order n of the
mapping F, is a point such that a particle initially located at p
returns to p after n periods; that is, p = F"(p), where the n is the
smallest value satisfying the equality (1). Periodic elliptic points
are surrounded by Kolmogorov-Arnold-Moser (KAM) curves
and form regular regions or islands where there is no chaos (7,

8). Although islands undergo a net rotation, they preserve
identity and contain always the same material. They represent
the primary obstacle to mixing.

Differences in particle properties make the system’s behavior
considerably more interesting from a dynamical systems view-
point. It is well known that small differences in size and/or
density of the particles of the granular material lead to flow-
induced de-mixing or segregation (9). In circular mixers this
often leads to radial segregation (Fig. 2f) (10-12). The normal
to the streamfunction, Vi, and the gradient of concentration, Vf,
are colinear. Thus, a radially segregated structure in a circle is
an invariant structure. In long cylinders axial banding may result
(relatively pure, single-component bands along the axis of
rotation) (13-15). In noncircular mixers, the dynamics are much
more complex as there is no simple relationship between Vi and
a radially segregated structure.

In this paper we present the results of experiments on the
interaction between chaotic mixing and segregation in two kinds
of systems: systems with particles of the same size and different
densities (D-systems) and systems with particles of the same
density and different size (S-systems). The emphasis of the
experimental studies is on two-dimensional systems and the
computations presented are restricted to D-systems. In the
experiments the material is confined by two closely spaced walls
(aspect ratio ~1/40) and thus cannot be strictly regarded as a
thin slice of the full three-dimensional case (the density, for
example, is expected to be significantly affected by the walls).
The implications of the results for the three-dimensional case are
discussed at the end. Consider now the model used to investigate
the behavior of these systems.

The Model

The starting point of the model is given in ref. 16; it applies to
mixing of noncohesive identical powders. The model describes
the flow in the continuous-flow regime where the flowing layer
is steady, thin, and nearly flat, the rest of the particles moving in
solid body rotation. (The case for slower avalanching flow is treated
in ref. 17.) The point of departure is a half-full cylinder.

Kinematic considerations, and assuming the density in the bed
and the layer to be nearly the same, give the volumetric flow rate
of particles per unit width in the layer as in ref. 18:
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Fig. 1. Instantaneous view of continuous granular flow in a rotating container.
The curve denotes the interface, §(x,t), between the flow layer at time t and the
region of solid body rotation. As the container changes orientation, the length,
L(t), and the depth of the layer, §, change in a time-periodic manner.

A boundary layer analysis of the flow (16), assuming a velocity
profile of the form

v =2u(l+y/8(x)), [2]

and a frictional-collisional equation for the stress yields the mean
velocity in the x-direction, u(x), and consequently the layer
thickness profile 8(x) = Q/u. Computations, supported by
experiments, show u ~ constant for —L <x<L so that § = 6y(1 —
x?/L?) and u = wl?/(28y), where 8 = 8(0). Mass conservation
then gives

v, = —ax(y/d)> [31

The model has a single parameter, &y, which is obtained from flow
visualization experiments. For an alternate analysis, see ref. 19.

Adaptation to noncircular mixers requires that L be time
dependent. For example, for an elliptical mixer:

ab

L= [b? cos(wt + a) + a* sin(wt + a)]"?’

[4]

where a and b are the major and minor semi-axes of the ellipse,
respectively, and « is the angle between the free surface and the
major axis of the ellipse at # = 0. Experiments (6) show that the
layer maintains geometric similarity, so that 8y(¢)/L(¢) is a
constant while u ~ L changes with mixer orientation; the longer
the layer, the faster and deeper the flow.

Egs. 2 and 3 allow for the computation of particle pathlines,
blob deformation, and Poincaré sections by integration of dx/
dt = v, and dy/dt = v, with initial conditionsx = X andy = Y
att = 0. As is standard in fluid mechanics, in the computation
of Poincaré sections the flow is interpreted in a continuum sense
and collisional diffusion is not included. In the case of a circle
(Fig. 2a) the streamlines act as barriers to convective mixing;
diffusion controls and mixing are slow. Noncircular cases are
more interesting. Fig. 2 b and ¢ shows the Poincaré sections for
a half-filled ellipse and square, respectively, illustrating KAM
islands (marked in red) and chaotic regions where convective
mixing enhances diffusional mixing. We remark that additional
computations indicate that different velocity fields, for example
vx~y*2, vy~xy3?, inspired by the Bagnold profile, give essentially
the same mixing patterns, demonstrating that macroscopic geo-
metrical effects (i.e., the shape of the container) control the
important details of the physics.

The effect of collisional diffusion is incorporated in terms of
the model developed by Savage (20). The collisional diffusion,
Deon, is given by

dv,
Deon = g(m)d? @ [51]

11702 | www.pnas.org

where dv,/dy is the velocity gradient across the layer, and d is the
particle diameter. The prefactor g(n), obtained by Savage via
particle dynamics simulations, is a function of the solids volume
fraction, n; in our simulations we assume D) to be a constant
and take g = 0.025 obtained by fitting to experimental data for
mixing of identical particles in a rotating cylinder. In terms of our
model, Eq. 5 becomes Do = 0.025d* wL?/ 8y we use the value
atx = 0. The physical picture is as follows: a blob initially placed
in the shear layer is deformed into a filament by the shear flow
and blurred by collisional diffusion until particles exit the layer.
Particles then execute a solid body rotation in the bed and
re-enter the layer, and the process repeats.

Collisional diffusion enters as a Langevin term in the particle
advection equations. Denote by S a white-noise term such that
upon integration over a time interval (Af) it gives a Gaussian
random number with variance 2D Az. The term S is added to
the right side of Eq. 3. Diffusion along the x-direction is
neglected. In our experiments the Péclet number along the layer,
uL /D¢on (a measure of the relative importance of convection to
diffusion) is about 102 The Péclet number in the direction
normal to the flow is factor (8p/L)? smaller (~0.0025). Thus,
diffusion is important only in the y-direction.

Consider D-systems. The effects of segregation are incorporated
in terms of drift velocities with respect to the mean mass velocity
(21). The effects of segregation, as well as those of collisional
diffusivity described earlier, are significant only in the direction
normal to the flow (apparent, again, when the Péclet numbers in
each direction are considered). The segregation velocity for the
more dense particles (labeled 1) can be written as

_ ZB(I - I_J)Dcoll(l _f)

Vi d ) (6]
and for the less dense particles (labeled 2) as
23(1 B f_))Dco f
v, = [7]

Here, B is the so-called dimensionless segregation velocity (21),
p is the density ratio, d is the particle diameter, and f(x,,¢) is the
number fraction of the more dense particles. Similar expressions
can be obtained for the case of systems differing in size, at low
solids volume fractions (22). For elastic particles, B is inversely
proportional to the granular temperature; however, for real
particles a simple expression for 8 is not available and we treat
it as a fitting parameter. In our simulations we take 8 = 2. This
model has been tested in circular (nonchaotic) containers (21).

To add segregation into the advection model, assume first that
the mean flow is still the same as if all particles were identical,
so that Eqs. 2 and 3 still apply. This is reasonable for equal-sized
particles with different density, however, for mixtures of differ-
ent-sized particles the flow is significantly affected by the
composition of the layer, and consequently the velocity field and
concentration field are coupled. There are however, two kinds
of advection equations, for particles 1 and 2. The y-component
of the dynamical system representing the motion of the more
dense particles (labeled 1) is:

Di_ <y1>2 g 2B =p)Deu(1 - 1)

dr 5 d ’

[8]
whereas for the less dense particles (labeled 2), Eq. 8 becomes:

d 2 2B(1 — p)D¢o
%:— 2(%) + 85+ B( dP) ullf. [9]
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Fig. 2. Experimental and theoretical results for half-full quasi two-dimensional tumbling mixers. E denotes experimental results; C denotes computational
results, and P denotes computationally obtained Poincaré sections for a system of equal size and density particles. The Poincaré sections represents the evolution
of strategically selected initial conditions (continuum particles) identified with different colors. The positions of the particles are marked after every
half-revolution (quarter-revolution for the square). All images are taken while the mixer is rotated, though the images of the square are rotated counter-
clockwise by ~30° to maximize the use of space. The mixtures consist of binary D-systems (2-mm glass and steel spheres) and ternary S-systems (0.8-mm blue,
1.2-mm clear, and 2.0-mm red glass spheres). The volume fraction of steel/glass beads in the D-system is "/4:%, and the volume fraction of the small/medium/large
beads in the S-system is V2:%4:3%. Computational results are shown for binary mixtures of D-systems. The last two columns show the variation in the Poincaré
sections and the segregation patterns when the filling level is changed about one-half for the square mixer. The results are similar for the ellipse. The pattern
in the circular mixer remains radially segregated state for all filling levels examined. The Poincaré sections reveal that the flow patterns and, particularly, the
locations of the elliptic and hyperbolic points, are sensitive to fill level about one-half, where several bifurcations occur. The corresponding entries in rows 2 and
3 show the long-term segregation patterns for just under and just over half-full. Because of instabilities in the flow discussed in the text, the 55% full S-systems
never reach a final segregated pattern, but instead have changing patterns of streaks. In the last row images are shown for equilibrium structures in -full and
¥s-full mixers.

q

The two equations given above together with the corresponding
equations for the x coordinates for each of the species describe
the evolution of the two interpenetrating continua from a
Lagrangian viewpoint. Computations using this formulation are

Experimental Details

Experiments on D- and S-systems were conducted by using a variety
of noncohesive spherical beads (Quackenbush, Crystal Lake, IL)
with sizes ranging from 0.8 to 2 mm and densities of 2.5 and 7.8

straightforward. A large number of particles (from a continuum
viewpoint) is randomly distributed in the domain and advected
according to the equations of motion for each type of particle.
The number fraction field, f(x,y,¢), is determined by defining a
grid and calculating the fraction of the more dense particles in
each bin of the grid.

Hill et al.

g/cm? (glass and steel, respectively). The areas of the circular,
square, and elliptical mixers are all the same. The ratio of the minor
to major axis of the ellipse is 0.5. The square mixer has side length
of 25 cm. The depth of all mixers is 6 mm. The faceplate of the mixer
is Plexiglas while the rear plate is fashioned of aluminum and is
grounded to minimize electrostatic effects.
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All systems are initially well mixed. A computer-controlled
stepper motor (Compumotor, Rohnert Park, CA) rotates the
mixers at approximately 1 revolution per min so that a steady
flow with a flat free surface is developed. The Froude number,
F = w?L/g, is about 0.0002 for the circle. Images were obtained
with a Kodak charge-coupled device camera for quantitative
image analysis.

Results

Fig. 2 shows segregation structures produced by D-systems (Fig.
2 f+) and S-systems (Fig. 2 k—o). It is apparent that the shape of
the container plays a significant role in determining the segre-
gation structures for the different systems. The classic radially
segregated structure (circular mixers) is shown in Fig. 2 f and k.
In this case, the dynamics in the flowing layer cause the smaller
(more dense) particles to move down in the layer. These particles
have a low probability of reaching the end of the layer, leading
to a segregated core. A circular core is time invariant, because
it coincides with the streamlines. The segregation structures
obtained in noncircular mixers do not follow this simple rule.
This is quite evident in the case of a half-filled square mixer (Fig.
2 h and m). A region with a high concentration of the small
(dense) particles is located away from the center of rotation and
is nearly separated into two separate regions nearly spanning the
corners of the square and the center of rotation. The corre-
sponding segregation structure for the ellipse also shows that the
smaller (denser) particles are pulled away from the center of
rotation. The shape of the segregated region is periodic in time
and depends on the instantaneous orientation of the mixer.
Experiments show that initially all D- and S-systems radially
segregate (see insets in Fig. 3a). Some systems stay radially
segregated whereas others evolve into more complicated pat-
terns. The steady-state (and non-steady-state) segregation pat-
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terns are quite sensitive to fill level in both square and elliptical
containers. In this work we focus primarily on the square
container at one-half fill. Fig. 2 d and e illustrates that several
bifurcations occur in the Poincaré section for the square mixer
near the one-half level. An analysis based on symmetry consid-
erations (23) shows that there are critical transition points at
25% and 75%. At these levels, the radially segregated pattern
continues to evolve until it reaches steady segregation patterns
resembling the Poincaré sections with segregated regions of
small (dense beads) aggregating in and around the regular
islands. We find that in ternary S-systems the intermediate size
particles concentrate in the periphery of the islands.

Both the D- and S-systems in square mixers show leg patterns
at 25%, 50%, and 75% resembling the Poincaré sections. There
are substantial differences in behavior though. S-systems de-
velop segregated streaks, whereas D-systems do not. For S-
systems the segregation patterns formed just above the one-half
fill level never reach a stable pattern, but instead vary with time
where materials segregate into streaks. Changing the percentage
of dense beads in D-systems results in a quantitative change in
size of islands formed; qualitatively the systems remain the same.
Changing the percentage of small beads in S-systems, however,
results in qualitatively different patterns, particularly near half
full. A higher percentage of small beads results in an increased
appearance of stripes (Fig. 2f).

Analysis. The analysis is based on two types of information: (7)
assessment of the degree of mixing in the different systems and
(if) determination of some aspects of pattern structure. Both
measures rely on quantitative image analysis. The most common
measure of mixing is the SD of the concentration fluctuations
about the mean concentration—the so-called intensity of seg-
regation (24). For the systems in this study, this measure of
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Measurements of the segregation pattern for D- and S-systems in the half-full circular mixer and at different fill levels in the square mixer as noted.

Experimental figures are not square to focus on the granular patterns and maximize the use of space. The SEM (a and b) reflects the degree of segregation and
does not distinguish between different equilibrium segregation patterns as shown in the inset (a). This method does reflect oscillations of the degree of
segregation for unstable segregation patterns found near the half-full level (b). The nondimensional measure p?/a described in the text captures the different
segregation structures (c and d). Measurements were taken for the region of the segregated structure of 75% or greater dense beads. Compare results in ¢ with
the images in the inset of a, and compare results for d with the images in Fig. 4. The error bars represent the variance of the results from their mean values once
the segregated structure reached its equilibrium state (after five full rotations). For 55%, the segregated structures never reach equilibrium.
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n = e —

Fig. 4. Examples of equilibrium (a), periodic (b), and nonequilibrium struc-
tures (c). The superposition of iso-concentration contours shows an invariant
structure in a whereas in the nonequilibrium case the fingers of the segre-
gatedregion cover the entire domainin just 10 rotations. (d) An instantaneous
view corresponding to c.

segregation captures the initial radial segregation but, in general,
fails to capture differences in spatial structure (see Fig. 3a). It
does however, capture the oscillations between a radially seg-
regated pattern and pattern reflecting the regular islands in the
Poincaré sections (Fig. 3b).

The measure of pattern structure selected is p?/a; p corre-
sponds to the length of an iso-concentration line c¢(x,y) = K, with
K being a suitable threshold, and a being the area enclosed by
¢(xy) (in our image analysis studies we take K = 0.75, i.e., regions
of segregation containing 75% or greater concentration of dense
beads). For a semicircle p?/a = (2/m)(2+)? ~ 17. Deviations
from purely radial segregation increase the value of p?/a. We
observe that the values for the square filled 43% full and 50%
full and a circle remains nearly constant, between 20 and 25 (Fig.
3c). The equilibrium values for a half-filled square rise to nearly
40 and becomes erratic for the irregular stripping pattern for
55% full S-systems (Fig. 3d). In general the value of p?/a
oscillates depending on the orientation of the mixer. All mea-
surements correspond to the orientation shown in the insets of
Fig. 3 a and b.

A direct way to distinguish steady and nonsteady structures is
by superposition of the contours of isoconcentration regions
(Fig. 4) obtained via image analysis. Denote the perimeter by
pxyt). Steady (or time-periodic) structures correspond to
pxy,t) = p(xy,t+T), where T denotes the time of return of the
mixer shape to the same orientation (Fig. 4 a and b). We note
that 7'is a function of the symmetries of the container; in square
it is 90°, in ellipses 180°. Other structures do not return to their
initial locations. An example is a 55% full square mixer (see Fig.
4d). The superposition of snapshots of this system show that, over
time, the fingers occupy most regions in the square resulting in
Fig. 4c.

Discussion. In the systems described above chaotic advection
interacts in nontrivial ways with segregation and serves as a
prototype as a simple experimental system displaying organiza-
tion in the presence of disorder (25). The experiments are
remarkably simple. A few comments, however, seem in order
because care is needed in the interpretation of the results.
The results displayed in Figs. 2 and 3 are representative of a
much larger body of work. The analysis is based on two types of
experimental information: degree of mixing and p?/a; both are
subject to experimental errors. The data analysis is based on
digital images taken during the run and assumes that the
concentration of the lighter particles is proportional to the light
intensity in the images. Deviations from linearity are caused by
particle shadows and uneven light reflection. The major error,

Hill et al.

however, is caused primarily by variation in initial conditions
from run to run. While the beads start out approximately well
mixed, it is manifestly impossible to produce the exact same
condition twice. This variability can make a big difference in the
initial portions of the run. The long-term results, however, are
highly reproducible.

We note also that the segregation patterns resemble the
Poincaré sections with heavier (smaller) particles tagging the
regular regions in the flow, which allows for a rough experimen-
tal estimate of the Poincaré section of the flow. This is significant
and is described in more detail below. Observe also that while the
more dense or smaller particles (depending on the mixture)
appear to occupy the positions of greatest stability in the mixer
(in and near regular islands), in general, they do not occupy the
positions of lowest kinetic energy as is the case for radial
segregation.

The Lagrangian formulation is useful for interpreting the
behavior of the system. The simplest case is when there is no
diffusion (S = 0). Note first that the introduction of the
segregation drift velocity results in a qualitative change in the
dynamical behavior of the system. In the case of a binary system
(see Egs. 8 and 9) we calculate V-v; = Vv, = 23(1 — p)/d(df/dy),
where v; and v, are velocities in phase space of species 1 and 2.
Thus, the space for each species contracts in the layer as the
larger particles sink to lower y values (i.e., df/dy < 0). In pure
regions, f = 0, 1, the segregation velocities vanish and volume is
conserved. The case of circular mixers is easily visualized. The
denser particles sink to lower positions in the layer while lighter
particles rise, which translates into a radial motion with the
denser particles moving to the central core and the less dense
moving to the periphery. Such motion continues in regions that
contain both species. However, in pure regions (f = 0,1) the
segregation drift velocity vanishes and the motion of the particles
coincides with the streamlines of the one component system. At
equilibrium there is complete segregation with all of the denser
particles in the central core and all of the lighter particles in the
periphery, the boundary between the two being given by the
streamline bounding an area fraction equal to the volume
fraction of the denser beads.

In noncircular mixers there is also an initial tendency for the
dense particles to move to form a central core and for the lighter
particles to migrate to the periphery. However, in this case
streamlines are not invariant curves, and thus the core is
distorted and mixed because of advection. The key to the
structure formation lies in the invariant curves of the mapping.
An invariant curve composed entirely of one of the species is
preserved by the mapping (which now coincides with that for a
single component because the segregation velocity vanishes).
Thus, the structure formed is determined by the surviving KAM
curves of the Poincaré section for the single-component system.
The region within the outermost KAM curve enveloped by the
core formed by the dense particles is invariant as is the peripheral
pure region of light particles outside the innermost KAM curve.
The effect of diffusion is primarily to blur the structures. When
the core size exceeds that of the invariant region, chaotic
advection and diffusion act in concert to mix the particles outside
the invariant region.

We observe also that the Poincaré sections are symmetric but
the segregation patterns are often asymmetric, which is most
obvious in the case of the ellipse (Fig. 2 g and /). Poincaré
sections are computed for a system of identical particles (i.e., a
base continuum description of the granular flow). When mix-
tures of particles of different densities are used, the trajectory of
the heavier particles deviates from this “base case,” owing to
their segregation velocity, and this deviation is always downward
in the flowing layer, which leads to the asymmetry observed in
the computations (see Fig. 2q).

The computations presented apply to D-systems. The discussion
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Fig. 5. Axial segregation observed in a three-dimensional square drum mixer (aspect ratio 6). The views correspond to the orientation shown to the right. The
standard axial segregation pattern is clearly observed in the top flowing layer (a), while the two lobes seen in the two-dimensional square mixer are evident on

side views of the mixer (b).

can be extended to S-systems. Instead of a segregation velocity
caused by a difference in mass, different-sized particles have a
differential probability of percolation within the flowing layer;
smaller particles fall through the gaps between the larger particles.
Constitutive models for mixtures of different-sized particles can be
incorporated into advection-diffusion computations. The models
available, however, apply to specific regimes, for example, when the
density is low, and are not as robust as the ones for segregation
caused by density (22).

S-systems introduce additional important physical effects; unlike
the case of D-systems, the flow in the layer changes (noticeably)
according to the particles present. For example, if the flowing layer
consists entirely of small particles, it is thinner and moves faster.
Conversely, larger particles form a deeper and slower flowing layer.
The velocity field is coupled to the composition of the particles in
the layer. A consequence of the coupling between velocity and
concentration is the radial streak structure shown in Fig. 20. This
instability resembles that observed in a two-dimensional sand pile
(26-28). We noticed that this happens in mixers that filled just
above the one-half level. In this case, each entire stripe enters the
flowing layer all at the same time, so that the instability is
reinforced. This phenomenon appears to be independent of the
underlying Poincaré section; it occurs in mixers of all shapes.

One might ask to what extent these results apply to the full
three-dimensional case, long drum mixers where axial segrega-
tion occurs (Fig. 5). The insights obtained above appear to be
valuable. Previously, it has been suggested that radial segrega-
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tion (observed in the circular mixer) is a necessary precursor to
axial segregation (29). Because in the two-dimensional square
mixer we do not observe radial segregation for more than one
revolution, this finding would suggest that either axial segrega-
tion should not exist in a three-dimensional square mixer, or the
two-arm patterm shown in Figs. 2 and 4 is merely an artifact of
the two-dimensional case. However, neither is true. We con-
ducted experiments in 30-in long drum mixers with a 5-inch
square cross-section. When the degree of filling is one-half, not
only did axial segregation occur (Fig. 5a), but the axial segre-
gated patterns show unmistakable signs of the two-arm structure
(Fig. 5b). Thus it appears that radial segregation is not a
necessary condition for axial segregation. The full implications
of the two-dimensional patterns discovered here on mixing in
long cylinders, however, await full investigation. It is also ap-
parent that the physics underlying the simpler two-dimensional
chaotic-segregating systems considered here is quite complex.
The results presented may be only part of a much richer
inventory of possible behaviors.

This work was supported by the Engineering Research Program of the
Office of Basic Energy Sciences of the Department of Energy, the
National Science Foundation, Fluid, Particle and Hydraulic System, and
the Petroleum Research Fund, Administered by the American Chemical
Society. D.V.K. acknowledges the support of the Department of Science
and Technology, India through award of the Swarnajayanti Fellowship
(DST/SF/8/98).

15. Hill, K. M. & Kakalios, J. (1995) Phys. Rev. E 52, 4393-4400.

16. Khakhar, D. V., McCarthy, J. J., Shinbrot, T. & Ottino, J. M. (1997) Phys. Fluids
9, 31-43.

17. Metcalfe, G., Shinbrot, T., McCarthy, J. J. & Ottino, J. M. (1995) Nature
(London) 374, 39—-41.

18. Rajchenbach, J. (1990) Phys. Rev. Lett. 65, 2221-2224.

19. Elperin, T. & Vikhansky, A. (1998) Europhys. Lett. 42, 619-623.

20. Savage, S. B. (1993) in Disorder and Granular Media, eds. Bideau, D. & Hansen,
A. (Elsevier, Amsterdam), pp. 255-285.

21. Khakhar, D. V., McCarthy, J. J & Ottino, J. M. (1997) Phys. Fluids 9,
3600-3614.

22. Khakhar, D. V., McCarthy, J. J. & Ottino, J. M. (1999) Chaos 9, 594-610.

23. Franjione, J. G. & Ottino, J. M. (1992) Philos. Trans. R. Soc. London 338,
301-323.

24. Danckwerts, P. V. (1952) Appl. Sci. Res. A 3, 279-296.

25. Goldenfeld, N. & Kadanoff, L. P. (1999) Science 284, 87-89.

26. Makse, H. A., Cizeau, P. & Stanley, H. E. (1997) Phys. Rev. Lett. 78,3298-3301.

27. Koeppe, J. P., Enz, M. & Kakalios, J. (1998) Phys. Rev. E 58, R4104-R4107.

28. Makse, H. A., Havlin, S., King, P. R. & Stanley, H. E. (1997) Nature (London)
386, 379-382.

29. Hill, K. M., Caprihan, A. & Kakalios, J. (1997) Phys. Rev. Lett. 78, 50-53.

Hill et al.



